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Abstract. Keyphrase extraction is a task of automatically selecting top-
ical phrases from a document. We present KeyVector, an unsupervised
approach with weighted topics via semantic relatedness for keyphrase
extraction. Our method relies on various semantic relatedness of doc-
uments, topics and keyphrases in the same vector space, which allow
us to compute three keyphrase ranking scores: global semantic score,
find more important keyphrases for a given document by measuring the
semantic relation between documents and keyphrase embeddings; topic
weight, pruning/selecting the candidate keyphrases on the topic level;
topic inner score, ranking the keyphrases inside each topic. Keyphrases
are then generated by ranking the values of combined three scores for
each candidate. We conducted experiments on three evaluation data sets
of different length documents and domains. Results show that KeyVec-
tor outperforms state of the art methods on short, medium and long
documents.

Keywords: Keyphrase extraction · Clustering · Topic modeling · Se-
mantic relatedness · Text mining.

1 Introduction

Keyphrase extraction aims to automatically extract keyphrases from a docu-
ment and ensure the selected keyphrases covey the main topic of the docu-
ment. Key phrases are an essential component for solving the tasks of informa-
tion retrival [17, 21, 9, 19], summarization [6], text mining and topic modeling
[2]. Word/phrase embeddings are distributed representations of text in an n-
dimensional space. In such space, the semantic/syntactic features of words can
be captured by the embeddings, and the machine learning algorithms could
reach better results in natural language processing (NLP) tasks by grouping
words/phrases. Owing to its importance, the embedding becomes necessary for
solving many NLP tasks [16, 22, 23] better nowadays.

Many graph and topic-based approaches (TextRank [15], SingleRank [24],
TopicRank [4]) for keyphrase extraction have been proposed to use internal
and external discrete features such as positional features, word frequency, co-
occurrences and some other Wikipedia-based statistical features. Instead of re-
lying on either internal or external discrete features, in this paper, we present
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KeyVector, an unsupervised keyphrase extraction method by computing the se-
mantic relatedness of words/phrases through embeddings. Our approach has
several advantages over existing state of the arts. 1) Global semantic score. Em-
bedding the sentences, candidate keyphrases into the same vector space, which
allows us to compute their semantic relatedness more efficiently than discrete fea-
tures. Based on the embeddings, we propose to use the global semantic score that
is the semantic relatedness between document and keyphrases. 2) Weighted top-
ics. Ranking a large number of candidate keyphrases is often tricky. Intuitively,
it is more efficient if we group the candidates into topics by their embeddings,
then ranking them on the topic or global level. To do this, we compute repre-
sentation for each topic after the clustering process and assign a weight for each
topic by measuring the semantic relatedness between topic and documents. We
show that the technique of weighted topic influences the process of keyphrase
selection. 3) For each candidate inside each topic, we propose to compute a local
ranking score, and we refer to it as topic inner semantic score.

We use three standard data sets of different document size and domain
to evaluate KeyVector. We compare KeyVector to five different state of the
art approaches. Experiments show that KeyVector outperforms other baselines
on short/medium/long documents. It yields better results for both short and
long documents. It indicates that KeyVector has better stability in its perfor-
mances against the various length of documents compared to other topic-based
approaches. The rest of the paper is organized as follows: Section 2 presents
the existing methods for the keyphrase extraction task; Section 3 describes the
details of KeyVector; Section 4 describes the evaluation process and report the
experimental results; Section 5 concludes this work.

2 Related Work

In general, keyphrase extraction methods can be classified into two groups: su-
pervised and unsupervised approaches. In supervised approaches [14, 10], the
problem of keyphrase extraction is regarded as a binary classification task and
learn models from training data. Many details about the supervised methods
and statistical features for keyphrase extraction can be found in the survey [7].
Here, we focus on unsupervised approaches that often have two ways: corpus-
dependent and corpus-independent. The former requires all documents to do the
extraction of keyphrases, and the TFIDF [20] is the simple, widely used approach
contains two features: term-frequency and inverse document frequency. Methods
belonging to the latter like TextRank [15], KeyCluster [13] TopicRank [12] and
EmbedRank [1], including our proposed method, requires no other documents
than the one document from which to extract keyphrases.

