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Abstract. A math formula present inside a scientific document is of-
ten preceded by its textual description, which is commonly referred to
as the context of formula. Annotating context to the formula enriches
its semantics, and consequently impacts the retrieval of mathematical
contents from scientific documents. Also, with a considerable surety, a
context can be assumed to be one of the Noun Phrases (NPs) of the sen-
tence in which formula occurs. However, the presence of several different
misleading NPs in the sentence necessitates extraction of an NP, which
is more precise to the formula than the rest. Although a fair number
of methods are developed for precise context extraction, it can be fasci-
nating to prospect other competent techniques which can further their
performances. To this end, this paper discusses implementation of an au-
tomated context extraction system, which follows certain heuristics in as-
signing weights to different candidate NPs, and tune those weights using
a development set comprising annotated formulae. The implemented sys-
tem significantly outperforms nearest noun and sentence–pattern based
methods on the ground of F–score.

Keywords: Context Extraction · Math Information Retrieval · NTCIR
· Parser · Noun Phrase.

1 Introduction

Increased research in Science, Technology, Engineering and Mathematics (STEM)
disciplines has boosted the count of scientific documents, which are majorly con-
stituted of math formulae. As a consequence, a number of Math Information
Retrieval (MIR) systems, which can retrieve mathematical contents alongside
plain text, have come into being. Math tasks [1, 2, 21] of NII Testbeds and Com-
munity for Information access Research (NTCIR) conferences [7, 6, 8] have also
triggered widespread development of competent MIR systems.

Current MIR systems are either adapted versions of conventional text-search
engines [11] or the systems developed from scratch [14, 15, 17]. While the text-
search engines adapted for MIR perform linearization and plain text matching to
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retrieve formulae, the MIR systems developed from scratch employ novel formula
indexing and search techniques. Although the challenges in designing such math-
aware systems are enormous, the inability to account for ambiguity of formula,
whereby the same formula may have different alternative interpretations, can
cause severe performance degradation. Consider, for example, the ambiguous
formula (c =

√
a2 + b2), which may exhibit following different meanings in two

different documents:

(a) Using Pythagorean theorem to compute hypotenuse (c) of a right-angled
triangle, whose base is ‘b’ and perpendicular is ‘a’.

(b) Computing linear eccentricity (c) of hyperbola, with ‘a’ being distance from
the center to the vertex and ‘b’ being the half distance between the asymp-
totes.

Given the two above-mentioned documents and a user query (c =
√
a2 + b2)

intending to retrieve search results for “linear eccentricity”, a math-aware search
engine [11], which only considers formula matching and discards the underlying
semantics of the formulae, will also retrieve the irrelevant document containing
“Pythagorean theorem”. This diminishes precision score, hence reduces retrieval
performance of MIR systems. Therefore, it becomes essential to extract most
appropriate context from the surrounding text and perform semantification of
formula by associating it with the extracted context. Also, the semantification of
formula eliminates the need for querying a formula using only formula. Instead,
the end-users relish flexibility to specify a text query (say, “Kinetic Energy”)
for searching a formula (say, 1

2mv
2) inside document. Moreover, semantification

facilitates improvement in comprehensibility of formula.

The work described in this paper is based on a reasonable assumption that
the context of formula is one of the Noun Phrases (NPs) of the sentence contain-
ing formula (henceforth called target sentence). Therefore, the context extraction
task reduces to parsing the target sentence, extracting all the candidate NPs, and
devising an algorithm to select the most appropriate NP from among the diverse
pool of candidate NPs. However, as the most appropriate NP does not adhere
to a strict pattern, the task of context extraction turns out to be challenging.
The following three example situations elaborate on this particular insight:

Example 1.1:
Often, momentum transfer is given in wavenumber units in reciprocal
length Q = kf − ki.

In example 1.1 above, the three candidate NPs for the context of formula
(Q = kf − ki) are: “momentum transfer”, “wavenumber units” and “reciprocal
length”. Also, the most appropriate context is the NP (“momentum transfer”)
which occurs farthest from the formula.
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Example 1.2:
This is the simplest example of scattering of two colliding particles with
initial momenta pi1,pi2.

In example 1.2 above, the candidate NPs for the context of formula (pi1,pi2)
are: “the simplest example of scattering of two colliding particles with initial
momenta”, “the simplest example”, “scattering of two colliding particles with
initial momenta”, “scattering”, “two colliding particles with initial momenta”,
“two colliding particles” and “initial momenta”. Out of all the seven candidate
NPs, the most appropriate one (i.e. “initial momenta”) occurs closest to the
formula.

Example 1.3:
Using this free-body diagram the torque required to lift or lower a load

can be calculated: Traise = Fdm
2

(
l+πµdm
πdm−µl

)
= Fdm

2 tan (φ+ λ).

In example 1.3 above, the candidate NPs for the context of formula are: “this
free-body diagram”, “the torque required to lift or lower a load”, “the torque” and
“a load”. Also, the most appropriate context (i.e. “the torque required to lift or
lower a load”) is the longest of all NPs and appears somewhere in the middle of
the parse tree generated for target line.

