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Abstract. Information Retrieval Systems have revolutionized the orga-
nization and extraction of Information. In recent years, mobile applica-
tions (apps) have become primary tools of collecting and disseminating
information. However, limited research is available on how to retrieve
and organize mobile apps on users’ devices. In this paper, authors pro-
pose a novel method to estimate app-embeddings which are then ap-
plied to tasks like app clustering, classification, and retrieval. Usage of
app-embedding for query expansion, nearest neighbor analysis enables
unique and interesting use cases to enhance end-user experience with
mobile apps.

1 Introduction

Recent years have seen tremendous increase in usage of mobile applications,
a.k.a. apps, mainly due to the ever rising popularity of smart phones. There are
millions of apps [1] freely available on Google Play Store and Apple App Store.
With the abundance of data available in form of applications, it is important to
build efficient and effective retrieval engines around them. When a user queries
for an application, it is crucial to bring the most relevant application at the
top. In a mobile environment, the user expects search operation to be rapid and
relevant. This is a challenge as the number of available applications are readily
growing these days. Most of the recent work in the field of Information Retrieval
has been focused on web-search scenarios and improving the ranking of web
results. Little work is focused on information retrieval centered around mobile
applications. Intelligent retrieval methods are required to make sense of this large
amount of app data and also keep them organized in users’ devices. Since most of
the data related to applications are in the form of its description, it is important
to mine this source of information. Very recently, neural word embedding has
found its use in the field of Information Retrieval. A novel method of learning
word embedding from app description is proposed in this paper. The paper is
organized as follows.
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An overview of related work in the domain of information retrieval is pre-
sented in Section 2. The details of estimating the embeddings are discussed in
section 3. Section 4 elaborates experiments and results using the proposed em-
beddings for various tasks. Finally section 5 recapitulates the proposed approach
with current applications and scope of future extensions.

2 Related Work

In past few years, word embeddings have found a major role for solving differ-
ent tasks in multiple domains like Natural Language Processing and Machine
Learning. Word embedding is basically a representation of a word in a vector
space and there are different ways to learn this representation- to model seman-
tic or syntagmatic relationships. Traditionally, techniques like Singular Value
Decomposition (SVD) and Principal Component Analysis (PCA) were applied
to generate dense word representations. With the advent of neural networks, it
became possible to learn more enhanced word representations. Different vari-
ants of word embeddings such as word2vec [2], GloVe [3] have been proposed for
learning dense distributed representation of words. These window based methods
count the number of co-occurrences of terms in the training corpus and suggest
how likely is a term to occur with other terms. Such methods have been highly
effective in solving different problems such as Text Summarization, Sentiment
Analysis, and Machine Translation. Later, the idea of neural word embeddings
was extended to learn document-level embeddings [4] which opened further in-
teresting use-cases. Information Retrieval is one such domain.

In 2015, a unified framework for monolingual and cross lingual information
retrieval was formulated using word embeddings [5]. Dual Embedding Space
model using word embeddings was proposed for the task of document rank-
ing [6]. Also, there are methods for solving the problem of term weighting and
query interpretation using distributed representation of words [7]. Word and
document embeddings have also found their use in applications such as query
expansion and estimation of accurate query language models in the task of re-
trieval [8]. In general, query expansion is based on pseudo relevance feedback [9]
to enhance the performance of ad-hoc retrieval. Initial work in query expan-
sion utilized word2vec (continuous bag-of-words) embedding approach [10]. Cur-
rently, researchers are experimenting to build robust word embeddings to analyze
their usage in different problems of information retrieval. The novelty of locally-
trained word embeddings are nicely highlighted in [11]. They have shown that
these locally trained word embeddings outperform the globally trained ones (like
word2vec, GloVe, etc.) for retrieval tasks. It isn’t necessary that what a word
means globally also means the same in a local context. Building on the same
line of work, relevance-based word embeddings [12] were explored to propose
two new cost functions to learn word embedding specifically for retrieval tasks
like query expansion and classification.

These days, mobile applications form a large chunk of data which is available
for consumption. Some work has been done to mine user-reviews on mobile ap-



plications [13]. Mobile app retrieval has been experimented by few researchers to
learn application representation using topic modeling [14] and intention in social
media text [15]. Very recent work has been done to build a unified mobile search
framework using neural approaches to learn high-dimensional representations for
mobile apps [16]. Also, there are recent attempts made to use Learning-to-Rank
algorithms for optimizing retrieval of mobile notifications triggered by installed
apps [17]. However, application embeddings have been rarely utilized to perform
query expansion, nearest neighbor analysis and other tasks related to mobile
applications.

