
A sequential approach to handle machine translation of 

low resource languages  

K Vimal Kumar1, Yamuna Prasad2 

 
1 Jaypee Institute of Information Technology, Noida, India 

2 Indian Institute of Technology, Jammu, India 

vimalkumar.k@gmail.com, yamuna.prasad@iitjammu.ac.in  

Abstract. Machine translation is the process of generating target language text 

from source language text using suitable features of both languages. Sequence 

to Sequence model consists of an encoder and a decoder, where, an encoder 

converts the input vector into an intermediate vector form and these 

intermediate vectors are fed to a decoder to generate an output vector. In case of 

machine translation, the sequence to sequence model uses input language text in 

the vector form and generates the output language text in the form of vector. 

The generated output vector is further mapped to the target language for 

generating the target language text. The generated output should retain the 

syntactic and semantics of the target language. These two features contribute to 

the machine translation system’s accuracy. To perform translation from source 

to target, a Long-Short Term Memory (LSTM) neural network is being used in 

the sequence to sequence model. LSTM network captures the syntactic and 

semantics features which can be used for mapping source text with target text. 

Since, the languages under consideration are having low resources, the use of 

language specific feature will be helpful to improve the accuracy of the overall 

neural machine translation system. The Indian languages used in this proposed 

system are morphologically rich and free-word ordered. The proposed system 

makes use of these features to enhance its accuracy. The model is found to have 

an average sentence-level BLEU score as 0.7588 and corpus-level BLEU score 

is found to be 0.2134.  
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1   Introduction 

Machine translation is a process of converting the source text into target text by 

considering the features of the languages being used. Machine translation is an 

application of natural language processing, but the complexity in this system is more 

as there are two languages involved and their mapping is more tedious due to the 

difference in language specific features. There are various machine translation 

systems and each of them uses its own features. The accuracy of such systems has 

dependency on the size of corpus being used and more on the quality of corpus used. 



The issue with Indian languages is its low resource availability. To handle this issue, 

the existing system makes use of a pivot language in between the source and target 

language. But, the introduction of one more language (as pivot language) in the 

translation system will degrade the accuracy of the system due to generation of more 

noise in the system. These noises are produced due to difference in mapping from 

source to pivot and mapping from pivot to target. In case of Hindi language, affixes 

contribute to the tense, aspect and modality (TAM) of its root word. These affixes 

also contribute to the mapping between the languages, so that, the TAM information 

is retained in the target text. The same case happens with the Tamil language as well. 

Due to which there will be one to many mappings between Tamil language and Hindi 

language. Thus, there is a need for a system that can handle these language specific 

features without compromising on its accuracy. The existing machine translation 

systems accuracy can be improved further by considering both these features. The 

syntactic feature contributes to accurate grammatically correct translation and these 

features can be extracted using a trigram feature extraction model. Whereas, the 

semantic feature will be more helpful to perform a context sensitive translation. The 

semantic features are captured and embedded into a vector by using a continuous bag-

of-words model (CBOW). These vectors basically have encoding of syntactic and 

semantic features of the languages and are further used to train a machine translation 

system. The machine translation system learns the feature mapping of the vectors 

which is a complex task. Deep learning networks are being used to handle this 

complex task, one such network is recurrent neural network (RNN). The recurrent 

neural network has a binding with the length of input and output vector. In case of a 

machine translation system, there is no fixed length of input and output vector. The 

input vector of the source language will have a different size as compared with the 

output vector of the target language. So, in such a case, sequence to sequence 

approach will be helpful, which in turn uses a recurrent neural network. 

 

In a sequence to sequence network, the (n+1)th sequence is predicted based on the 

existing n-sequences. But, in case of a machine translation where there are two 

languages being used, a sequence to sequence network should predict the target text 

based on the input source text. To perform this there is a need of two recurrent neural 

network (RNN) called as encoder and a decoder.  The encoder and decoder use long-

short term memory neural network (LSTM), which is a type of RNN. The vector of 

input source text is fed to the encoder which in turn maps it to an intermediate fixed 

length vector and these vectors are further fed to a decoder which converts it to target 

text. A trigram continuous bag-of-words (CBOW) model is used to embed the 

syntactic and semantic features of words in source language onto a vector. This vector 

is used as input to the encoder. So that, the embedded features contribute more during 

the translation.  

