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Abstract. We perform an empirical evaluation of several methods of
low-rank approximation in the problem of obtaining PMI-based word
embeddings. All word vectors were trained on parts of a large corpus
extracted from English Wikipedia (enwik9) which was divided into two
equal-sized datasets, from which PMI matrices were obtained. A repeated
measures design was used in assigning a method of low-rank approxima-
tion (SVD, NMF, QR) and a dimensionality of the vectors (250, 500)
to each of the PMI matrix replicates. Our experiments show that word
vectors obtained from the truncated SVD achieve the best performance
on two downstream tasks, similarity and analogy, compare to the other
two low-rank approximation methods.
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1 Introduction

Today word embeddings play an important role in many natural language pro-
cessing tasks, from predictive language models and machine translation to im-
age annotation and question answering, where they are usually ‘plugged in’ to a
larger model. An understanding of their properties is of interest as it may allow
the development of better performing embeddings and improved interpretabil-
ity of models using them. One of the widely-used word embedding models is
the Skip-gram with negative sampling (SGNS) of Mikolov et al. (2013). Levy
and Goldberg (2014) showed that the SGNS is implicitly factorizing a point-
wise mutual information (PMI) matrix shifted by a global constant. They also
showed that a low-rank approximation of the PMI matrix by truncated singular-
value decomposition (SVD) can produce word vectors that are comparable to
those of SGNS. However, truncated SVD is not the only way of finding a low-
rank approximation of a matrix. It is optimal in the sense that it minimizes
the approximation error in the Frobenius and the 2- norms, but this does not
mean that it produces optimal word embeddings, which are usually evaluated in
downstream NLP tasks. The question is: Is there any other method of low-rank
matrix approximation that produces word embeddings better than the truncated
SVD factorization? Our experiments show that the truncated SVD is actually
a strong baseline which we failed to beat by another two widely-used low-rank
approximation methods.



2 Low-Rank Approximations of the PMI-matrix

The simplest version of a PMI matrix is a symmetric matrix with each row and
column indexed by words1, and with elements defined as

PMI(i, j) = log
p(i, j)

p(i)p(j)
, (1)

where p(i, j) is the probability that the words i, j appear within a window of a
certain size in a large corpus, and p(i) is the unigram probability for the word i.
For computational purposes, Levy and Goldberg (2014) suggest using a positive
PMI (PPMI), defined as

PPMI(i, j) = max(PMI(i, j), 0). (2)

They also show empirically that the low-rank SVD of the PPMI produces word
vectors which are comparable in quality to those of the SGNS.

The low-rank matrix approximation is approximating a matrix by one whose
rank is less than that of the original matrix. The goal of this is to obtain a
more compact representation of the data with a limited loss of information. In
what follows we give a brief overview of the low-rank approximation methods
used in our work. Since both PMI (1) and PPMI (2) are square matrices, we
will consider approximation of square matrices. For a thorough and up-to-date
review of low-rank approximation methods see the paper by Kishore Kumar and
Schneider (2017).

Singular Value Decomposition (SVD) factorizes A ∈ Rn×n, into the ma-
trices U ∈ Rn×n, S ∈ Rn×n and V> ∈ Rn×n:

A = USV>,

where U and V are orthogonal matrices, and S is a rectangular diagonal matrix
whose entries are in descending order, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, along the main
diagonal, and are known as the singular values of A. The rank d approximation
(also called truncated or partial SVD) of A, Ad where d < rankA, is given by
zeroing out the n− d trailing singular values of A, that is2

Ad = U1:n,1:dS1:d,1:dV
>
1:d,1:n.

By the Eckart-Young theorem (Eckart and Young, 1936), Ad is the closest rank-
d matrix to A in Frobenius norm, i.e. ‖A −Ad‖F ≤ ‖A − B‖F , ∀B ∈ Rn×n :
rank(B) = d. Levy and Goldberg (2014) suggest factorizing the PPMI matrix

with truncated SVD, and then taking the rows of U1:n,1:dS
1/2
1:d,1:d as word vectors,

and we follow their approach.

1 Assume that words have already been converted into integer indices.
2 Aa:b,c:d is a submatrix located at the intersection of rows a, a+ 1, . . . , b and columns
c, c + 1, . . . , d of a matrix A.



QR decomposition with column pivoting of A ∈ Rn×n has the form AP =
QR, where Q ∈ Rn×n is orthogonal, R ∈ Rn×n is upper triangular and P ∈
Rn×n is a permutation matrix. The rank d approximation to A is then

Ad = Q1:n,1:d[RP>]1:d,1:n

which is called truncated QR decomposition of A. After factorizing the PPMI
matrix with this method we suggest taking the rows of Q1:n,1:d as word vectors.

However, we suspect that a valuable information could be left in the R ma-
trix. A promising alternative to SVD is a Rank Reveling QR decomposition
(RRQR). Assume the QR factorization of the matrix A:

AP = Q

[
R11 R12

0 R22

]
where R11 ∈ Rd×d, R12 ∈ Rd×(n−d), R22 ∈ R(n−d)×(n−d). For RRQR factoriza-
tion, the following condition should be satisfied:

σmin(R11) = Θ(σd(A))

σmax(R22) = Θ(σd+1(A))

which suggests that the most significant entries are in R11, and the least im-
portant are in R22. Thus, we also suggest taking the columns of [RP>]1:d,1:n as
word vectors.