This paper proposes a novel method to learn dense word embeddings from
app descriptions. The learned word embeddings are then used to compute
relevance-based application embeddings which are suitable for retrieval and cat-
egorization of Mobile Apps.

3 Proposed Method

The following section details the method to extract word embeddings from app
descriptions. As discussed in section 2, embedding techniques like word2vec and
Glove are not suitable for information retrieval tasks as they are based on co-
occurrence and fail to capture the associated relevance. It is observed that task
specific embeddings generally perform better. To improve performance in tasks
related to retrieval, it is important to learn these representations which car-
ries the notion of relevance. With this motivation, the following subsection 3.1
discusses the process of learning this representation (word embedding) for each
unique word in the vocabulary. Once this sparse representation is calculated, it is
used for learning a distributed vector representation using neural networks. This
reduces noise, identifies patterns and is suitable for mobile devices as computa-
tions involving dense vectors are faster and requires less space for storage. The
approach proposed in this paper is language-agnostic as while formulating the
method it is assumed that application descriptions can be of any language and is
seen as collection of words. Therefore, same techniques can be applied if datasets
for different languages are available for training the models. For the methods dis-
cussed below, the terms - application embedding and document embedding are
used in the same context.

3.1 Relevance-Based Word Representation

As it is said in linguistic theory [18]: “You shall know a word by the company
it keeps”. For the domain of information retrieval, it can be said that a word
is known by the documents (or other words) it retrieves. In order to capture
the relevance associated with each word, the information contained in the top
retrieved documents are utilized when the same word is used as a query to
retrieval engine. Apache Lucene [19], an open source search library is used to
test this hypothesis and get the relevant results for each word in the vocabulary.
Lucene uses Okapi-BM25 score [20] to rank the retrieved documents. Using the



app descriptions for all applications, Vector Space Model (VSM) representation
is constructed using the term frequency [21] and inverse document frequency [22]
(tf-idf) scores.

In this manner, every application is represented by a vector of dimension
1 × N , where N is the vocabulary size of the corpus. The weight vector for
application j is defined as [23]:

V SMj = [w1,j , w2,j , ..., wN,j ] (1)

wij = tf(i, j) · log
TotalDocs

| {j′εDoc | iεj′} |
(2)

tf(i, j) is the term frequency of term i in application j

TotalDocs is the total number of documents (applications) in the corpus

| {j′εDoc | iεj′} | is the total number of applications containing the term i

log
TotalDocs

| {j′εDoc | iεj′} |
is inverse document frequency.

For a query t with words {t1, t2, .., tn}, BM25 score of document (application j)
is computed as:

BM25(t, j) =

n∑
i=1

idf(ti) ·
tf(ti, j) · (k1 + 1)

tf(ti, j) + k1 · (1− b+ b · |j|
avgdl )

(3)

| j | is the length of document Doc in words

avgdl is the average document length

k1 is the hyper-parameter that calibrates the scaling of tf(ti, j)

b is another tuning parameter which determines the scaling for avgdl

Method Firstly, the most relevant documents (topDocs) are retrieved after
querying the system with each term in the vocabulary. The number of top
documents is an input provided to the system and is given by the variable
len(topDocs) . For the experiments in this paper len(topDocs) is set to 10. Using
the constructed V SM and BM25 scores for these topDocs, a high-dimensional
word representation is computed by the following equation:

WordReprk =

∑len(topDocs)
i=0 BM25i,k · V SMi∑len(topDocs)

i=0 BM25i,k
(4)

V SMi is the Vector Space Model representation for the ith application and
BM25i,k is the BM25 score of the ith document for term k. In this manner, word
embeddings of all words in the vocabulary are computed. This word embedding
takes into account the relevance of word in accordance with the context of data.



3.2 Dense Word Embedding

Curse of Dimensionality is a well known phenomenon in the field of Machine
Learning and Data Mining. After a certain point, the increase in number of di-
mensions hurts the performance of algorithms. Inferring and performing compu-
tations on sparse vectors and matrices are costly operations as they may contain
noise and irrelevant information. Even the vector given by equation 4 is sparse
in nature which makes its usage limited. Hence, dimensionality reduction is used
to remove noise and extract useful patterns. Different algorithms like Principal
Component Analysis, Singular Value Decomposition, and Neural Networks are
being used for performing the task of dimensionality reduction.