TextRank [15] is the well-known graph-based approach, and it builds a graph
from one document. Each node of the graph corresponds to candidate keyphrases
and the edge connects two candidates. For each node, calculate the score from
other nodes connected by the edges. The top-ranked nodes from the graph are
then selected as keyphrases. KeyCluster [13] is the clustering-based approach
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that clustering semantically similar candidates using statistical features such as
word co-occurrences and positional features etc. The main idea of this method
is that a candidate is to be selected as keyphrase if the candidate close to the
centroid of a cluster. The clusterized candidates can be viewed as topics that a
document covers. The drawback of this method is that those unimportant topics
in the document could be selected as keyphrases, which is limiting the quality
of the resulting sets of keyphrase. TopicRank[12] was proposed to overcome the
weakness of the KeyCluster. In order to ensure that extracted keyphrases cover
the main topics, this method uses Latent Dirichlet Allocation [2] to generate
topics for a document and uses TextRank multiple times for a document and
once for the generated topics.

EmbedRank [1] is an embedding-based approach that computes the docu-
ment embedding and the embedding of each candidate phrase separately. The
embeddings are obtained from the popular Doc2vec [11] and Sent2vec [18] mod-
els. The top keyphrases are selected by ranking the candidate phrases according
to their cosine distance to the document embedding. EmbedRank is comparable
to KeyVector, but they are different in several points: 1) the global semantic score
is used to compute the semantic relation between sentences and keyphrases. 2)
weighted topics are applied to do global pruning for the candidates that unlikely
to be keyphrase. 3) topic inner score is used to rank the keyphrases in each topic.

3 KeyVector: Automatic Keyphrase Extraction

In this section, we introduce KeyVector, a novel weighted topic keyphrase ex-
traction method via semantic relatedness, which is designed to handle the prob-
lematic situation of the task when each of the documents has a large number
of candidate keyphrases to rank. Before describing the method, let us clarify
the elements described in the following sections. Keyphrase, it is made up of
one or multiple words. Candidate keyphrase, it is extracted for each document
by using heuristic rules (Section 4.2) and each document has a large number
of candidates. Gold Keyphrases, they are given by the annotators or authors of
data sets. Topic, it consists of a set of candidate keyphrases and each document
contains several topics. It also treated as cluster/group.

The method consists of three main steps: 1) Project each of sentences and
candidate keyphrases into the same and high dimensional space to compute
their semantic relatedness. 2) Compute the weights to topics by clustering the
candidate keyphrases of each document. 3) Obtaining the ranking scores by
measuring the semantic relatedness between the candidate with the sentences,
and the inner semantic score of each candidate in a topic plus topic weights.

The global architecture of KeyVector is given in Fig 1. The process of keyphrase
extraction is from words (w) to sentence (s), then to keyphrase (p). The edge
arrows between words and sentences mean that the embeddings of each sentence
are computed by averaging each word embeddings. The edge arrows between sen-
tences and candidate mean the computation of the semantic relatedness between
them.
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Fig. 1: The architecture of KeyVector.

3.1 Embedding the Sentences and Phrases

Representing text such as words, sentences and documents into vector rep-
resentation, which allows the model to capture the semantic relatedness via
word/phrase vectors within the shared high-dimensional vector space. We use
this property to rank the candidate keyphrases, which allow us to partially cap-
ture the semantics between text and candidate keyphrase to meet the informa-
tiveness of keyphrase.