Non negative matrix factorization (NMF). Given a non negative matrix
A ∈ Rn×n and a positive integer d < n, NMF finds non negative matrices
W ∈ Rn×d and H ∈ Rd×n which minimize (locally) the functional f(W,H) =
‖A−WH‖2F . The rank d approximation of A is simply

Ad = WH.

When factorizing the PPMI matrix with NMF, we suggest taking the rows of
W as word vectors.

3 Experimental Setup

3.1 Corpus

All word vectors were trained on the enwik9 dataset3 which was divided into
two equal-sized splits. The PMI matrices on these splits were obtained using the
hypewords tool of Levy et al. (2015). All corpora were pre-processed by removing
non-textual elements, sentence splitting, and tokenization. PMI matrices were
derived using a window of two tokens to each side of the focus word, ignoring
words that appeared less than 300 times in the corpus, resulting in vocabulary
sizes of roughly 13000 for both words and contexts. A repeated measures de-
sign was used for assigning the method of factorization (SVD, QR, NMF) and
dimensionality of the vectors (250, 500) to each PMI matrix replicate. We used
two replicates per each level combination.

3 http://mattmahoney.net/dc/textdata.html



3.2 Training

Low-rank approximations were performed using the following open-source im-
plementations:

– Sparse SVD from SciPy (Jones et al., 2014),
– Sparse RRQR from SuiteSparse (Davis and Hu, 2011), and
– NMF from scikit-learn (Pedregosa et al., 2011).

For NMF we used the nonnegative double SVD initialization. We trained 250
and 500 dimensional word vectors with each method.

3.3 Evaluation

We evaluate word vectors on two tasks: similarity and analogy. A similarity is
tested using the WordSim353 dataset of Finkelstein et al. (2002), containing
word pairs with human-assigned similarity scores. Each word pair is ranked by
cosine similarity and the evaluation is the Spearman correlation between those
rankings and human ratings. Analogies are tested using Mixed dataset of 19544
questions such as “a is to b as c is to d”, where d is hidden and must be guessed
from the entire vocabulary. We filter questions with out of vocabulary words, as
standard. Accuracy is computed by comparing arg mind ‖b− a + c− d‖ to the
labelled answer.

4 Results

The results of evaluation are provided in Table 1, which we analyze using the two-
factor ANOVA with factors being (1) low-rank approximation method and (2)
dimensinality of word vectors, and response being the performance in similarity
or analogy task. We analyze the tasks separately.
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Fig. 1. Test scores for different factorization methods on Similarity and Analogy tasks.



Table 1. Results

Method of low- Dimensionality Replicate Similarity Analogy
rank approximation of vectors # task task

SVD 250 1 0.7010 0.3778
SVD 250 2 0.6969 0.3817
SVD 500 1 0.6989 0.3568
SVD 500 2 0.6914 0.3458
NMF 250 1 0.5265 0.0660
NMF 250 2 0.4780 0.0563
NMF 500 1 0.4499 0.0486
NMF 500 2 0.3769 0.0487

QR (R) 250 1 0.4077 0.1644
QR (R) 250 2 0.3822 0.1533
QR (R) 500 1 0.4717 0.2284
QR (R) 500 2 0.3719 0.1925
QR (Q) 250 1 0.2870 0.0034
QR (Q) 250 2 0.2009 0.0059
QR (Q) 500 1 0.3573 0.0165
QR (Q) 500 2 0.3048 0.0186

Fig. 2. ANOVA residuals for the results on Similarity task.



4.1 Similarity task

The standard residual analysis is used to check whether the ANOVA assumptions
are satisfied. From Figure 2 we see that the residuals have constant variability
around zero, are independent and normally distributed. The normality is con-
firmed using Shapiro-Wilk test, p-value = 0.7923.

Table 2. ANOVA table for the similarity task results

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 0.37055017 0.05293574 29.68 < .0001
Error 8 0.01426728 0.00178341
Corrected total 15 0.38481745

R-Square Coeff Var Root MSE Score Mean
0.962925 9.126819 0.042230 0.462707

Table 3. Main and Interaction Effects in the Similarity task

Source DF Sum of Squares Mean Square F Value Pr > F

Factorization 3 0.35433596 0.11811199 66.23 < .0001
Dimension 1 0.00011159 0.00011159 0.06 0.8088
Interaction 3 0.01610263 0.00536754 3.01 0.0945

Table 4. ANOVA Table for the Analogy task results

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 0.30745304 0.04392186 424.61 < .0001
Error 8 0.00082753 0.00010344
Corrected total 15 0.30828057

R-Square Coeff Var Root MSE Score Mean
0.997316 6.602449 0.010171 0.154043

The SAS package was used to obtain ANOVA table (Table 2), which shows
the effects of the factors on the similarity score. F-test for equality of the factor
level means was conducted, F = 29.68 and p-value < 0.0001. Hence, it can



Fig. 3. ANOVA Residuals for the Analogy task results

Table 5. Main and Interaction Effects in the Analogy task

Source DF Sum of Squares Mean Square F Value Pr > F

Factorization 3 0.30365768 0.10121923 978.52 < .0001
Dimension 1 0.00013820 0.00013820 1.34 0.2811
Interaction 3 0.00365715 0.00121905 11.78 0.0026



be concluded that at least one factor level mean is different from the others.
R2 = 0.962925 shows that more than 96% of variation in the similarity score is
explained by the factors considered.