Firstly, to learn word embeddings from word representations, a simple yet
effective feed-forward neural network architecture is used. The architecture is
shown in Figure 1. The input fed to the network is a N dimensional one hot
encoded vector, where N is the vocabulary size and the output layer is N dimen-
sional word representation calculated in equation 4. The activation functions
used in the hidden and the output layer are ReLU and softmax respectively.
Adam Optimizer has been used for updating the parameters of the neural net-
work and the loss function used is cosine distance. The neural network tries
to learn latent patterns present in the word representation while reducing di-
mension, making it computationally faster and cheaper for performing different
retrieval tasks. For training the word embeddings, unique words from the app
descriptions are used and passed as one hot encoded vector (input vector). The
corresponding word representation is fed as the output of neural architecture.
The dimension of the hidden layer is set to 300. Tensorflow framework [24] is
used for the training process. For vocabulary size N , let the two weight matrices
be W1 and W2 and tj be the one-hot encoding of term j (input vector).

WordEmbj = ReLu(tj ×W1) (5)

where W1 has the dimension of N × 300 and ReLu(x) = max(0, x) as given
in [25]. The output layer is given by:

softmax(WordEmbj ×W2 + bias) (6)

W2 has the dimension of 300 ×N and softmax is the activation function [26].
bias is a vector of dimension 1×N . The cosine distance loss is computed against
the values from equation 6 and the representation stored in WordReprj . After
training, the hidden layer gives the word embedding WordEmb for term j. This
relevance based embedding has been developed keeping in mind the notion of
relevance. This embedding is not intuitively built for tasks such as classification
and clustering. To tackle such problems, a vanilla auto-encoder is trained to learn
the word embeddings from the word representations proposed in equation 4. The
input and output to this auto-encoder are the word representations given by
equation 4. The embeddings learned in the hidden layer of the auto-encoder are
denoted by WordEmbAE for the rest of this paper.

With the discussed WordEmbj representation for each term j in vocabulary,
an embedding matrix is constructed.



Fig. 1. Neural architecture to generate Word Embedding from Word Represen-
tation

3.3 RelEmb: Application Embedding

The intention behind any user query is to get the most relevant applications. Ap-
plication title or category is not sufficient to extract relevant applications. But,
each application has an associated description, which carries the useful informa-
tion about the application and its features. This description can be considered as
bag of words and can be used to generate word embeddings as discussed in sec-
tions 3.1 and 3.2. The learned word embeddings can be extended for calculating
application-level embedding by aggregating the word embedding of each term
in the application’s description. Let an application k (document) be represented
as description(k) = { w1, w2, w3, ..., wi, ..., wn} where each wi is the word from
vocabulary.

RelEmbk =

∑n
i=0WordEmb[wi]

n
(7)

Similarly, when the word embeddings are learned using vanilla auto-encoder,
application embeddings are given by:

RelEmbAEk =

∑n
i=0WordEmbAE[wi]

n
(8)



4 Experimental Details

To evaluate the performance of the proposed method, extensive experiments
are performed for different tasks related to application retrieval and categoriza-
tion. A publicly available apps dataset is used for testing the performance of
the embeddings. The dataset includes the data for query-application relevance
judgment, which is useful to test the retrieval task of Query Expansion. A quali-
tative experiment in terms of nearest neighbor analysis is also elaborated in this
paper. This shows the capability of app embedding for tasks like application
recommendation. The dataset also includes a category tag for each application
which can be used to analyze the performance of application embeddings for
the task of multi-class app classification. Apart from supervised learning, these
embedding vectors can also aid in unsupervised tasks like app clustering. The
evaluation of embeddings has been discussed in this section. Results indicate su-
perior performance as compared to existing state-of-the-art methods for various
tasks.

4.1 Dataset

Data Set for Mobile App Retrieval [14] (TIMAN dataset) is used for evaluation of
the proposed methods. This data includes information about 43,041 mobile apps
including the title, description, category, package name, user-reviews, query-
document relevance pairs, etc. To trim down the vocabulary size, only English
words from the app descriptions are selected. Moreover, minimum permissible
length for each word was set to two. With the above mentioned preprocessing,
the number of unique apps comes down to 42,895 with a vocabulary size of
37,213.