We represent each sentence and candidate phrase into vector representation
by using word embeddings [16]. More formally, for a given collection of docu-
ments d ∈ D, we segment the sentences S ∈ d, si ∈ S and tokenize them into
words W ∈ S, wl ∈ W . With the purpose of putting the method as simple as
possible, we compute the sentence embedding by using the averaged vector sum
of each word in the sentence.

si =
1

|si|

|si|∑
l=1

wl (1)

where |si| is the number of word in the sentence si. For simplicity, the notations
within boldface denote vectors/matrix. The obtained sentence embedding is si ∈
R|1×N |. N is the dimension. Note, the word embeddings are used only for the
equation (1), in other cases we use keyphrase and sentence embeddings.

The process of computing the embedding for each candidate keyphrase pj ∈ P
is the same with sentence embedding. Each pj consists of words wl ∈ pj . The
generation of embedding for word sequences in this model is simple enough
and feasible. This embedding method also allows us to embed arbitrary-length
sequences of words. In order to compute both sentences and phrases embedding,
we employ publicly available pre-trained word embeddings1, which allow both
types of embeddings in a shared semantic vector space.

1 https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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3.2 Weighted Topics

Given the sentences, the candidate keyphrases and their embeddings, we com-
pute the semantic relatedness of them in order to cluster similar candidates by
their meanings. The idea behind the clustering the candidates is to handle the
problematic situation of keyphrase extraction when a large number of candidates
extracted from each document. To demonstrate this situation comprehensively,
let us consider the numbers of extracted candidates per document from three
standard data sets: Inspec [8], DUC [24] and NUS [17]. Figure 2 shows the
distribution of the number of generated candidates and we could observe that
the length of the input document as longer the document yield more candi-
date keyphrases. For NUS data set (the rightmost part of the curve), it can be
seen that the extracted candidate keyphrases are more than 1000 and for DUC
(the middle part of the curve) the number is about 200. The large number of
candidates for each documents leads the selection process become very tricky.

Fig. 2: The distribution of the number of generated candidates. The x-axis is
the combined document ID of three data sets in the following order: Inspec
(short), DUC (medium), NUS (long), and the y-axis is the number of extracted
candidates.

The technique of weighted topics plays the role like pruning candidates that
are unlikely to be keyphrases on a global level. Existing topic-based methods
(KeyCluster [13], TopicRank [4]) apply statistical features (such as word co-
occurrences, the number of overlapping words and positional features etc.) to
compute the semantic relations, then group the candidates. The group of can-
didates can be treated as topics [4]. Here, we group the similar candidates P
based on their embeddings’ relatedness in the same space with the input docu-
ment dk. We apply affinity propagation method [5] to cluster the candidate in
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terms of a given document, and it also automatically identifies how many clusters
there are in each document. Once the candidates P are clusterized into topics,
T = {t1, ..., ts, ..., t|T |} (ts is the s-th topic that contains one or more candidates
and ts is its embedding), again, we compute vector representation for each topic
by averaging the sum of the embeddings of each candidate inside the topic. We
treat topic representation ts as the centroid of each topic.

To weighting the topics, we calculate the semantic relatedness between the
centroid and the input document.

Pr(ts|si) =
∑

(

|Sk|∑
i=0

cos(si, ts)) (2)

where Pr(ts|si) is the weight for topic ts. Sk ∈ R|Sk|×N is the matrix represen-
tation of the document dk and each sentence’s embedding of dk is si ∈ R1×N .
Note that the weights for topics are computed using embeddings of sentences
and topic centroids, and they are in the same vector space.

3.3 Keyphrase Selection

Based on the above, we select the top-M keyphrases by three strategies: 1)
global semantic score, the semantic relatedness between sentences and can-
didates, Pr(S|pj). The underlying hypothesis of this measurement is that a
sentence is more important if it contains more important keyphrases, and a can-
didate keyphrase is important if it is related to a large number of sentences.
2) topic weights, Pr(ts|S). It is used for topic importance determination, and
it is a global pruning technique for the candidates that are not likely to be
keyphrases. 3) topic inner semantic score, the semantic distances between
each candidate to the centroid, Pr(pj |ts). It is an inner selection in each topic
to the candidates. Given a document d or its sentences S, we compute a score
for j-th candidate keyphrase by computing its likelihood.