 

The section-2 of this paper gives an overview of the recent works that has been 

carried out in this area of research. The proposed sequence to sequence learning for 

Hindi-Tamil machine translation has been described in section-3. Section-4 details 

more about the result outcome of this proposed system. Section-5 concludes about the 

proposed work and section-6 discusses the various improvements that can be carried 

out in order to improve the performance of the system. 



2   Related Work 

In paper by Ilya Sutskever et. al. 1, sequence to sequence learning with neural 

networks was developed, which consists of an encoder and decoder. Encoder converts 

the input sentence into a fixed-length vector. These vectors are further converted into 

target sentences by the decoder module. Both the encoder and decoder are jointly 

trained such that the probability of accuracy in translation is maximized. The issue 

that occurs during training a neural network is overfitting. A simple way to prevent 

overfitting in neural network was introduced by Nitish Srivastava et. al. 2. In this 

paper, the author introduced dropout regularization. During the training of neural 

network, the weights of neuron are randomly made zero based on the dropout 

percentage which prevents the neurons from adapting too much according to the 

training data. Author has also found that it improves the problem of overfitting in a 

significant manner as compared with the other regularization methods. 

 

Accuracy of neural machine translation depends more on the encoder which captures 

the semantic information that is being conveyed in the source text. These encoders 

can be unidirectional or bidirectional recurrent neural network (RNN). In the paper 

authored by B. Zhang et. al., 3, the author has proposed a context aware recurrent 

neural network for the encoders in a neural machine translation. This context aware 

encoders works in two level hierarchy, where history information is extracted in the 

bottom level and are aligned with the future context in the upper level.  

 

There are various deep neural networks designed by researchers such as deep belief 

networks, recurrent neural network, convolutional neural networks and deep stack 

networks. In a paper 4 by Zhang et. al., it has been mentioned that there are various 

types of deep neural networks being used in language modeling, word alignment, 

translation rule selection and reordering which are used as major phases of a machine 

translation system. Apart from having different deep neural network for each of these 

tasks, it is also better to have a pure neural machine translation system which 

facilitates the computation of semantic distance between texts. The issues that will be 

existing in machine translation system with deep neural network are - computational 

complexity, error analysis and reasoning. 

 

Since sense-based machine translation is under progress these days, there is multi-

sense based neural machine translation being introduced by Z. Yang et. al. 5. In their 

proposed system, they generate the word embedding based on different senses of the 

word, called as sense-specific embedding. The multi-sense embedding module was 

developed using a recurrent neural network (RNN). Zhen Yang et. al. also proposes 

that this sense-based embedding is task independent and it can be applied on any 

natural language processing task. 

 

Ananthakrishnan et. al. 6 has proposed an English to Hindi statistical machine 

translation with main focus on the key challenge of mapping the Hindi language (a 

morphologically rich language) with the English language. Reordering of English 

source sentences in accordance with Hindi language and/ or making use of suffixes of 

Hindi words are the two strategies that can facilitate reasonable performance. Since 



Indian languages and English differ in word order, morphologically rich Indian 

languages and unavailability of huge parallel corpora for two languages make the 

above two strategies more challenging to derive the desired results with reasonable 

performance. 

 

Goyal 7 proposed a machine translation system mainly from Hindi- Punjabi in 2009 at 

Punjabi University Patiala. It is based on direct word-to-word translation and reported 

95% accuracy. In 2010, Vishal Goyal and Prof. G.S. Lehal proposed a machine 

translator from Hindi to Punjabi using direct translation and later on improving the 

language learning modules for enhancement of quality of the system. The accuracy of 

the translation 8 is approximately found to be 95%. 

3   Proposed system 

The sequence to sequence machine translation model is basically a combination of an 

encoder which encodes the input sentence into a fixed length intermediate vector and 

a decoder which decodes the target sentence from the fixed length vector generated in 

the encoding process. The encoder and decoder are trained parallelly using the vectors 

of languages under consideration. To train the sequence to sequence model, the 

vectors are generated using continuous bag-of-words (CBOW) model. Continuous 

bag-of-words model is a deep learning model which predicts the word at a context by 

considering the neighboring words in the training corpus. The neighboring words 

before that word and after the word are considered during training of the network as 

in case of a trigram model. These vectors which are generated for the languages under 

consideration, i.e., Hindi and Tamil, are further used for training the sequence to 

sequence model. The sequence to sequence model makes use of a Long-Short term 

memory (LSTM) network at the back end. LSTM network is a special variant of 

recurrent neural network which is capable of learning long term dependencies 

between sentences. This network keeps a memory of information over a long period 

of time so that the dependencies between them are captured properly. In machine 

translation, the meaning of a sentence depends on its preceding sentences in the text 

corpus. Thus, a LSTM network will be helpful for this sequence to sequence model.  