4.2 Application Retrieval

In mobile apps scenario, user generally queries with short-text, mostly containing
1-2 terms. It becomes a challenge for any retrieval engine to bring the most
relevant results at the top ranks. Solution like query expansion helps to re-
formulate the user query which eventually improves the retrieval accuracy. But,
it is also problematic to bring the useful expanded terms which increases the
relevance of the results. The word embeddings which are discussed in sections 3.1
and 3.2 are based on pseudo-relevance feedback (BM25) and are trained in a
manner suitable for retrieval tasks. Authors believe that these embeddings are
capable of finding the best expansion terms for user-query.

Evaluation with Query Expansion Query expansion is a standard retrieval
task which has its practical advantages. It boosts the performance of a retrieval
engine using a two-pass method. Query expansion approach is also an appro-
priate methodology to validate the performance of a retrieval system. Using the
word embeddings proposed in section 3, query expansions tasks are evaluated.



TIMAN dataset also provides the query-application relevance data with 4533
instances. The relevance score is a real-valued number in the range of 0-2. Since,
it is a floating point (and not just binary) relevance label, NDCG metric [27]
is used to judge the effectiveness of query expansion. The number of expanded
terms is given by the variable k. To find the expansion terms for a given query,
the following methodology is used.

– Calculation of input query vector using multiple terms in the user-query
query = {w1, w2, ...}

Q =

∑len(query)
i=0 WordEmb[wi]

len(query)

where, WordEmb[wi] are calculated in equation 5.

– Given the query vector Q, the most semantically similar terms are found by
calculating cosine similarity on the WordEmb matrix.

– Top k terms from the WordEmb matrix are selected based on their values
of cosine similarity with respect to the input query vector Q.

– Example: query = {music, stream, airplay} retrieves top five expansion
terms as {sonos, bose, dlna, player, listen}. It can be seen that these terms
are closely related to the initial user query and all of them deal with music
and streaming services.

Table 1. Evaluation results on Query Expansion

Expansion Techniques (k=5)

Metric Okapi-
BM25

SVD PCA WordEmbAE WordEmb

NDCG@3 0.569 0.499 0.467 0.572 0.577
NDCG@5 0.542 0.502 0.469 0.548 0.563
NDCG@10 0.535 0.505 0.477 0.542 0.556

Query expansion results are shown in Table 1. Okapi-BM25 scores are used as
baseline by considering the input query Q as the direct query to the retrieval
system (without expansion). The novelty of the proposed word embeddings can
be seen from the increase in NDCG scores after query expansion.

WordEmb (equation 5) performed better than WordEmbAE as the intu-
ition behind learning these embedding was the notion of relevance for the tasks
in information retrieval. Query expansion is the right measure to validate this
claim and the results fully support it. Even then, WordEmbAE was able to
out-perform the baseline BM25 scores, proving the benefits of the sparse repre-
sentations discussed in section 3.1.



Nearest Neighbor Analysis Not only quantitatively, but also qualitatively,
the proposed application embeddings have proved its worth. It is not always the
case that user provides a query term for app retrieval, a user may want to get
some recommendations based on a particular app. Similar to [28], Nearest neigh-
bor analysis acts as recommender tool to get the closest match from a specific
application. This recommendation system being retrieval based, RelEmb can
be employed as application embedding. Qualitative results for nearest neighbor
analysis using RelEmb (equation 7) are shown in Table 2. From the results
it can be seen that for application of a particular category (query), the closest
matched apps mostly belong to the same category. For these selected applica-
tions, RelEmb embeddings are plotted in a two-dimensional space using t-SNE
visualization [29] (shown in Figure 2). The visualization also shows accurate
grouping for different categories of applications. This section shows the effec-
tiveness of application embedding for extracting similar apps.

Table 2. Qualitative results with Nearest Neighbors Analysis using RelEmb

Application Predicted Nearest Applications - Name (Category)

cops robbers
jail break
(Action)

survival
hungry
games

(Action)

dead target
zombie

(Action)

wanted
survival
games

(Action)

cube duty
ghost blocks

(Action)

orange block
prison break

(Action)

real piano
(Music)

drum
(Music)

real guitar
(Music)

congas
bongos
(Music)

tabla
(Music)

hip hop
beatz

(Music)

relax rain
nature sounds
(Lifestyle)

relax night
nature
sounds

(Lifestyle)

relax forest
nature
sounds

(Lifestyle)

white noise
(Health &
Fitness)

pain
depression
(Medical)

melodies
sleep yoga
(Health &
Fitness)

love phrases
images

(Social)

top good
night images

(Social)

top good
morning
images
(Social)

themes
classic

(Personal-
ization)

status
messages
(Social)

video chat
friendcaller
(Communi-

cation)

kroger
(Shopping)

ralphs
(Shopping)

smith
(Shopping)

king soopers
(Shopping)

fred meyer
(Shopping)

dillons
(Shopping)