Pr(pj |S) = Pr(ts|S)Pr(pj |ts)Pr(S|pj) (3)

where Pr(ts|S) =
∑

(
∑|Sk|

i=0 cos(si,pj)) is the probability of the sentences
given the keyphrase. It means that which keyphrases produce larger probabilities
for sentences, it could be the keyphrases. Pr(pj |ts) = cos(pj, ts), pj ∈ ts is
topic inner score. It means that the most important candidate should be close
to the centroid of the topic. Pr(ts|S) is weighted score for topic ts. Doing the
above calculation, the ranking scores for each candidate can be computed. Then,
according to the ranking scores, we can suggest top-M ranked candidates as the
keyphrase.
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4 Experiments

4.1 Data set

KeyVector is evaluated on three publicly available data sets2. Table 1 shows
the statistics about data set3. The data set of Inspec [8] consists of 2 000
short documents from scientific journal abstracts. We evaluate our model on
500 documents of test set. The DUC-2001 data set [24] contains 308 medium
length newspaper articles from TREC-9. The NUS [17] consists of 211 long
length of scientific article. Each document contains several sets of keyphrases.
One is created by author and the others are assigned by annotators. Following
[17], we evaluate on the union of all sets of author’s and annotators’ keyphrases.

Table 1: Statistics of the data sets.
dataset types #docs. #avg. tok. #avg. c. #kps %miss. kp. %miss. w. %miss. c.

Inspec short 500 134.12 26.60 4913 41.66 17.5 6.78
DUC medium 211 847.23 142.89 2488 13.46 24.76 2.74
NUS long 308 7379.19 854.32 2317 37.16 20.13 2.21

4.2 Preprocessing

The preprocessing has impacts on the performance of keyphrase extraction mod-
els [3]. In the experiments, we used preprocessed version of Inspec [8]4 and DUC-
2001 [24]5 data set that are publicly available. We applied following preprocessing
to NUS [17] data set, namely, sentence segmentation, word tokenization and POS
tagging (nltk pos-tagger). Then, we extracted candidate phrases that consist of
zero or more adjective followed by one or multiple nouns. The stopwords were fil-
tered out from the data sets and the stemming is not performed at preprocessing
stage.

4.3 Results

To evaluate our approach, we designed several set of experiments: one of them
is to compare KeyVector with other baselines; another one is to evaluate the
performance of all models concerning the number of top-M.

2 https://github.com/snkim/AutomaticKeyphraseExtraction
3 The columns of Table 1 are: #docs - the number of the documents; #avg. tok. -

average number of tokens per document; #avg. cand - average number of candidates;
#kps - total number of keyphrases; # miss. kp. - percentage of keyphrases not present
in candidates; #miss. w. - percentage of words out of vocabulary of embeddings;
#miss. c. - percentage of candidates that have embedding with value 0.

4 https://github.com/boudinfl/hulth-2003-pre
5 https://github.com/boudinfl/duc-2001-pre
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Table 2 shows the results of KeyVector and other five baselines. Overall,
KeyVector outperforms TFIDF, TextRank, SingleRank and EmbedRank in terms
of precision, recall, and F1 score. On Inspec, which contains short documents,
KeyVector outperforms all other competing approaches. In this case, TopicRank
fails to do better than other baselines of non-topic ranked methods like TFIDF,
SingleRank and EmbedRank. However, from the results of KeyVector on short
documents, it seems that KeyVector performs well and stable. On Duc, the
medium documents, KeyVector also shows the case with Inspec. We could ob-
serve that KeyVector has approximately 11.95% (on Inspec), 6.62% (on Duc),
2.53% (on NUS) and 16.22% (on Inspec), 7.32% (on Duc) , 0.99% (on NUS) im-
provements in F1-score compared with SingleRank and TopicRank, respectively.

Table 2: Comparison of KeyVector with state of the art on the three data sets.
The W is the window size and M is the number of selected keyphrases, and the
N is the dimension of word embedding.