Proceeding with analysis of main and interaction effects, one can conduct F-
test for each of the factors and the interaction between them. From Table 3, we
see that the method of low-rank approximation affects the performance of words
vectors in the similarity task, F = 66.23, p-value < 0.0001. The dimensionality
of word vectors has no effect on the performance in the similarity task, F =
0.06 with p-value > 0.8. Also, there is no interaction between the method of
factorization and the dimensionality of word vectors, F = 3.01 with p-value
0.0945. Thus, SVD significantly outperforms the other factorization methods.

4.2 Analogy task

Again, we first need to check whether the ANOVA assumptions are satisfied.
From Figure 3 we see that the residuals have constant variability around zero,
are independent and normally distributed. The normality is confirmed using
Shapiro-Wilk test, p-value = 0.112. The ANOVA Table (Table 4) shows that
at least one level mean is different from the others. R2 is 0.997316, thus, 99% of
variation in the analogy score is explained by the considered factors.

We proceed to the analysis of main and interaction effects. The method of
low-rank approximation affects the performance of word vectors in the analogy
task, F = 978.52 with p-value < 0.0001. The dimensionality of word vectors has
no effect on the performance in the analogy task, F = 1.34 with p-value > 0.2.
Unlike the similarity task, there is an interaction effect between the two factors,
F = 11.78 with p-value = 0.0026.

5 Discussion

Why dimensionality is critical in similarity task for NMF? We ob-
tained the highest results in the similarity task using the SVD-based low-rank
approximation, for which the dimensionality of word vectors did not influence
the performance much. On the contrary, the performance in similarity task using
the NMF method of factorization is significantly affected by the dimension of
the word vector: 250-dimensional word vectors give significantly better results
than 500-dimensional ones. This can be explained by the specific characteristics
of the NMF method of factorization. When we look at the word vectors pro-
duced by NMF, we can see that they contain many zeros. Hence, an increase in
the dimensionality makes them even sparser. Similarity task is based on finding
the cosine of the angle between two word vectors. Therefore, when the vectors
become sparser, the result of element-wise multiplication, which is necessary for
obtaining cosine, becomes smaller. Thus, there is a much higher possibility that
the cosine similarity score between two vectors, containing many zeros, will give
a number closer to zero than to 1. This, as a result, leads to the worse perfor-
mance in the similarity task. Our suggestion is to decrease the dimensionality of



the NMF method to 100. We expect that this may give better results.

Why NMF performs poorly in the analogy task? We provide a theoretical
analysis of the poor performance of the NMF in the analogy task. We model word
vectors produced by the NMF as independent and identically distributed random
vectors from an isotropic multivariate Gaussian distribution N (4.5, I)4, since for
a 500-dimensional v ∼ N (4.5, I) there is a big chance that it is nonnegative:

Pr(v ∈ [0,+∞)500) = [Pr(4.5 + Z > 0)]500 ≈ 0.9983,

where Z ∼ N (0, 1) is a standard normal random variable. For a triplet of word
vectors a, b and c we have b− a + c ∼ N (4.5, 3I), and therefore

Pr(b− a + c ∈ [0,+∞)d) = [Pr(3 +
√

3Z ≥ 0)]d

= [Pr(Z ≥ −4.5/
√

3)]d < [0.9953]d.

When d = 500, this probability is ≈ 0.1, i.e. there is a small chance that b−a+c
is non negative, and thus we will likely not find a non-negative d when we mini-
mize ‖b− a+ c−d‖. This is confirmed empirically: for all word triplets (a, b, c)
from the analogy task, the vector b−a+c has at least one negative component.

Why using R is better than using Q in the QR decomposition? The Q
matrix from QR factorization gives the worst results in the similarity task, and
it does not depend on the dimensionality of the vector. The reason is that the
necessary information is left in the R matrix. Truncation of RP> gives better
approximation to the original matrix than the truncated Q, because the most
significant entries of RP> are in the top left quarter and remain after truncation.

6 Conclusion

We analyzed the performance of the word vectors obtained from a word-word
PMI matrix by different low-rank approximation methods. As it was expected,
the truncated SVD provides a far better solution than the NMF and the trun-
cated QR in both similarity and analogy tasks. While the performance of the
NMF is relatively good in the similarity task, it is significantly worse in the
analogy task. NMF produces only non-negative sparse vectors and we showed
how this deteriorates the performance in both tasks. RP> matrix from QR fac-
torization with column pivoting gives better word embedding than Q matrix in
both tasks.
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4 The isotropy is motivated by the work of Arora et al. (2016); 4.5 is a vector with all
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