 

 
Fig. 1. Architecture of sequence to sequence model-based Hindi to Tamil machine 

translation 



3.1   Word Embedding 

Word embedding is basically used to represent the words in a continuous vector space 

and those words which are semantically similar are placed at the neighboring points in 

the vector space. Since the proposed system works based on syntactic and semantic 

features of the languages, there is a need for a method to learn this word embedding 

from the textual data. So that, the vectors that are generated using the embedding 

process would have the semantic relations between the words. One such approach is 

continuous bag-of-words (CBOW) model developed by Mikolov et. al. 9,10, which 

predicts the word at n-position if its preceding words are known to the model. In the 

CBOW model, a neural network is being used to learn based on the training data 

provided to it. The semantic information is represented in the form of vectors. During 

the training and extraction phase, the CBOW model considers a trigram model as it is 

found to be more accurate as compared with any n-gram. Thus, the CBOW model 

considers the two words and predicts the third one during training phase. Based on the 

training, it generates the vectors, that can be fed to the sequence to sequence based 

machine translation. 

 

 
Fig. 2. CBOW model for word embedding 

 

As shown in figure-2, the input layer of continuous bag-of-words model will be fed 

with the word’s one hot vector based on its various context. The output layer will 

generate word vectors which is embedded with its contextual information. The 

distance between the vectors are calculated using cross entropy and it makes use of 

gradient descent to update the word vectors accordingly. 

3.2   Long-Short Term Memory Network (LSTM) 

A recurrent neural network (RNN) keeps a memory of the previous computations 

made in the network. RNN considers that the current state has dependency with the 



previous state of the network, which is like a sequence mapping kind. In natural 

language processing, the sequential dependency has a vital role in various task. Thus, 

RNN is more appropriate for various NLP related tasks. But, in case of machine 

translation, there is need for contextual information and the contextual information in 

nth sentence has some dependency with mth sentence that occurred before the nth 

sentence. So, the memory which is being used in RNN must store the information for 

longer duration such that the current state has dependency with mth state before it. 

One such system was developed by Hochreiter et. al. 11 and is called as long short 

term memory network (LSTM).  

3.3   Sequence to sequence model 

In a sequence to sequence model, there are two LSTM networks called as encoder and 

decoder, as shown in figure 3. The encoder encodes the input vector into a single 

intermediate vector. The decoder reads this intermediate vector and generates the 

target vector which is further mapped to its corresponding words in the target 

language. 

 
Fig. 3. Sequence to sequence model 

3.4   Encoder and Decoder 

The encoder encodes the input vector to an intermediate vector using a long short 

term memory (LSTM) network. Since the LSTM network needs to keep a memory of 

the vectors, there is LSTMCell being used in it to store these values. To protect and 

control these values there are four different gates being used in it – input gate, out 

gate, cell gate and forget gate. Based on these gate values, the LSTM network 

discards a value during training or keeps it during training. The input gate and cell 

gate are the one which decides what value is to be stored in the LSTMCell. Forget 

gate is used to predict whether the value must be retained for further use or not. The 

out gate is the used to decide upon the value that needs to be updated on the 

LSTMCell. Using these gate values, the LSTM network computes the output of the 

hidden state at time t based on the expression, 

 

 

  

Where, - out gate and - value at LSTMCell 

 



As per the expression above, the output of hidden state depends on the current value 

stored in the LSTMCell and the out gate. The current value of the LSTMCell   is 

calculated using the previous cell value and the gate value based on the equation 12, 

 

 

Where,  – forget gate and  - input 

 

During the calculation of the current value of LSTMCell, the values of forget gate, 

input gate, cell gate and previous cell value are multiplied element-by-element. The 

out gate value is calculated based on the weights assigned between input and output 

along with the weights that are assigned between hidden and output layers. Apart 

from these two parameters, the out gate also uses the value of hidden state in the 

previous layer  and hidden layer value at time t-1, . Sigmoid function is 

being used to keep the values in the range of 0 to 1. It is mathematically expressed as, 