Methods Parameter Precison Recall F1-score

Inspec

TFIDF M=10 31.31 31.56 31.44
TextRank W=2, T= 0.3 17.80 17.52 17.66

SingleRank W=10, M=10 26.14 26.48 26.30
TopicRank W=10, M=10 22.00 22.06 22.03

EmbedRank N=300, M=10 36.62 36.92 36.77
KeyVector N=300, M=10 38.09 38.40 38.25

DUC

TFIDF M=10 15.32 18.86 16.91
TextRank W=2, T= 0.3 9.66 11.86 10.65

SingleRank W=10, M=10 17.96 22.14 19.83
TopicRank W=10, M=10 17.34 21.34 19.13

EmbedRank N=300, M=10 23.23 28.64 25.65
KeyVector N=300, M=10 23.95 29.52 26.45

NUS

TFIDF M=10 9.19 8.37 8.76
TextRank W=2, T= 0.3 5.02 4.57 4.78

SingleRank W=10, M=10 8.0 7.29 7.63
TopicRank W=10, M=10 9.62 8.76 9.17

EmbedRank N=300, M=10 8.24 7.50 7.86
KeyVector N=300, M=10 10.66 9.71 10.16

The results of KeyVector are competitive with TopicRank, and It has im-
provements about 0.99%, 2.53% and 5.38% compared to TopicRank, SingleRank
and TextRank.

We investigate the effects of the top-M selected keyphrases with respect to
F1-score in Figure 3. Figure 3a shows that KeyVector outperforms all baselines
start from top-M = 3 and it grows continuously compared to EmbedRank that
start to drop slightly when top-M=14. On DUC, the results of F1-score KeyVec-
tor and EmbedRank are comparable when increasing the number of top-M . It
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(a) Inspec

(b) DUC

(c) NUS

Fig. 3: Comparison of F1-score for three data sets concerning the top-M
keyphrases.
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can be seen that KeyVector has significant improvements compared to others. On
NUS, TopicRank shows its advantages for long documents compared to others
(TextRank, SingleRank) and the TFIDF also gives excellent results. KeyVec-
tor has a 0.99% improvement approximately in F1-score compare to TopicRank.
KeyVector computes semantic relatedness from sentences, topics and keyphrases’
embeddings to do the extraction and it is sensitive for the way of generating the
embeddings for sentences, topics and keyphrases including the different use of
normalization/average for embeddings. Take into account the fact that some
words are missing from the embeddings ( Inspec: 17.5%, DUC: 24.76%, NUS:
20.13% ); consequently, some of keyphrases have all zero value in representa-
tions ( Inspec: 6.78%, DUC: 2.74%, NUS: 2.21% ). We believe the improved
representation for our method or decreasing the missing percentages of those
words/phrases have effects on improving the results. Over all, from the results
on short/medium/long documents, we could observe that KeyVector does not
fail to do better (like topicRank does) on short/medium documents, and its per-
formances on long documents are also stable. So we deduce that KeyVector has
taken the balances on its performance when extracting keyphrases from various
lengths of documents.

5 Conclusion

In this paper, we present KeyVector, an unsupervised method for keyphrase
extraction. Our approach offers several advantages over existing keyphrase ex-
traction methods. First, the semantic relatedness between sentences and can-
didates are computed through embeddings which are projected into the same
high-dimensional space. The use of weighted topics captures those unimportant
topics to reach the goal of pruning the candidates not likely to be keyphrases
on the topic level. The topic inner semantic score is another strategy to rank
the candidate inside the topic by the semantic distances between each candidate
to the topic centroid. We conducted experiments on three standard evaluation
data sets of different document sizes and domains. Results show that KeyVector
outperforms other baselines on short/medium/long documents.

We will explore the following two points as future work: 1) analyze the effects
of different clustering results for keyphrase extraction, and investigate other new
clustering algorithms. 2) explore an new strategy for computing the topic inner
scores.
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