4.3 Application Categorization

Under Application categorization, classification and clustering are the two sub-
domains, which are most useful. Both classification and clustering use application
embeddings as the feature vector for training. Classification is a supervised learn-
ing algorithm which uses the document (or application) embedding as feature



Fig. 2. t-SNE projection for applications and their categories given in Table 2

vector and the application category as the output variable. Trained application
classifier can act as black box to predict the category of any new application.
On the other hand, clustering is an unsupervised approach based on just the
feature vectors. It can be used for grouping similar applications together, which
has many practical use-cases like folder creation for grouping similar apps in
mobile.

App Classification Decision tree and multi-class SVM are used to train
the classifiers with features being application embedding and labels as appli-
cation category. The considered TIMAN dataset has application data belonging
to 41 categories. To evaluate the performance of the proposed RelEmb and
RelEmbAE, the dataset is divided into training and test splits using K-Fold
cross validation (k = 5) Multi-class classification using Doc2Vec embedding ap-
proach [4] is used as baseline for comparison. Evaluation results are presented
in Table 3 and the reported F1-score is computed by averaging F1-score from
all 5 groups (after K-Fold). For multi-class SVM classifier, the F1-score (in per-
centage) for RelEmbAE is 43.866 outperforming the baseline Doc2Vec, which
gives the score of 32.55. Similarly, for Decision tree the F1-score (in percentage)
for RelEmbAE is 21.332 whereas for baseline Doc2Vec it is 8.536. The results
indicate the better performance of RelEmbAE over Doc2Vec and also RelEmb.

App Clustering K-mean and DBSCAN clustering algorithms are used to eval-
uate the performance of application embedding for the task of clustering. The
results with proposed RelEmb and RelEmbAE are compared with the baseline
Doc2Vec embeddings. Two different metrics, such as Silhouette [30] and Davies
Bouldin [31] scores are used to compare the results and the evaluation results on
App Clustering are shown in Table 4. It is known that the value of silhouette score



Table 3. Evaluation results on App Classification (41 categories)

F1 Score (Percentage)

Classifier Doc2Vec RelEmb RelEmbAE

Decision Tree 8.536 10.351 21.332
Multi-class SVM 32.550 40.557 43.866

should be more closer to 1 for an accurate clustering. The scores for RelEmbAE
are positive indicating better clustering in comparison to Doc2Vec for which the
scores are negative, indicating wrongly assigned clusters. For Davies Bouldin
score, a value closer to zero means a better separation between the clusters indi-
cating superior performance of clustering. The numbers for both the clustering
techniques indicate that RelEmbAE outperforms existing Doc2Vec embedding
by significant margins.

As discussed in section 3.3, RelEmbAE is more suitable for categorization
tasks whereas RelEmb performs well for retrieved-based tasks such as query
expansion. For classification and clustering tasks,RelEmb still beats the state-of-
the-art Doc2Vec approach showcasing the significance of initial relevance-based
word representations learned in section 4 and denoted by WordRepr.

Table 4. Evaluation results on Clustering Techniques

DBSCAN k-Means (k = 41)

Embeddings Silhouette
Score

Davies
Bouldin Score

Silhouette
Score

Davies
Bouldin Score

Doc2Vec -0.311 2.895 -0.0903 4.84
RelEmb 0.371 2.275 -0.061 4.376

RelEmbAE 0.939 1.98 0.289 0.8947

5 Conclusions and Future Work

In this paper, word embeddings are learned with a neural network architecture
using the description of mobile applications. These embeddings are developed
by keeping in mind the increasing usage of mobile applications and the diffi-
culties faced to find out relevant ones from a large collection. The learning of
word embeddings is carried out based on the notion of relevance. The results
show that the learned word embeddings are effective for query expansion task
eventually making the search experience more user friendly. In addition, the
learned word embeddings are also aggregated to find RelEmbAE and RelEmb-
distributed and dense representations of mobile application. These embeddings



have outperformed Doc2vec on tasks like app classification and clustering. In
future, other parameters like application reviews, ratings, etc. can be used to
make the application embedding much more rich and descriptive. Another ex-
tension of this work can be to analyze the use of application embeddings in the
field of query intent detection, query classification which are current topics of
research in Information Retrieval. Although the work in this paper is focused on
tasks related to mobile applications, the same techniques can be applied to any
generic scenarios of Information Retrieval.
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