  

 

   Where,  

- Weight vector between input layer and out gate  

- Weight vector between hidden layer and out gate 

   - Bias between hidden layer and out gate 

   - Bias between input layer and out gate 

 

The values of LSTMCell and the out gate value are the primary requirement of the 

LSTM network to predict the vector at the hidden state . But these two values, 

LSTMCell value and out gate value, are dependent on other parameters such as, input 

gate, forget gate and cell gate, which are further calculated using the below mentioned 

equations, 

 

 

 

 

 

The decoder also uses a LSTM network for its mapping between the intermediate 

vector and the output vector. The mathematical representation is same as in encoder. 

But, here the input to the decoder will be the output from the encoder module. Based 

on the intermediate vector, it generates the output vector in the target language. The 

gate values and LSTMCell are calculated using the intermediate vector, which is the 

output of the encoder. 

3.5   Attention mechanism 

In case of the sequence to sequence network described above, the contextual 

information of the word at nth position is passed on to the word at (n+1)th position. 

The decoder gets input as an encoded vector from the last sequence of an encoder. It 

is considered that the contextual information of all the preceding sequences is stored 



in the last sequence of encoder which will help the decoder to generate the sequence 

of words in target languages. It actually stores the contextual information, but, in case 

of Indian languages such as Hindi and Tamil, the contextual information of target 

language has some dependency with any of the sequences in the source language text. 

Thus, the vector generated from last word’s contextual information won’t be 

sufficient for an accurate translation. Also, there is a need of special alignment phase 

during this process such that the target text is grammatically correct with respect to 

the target language grammar. Both these issues have been taken care by the 

introduction of attention mechanism in the sequence to sequence model that too in 

between the encoder and decoder model. In the attention mechanism 13, there is a 

method to identify which encoded sequence is important for the decoder during its 

processing. In the attention mechanism, multiplication of the encoded output with the 

weights is performed to generate a weighted vector. The weights are identified using 

the training of a feed forward network which takes the encoded output as input to it 

and the decoder output as its output. 

3.6   Dataset 

The dataset for Indian languages has been provided by the Technology development 

for Indian languages programme (TDIL), an initiative by the Department of IT, 

Ministry of Communication and IT, Government of India. The dataset is basically a 

parallel corpus between these two languages – Hindi and Tamil. The parallel corpus 

has 25000 sentence pairs and these sentence pairs are part-of-speech tagged based on 

the tag-set predefined for the languages. The corpus used is specifically for the health 

domain. This sequence to sequence model has been developed using randomly 

generated set of training and testing sentences from the provided corpus. 

3.7   Training 

The proposed model needs to learn features of languages fed to the system. In order to 

make the model learn the features, there is need for huge amount of corpus. But, the 

languages being considered in this proposed system has low resources. To handle this 

low resource availability issue, there is significant need for a mechanism that can 

assist in translation process. By exploiting the language specific features, it has been 

identified that both Hindi and Tamil language are free-word ordered languages. Free-

word ordered language is one which doesn't have a rigid grammatical structure such 

as English. In case of Hindi and Tamil, the words in a sentence can be reordered to 

form a valid variant of the given sentence. By reordering the words, the meaning of 

the sentence is not affected in free word-ordered languages.  

 

The parallel corpus has been increased by the use of various combinations of 

sentences in the limited corpus available. For every sentence in the source language 

with N words, a combination of N! sentences will be formed. Since Hindi (source 

language) is partially free word-ordered, there is need to check the validity of these N! 

variants of the given sentence. To check the validity of variants, the Hindi shallow 



parser 14 is being used. The validated sentences are merged with the parallel corpus if 

it is found to be syntactically correct. Similarly, the Tamil language texts are also 

used to generate the variants of each text. Since Tamil is fully free-word ordered 

language, there is no need to perform the validation of the text.  

 

The sequence to sequence model is trained using various combinations of the training 

set. This model is trained using the input vector of the source language (Hindi) and 

the output vector of the target language (Tamil). The input vector is fed to the encoder 

as input, which in turn generates an intermediate vector. This intermediate vector is 

used by the decoder to generate an output vector, which is compared with the actual 

output vector based on the training corpus. Until, the error is as low as possible, it 

keeps on training the system. But there was a problem of overfitting in the network 

that may led to poor accuracy in the translation. If there is overfitting in a network, it 

may lead to more fluctuations for every training data provided to it. In order to reduce 

the problem of overfitting, the dropout, a regularization mechanism has been 

introduced in the model. Dropout mechanism drops certain percentage of neuron in a 

random fashion to train the network based on the rest of the active neurons. The 

model has been tried with various dropout percentage to train the system for 

improving the overall accuracy. It has been found that the optimal percentage value of 

dropout should be in the range of 20% to 60%. The system’s performance degrades if 

the dropout percentage is kept at 20% for both encoder and decoder modules. This 

degradation in the performance is due to underfitting in the network thus producing an 

erroneous result. In order to improve the training accuracy, the dropout for encoder is 

kept at 20% and for the decoder it is kept at 60%. It means the encoder, randomly 

drops the 20% of neurons during training at each epoch and the decoder randomly 

drops 60% of the neurons. 

 

The sequence to sequence model is tuned using the following parameters during 

training, 

 

Number of epochs = 22 

Learning rate = 0.01 

Hidden layer size = 2 

Dropout = 0.2 (in encoder) and 0.6 (in decoder) 

 

It has been noted that the model’s performance degrades after 22 epochs due to the 

problem of overfitting. In case, the number of epochs is kept lower, then the model is 

not trained sufficiently that leads to underfitting. After 22 epochs, the model is trained 

properly with the maximum log likelihood error to be around 0.0134. The learning 

rate is found to be ideally at 0.01 for this model. The model’s accuracy fluctuates 

more when the learning rate is kept at 0.1 and this is due to more error caused by the 

change in weights. If it is kept lesser, i.e., 0.001, the model takes more time to train 

the model. If there is increase in hidden layer size, there is no improvement on the 

performance of the model. Increasing number of hidden layers doesn’t work well for 

this model. It has been found that with the hidden layer size as 2, the model 

outperforms than the one with more than two hidden layers. 



4   Results 

The neural machine translation system was developed using sequence to sequence 

model and the output of this system was evaluated using the Bilingual evaluation 

understudy (BLEU) score 15. The BLEU score for the various training and testing 

corpus is as shown in table-1. The BLEU score has been calculated using a different 

set of testing and training pairs. It is found that the BLEU score increases with respect 

to the increase in the percentage of training corpus. It is found that the accuracy of the 

model is more when the training corpus is kept ideally at 80% of the corpus. 

Table 1.  Result analysis of neural machine translation 

S. No. Training/Testing Corpus Size (in 

%) 

BLEU 

Score  

1 60/40 0.7037 

2 70/30 0.7234 

3 80/20 0.7588 

4 90/10 0.6628 

 

The result table-2 shows the sentence-level BLEU score on 5-different runs with 

different random set of training and testing corpus but by keeping the dataset in 80-20 

ratio, i.e., 80% of data as training set and the rest as test set. 

Table 2.  Analysis of neural machine translation at different runs 

Number of runs BLEU score 

1 0.7478 

2 0.7176 

3 0.6784 

4 0.7118 

5 0.7588 

 



5   Conclusion 

The word embedding is performed using a continuous bag-of-words model and it is 

found to capture the semantics in the words. This in turn helped in improving the 

accuracy of the sequence to sequence model. Since Hindi and Tamil language are 

morphologically rich, there is need for semantic features which is used in the 

sequence to sequence model. Since both these languages has low resources, the free 

word order feature of both these languages are used to improve the accuracy of 

sequence to sequence model. The results are found to be far better than any state-of-

art method for these two languages. The average sentence level BLEU score is found 

to be 0.7588 and can be improved further using a properly aligned parallel corpus. 

The overall corpus level BLEU score is found to be 0.2134. 

6   Future Work 

To improve overall accuracy of the system, the training corpus size is increased. But, 

by increasing the training corpus to 90% of given corpus it is found that the model 

degrades the performance of system and thus, it declines the accuracy of translation. 

This is due to the slight deviation in mapping of the source text with the target text 

due to equally probable chances for multiple target sentences. But it can be improved 

by training the model with increase in the size of parallel corpus to reduce the 

ambiguity in the translation. The problem with decrease in BLEU score can be 

handled by improving the word embedding approach which can capture the multi 

sense information in a more appropriate manner. 
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