To summarize, the uncertainty in position of occurrence of the context in
the target sentence poses challenge to the design of context extraction system.
Nevertheless, owing to the advantages of formula semantification, recent years
have witnessed a surge in the research activities concerned with context extrac-
tion. Some such activities include use of nearest noun method [13, 10], sentence–
pattern based method [10, 20] and machine learning approach [10, 20]. After hav-
ing identified all the NPs in target sentence, the nearest noun method considers
nearest NP to be the context of formula. The sentence–pattern based method
works under the assumption that the formulae are often linked to their con-
texts through specific words or group of words, such as “denotes”, “describes”,
“means”, “is given by” and so on. For instance, in example 1.3 above, the for-
mula and context are linked through the pattern, namely “can be calculated”.
However, the method incurs failure in retrieving context–formula pairs which
do not adhere to such fixed patterns. The machine learning based method [10]
pairs math formula with “all NP” and “minimal NP” in the target sentence and
extracts features for each pair. Thereafter, each pair is fed to a binary classifier
to decide if the NP is most appropriate context for the formula.

The main contribution of this paper lies in devising a context extraction sys-
tem, which extracts target sentences from scientific documents, parses all such
sentences using Stanford Shift-Reduce Constituency Parser4[22, 4], extracts all

4 https://nlp.stanford.edu/software/srparser.html
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NPs from the parse trees of target sentences, assigns weight to different candi-
date NPs of a formula using certain heuristics, tunes the weights using a develop-
ment set containing formulae and their respective gold contexts, and eventually
extracts most appropriate contexts from target sentences of test formulae. The
implemented system performs reasonably well in comparison to other competent
systems.

Rest of the paper is structured as follows: Section 2 reviews past works related
to extraction of context of formula and identifier definition. Section 3 compre-
hensively describes working of different constituents of the implemented system.
Section 4 describes experimental setup used to develop and evaluate the sys-
tem. Section 5 presents experimental results and in-depth analysis of results
to comprehend strengths and weaknesses of the implemented system. Section 6
concludes the paper and points directions for future research.

2 Related Works

In past, the works related to extraction of contexts of formulae and definitions
of their constituent identifiers have been prominent. As the two categories of
works closely resemble, the following subsections elaborate on past developments
related to both the categories.

2.1 Extraction of formula context

It is a usual practice to compare performance of any context extraction system
with the performances of nearest noun and sentence–pattern based methods,
which were introduced in the previous section. Sentence–pattern based method
often uses the seven distinct patterns, described in [10, 19] and shown in Table
1, for discovery of context.

Table 1. Patterns used in sentence–pattern based method. MATH: math formula;
DEF: definition of math formula i.e. context; OTHERMATH: other math formula

Sl.No. Patterns

1 ... denoted (as | by) MATH DEF

2 (let | set) MATH (denote | denotes | be) DEF

3 DEF (is | are)? (denoted | defined | given) (as | by) MATH

4 MATH (denotes | denote | (stand | stands) for | mean | means) DEF

5 MATH (is | are) DEF

6 DEF (is | are) MATH

7 DEF (OTHERMATH)* MATH

The work described in [9] views context extraction as a binary classification
problem, wherein the description candidates associated with formulae are clas-
sified as correct or incorrect. Performances of nearest noun, sentence–pattern



Abbreviated paper title 5

and machine learning methods for context extraction are compared and ana-
lyzed. The model using “All NP” approach and all possible feature augmented
to machine learning approach depicts better performance than the model using
minimal NP approach.

Work described in [20] focuses on connecting mathematical mentions, namely
names, definitions and explanations, with corresponding mathematical expres-
sions contained inside Japanese scientific papers. A Support Vector Machine
(SVM) trained using features, such as basic patterns and linguistic information,
helps select correct description for an expression and outperforms conventional
pattern based method.

The guideline to annotate mathematical expressions with their respective def-
initions is described in [10]. The annotated data is used to examine performance
of proposed context–extraction method. The proposed machine learning method
extracts a set of 10 features (such as distance of candidate NP from the formula,
Parts Of Speech (POS) tags of the text surrounding candidate NP, and so on) for
candidate NPs and compares them with gold context. Under the constraint of
strict matching, the machine learning method significantly outperforms nearest
noun and pattern matching based methods.

The MARACHNA system [12] exploits Natural Language Processing (NLP)
methods for extracting information from mathematical texts. More specifically,
the MARACHNA generates ontologies for mathematical information extracted
from different sources, and later stores them in a Knowledge Base (KB). The
KB also stores different keywords and texts associated with a formula.

Concept Description Formula (CDF) approach [16] prospects coreference re-
lation, if any, between the formula and context. The claim is made that ex-
tracting keywords using CDF and associating them with formulae will ease the
task of MIR. Text preprocessing, text matching, pattern generation and pattern
matching constitute key steps of CDF approach. Experimented using Wikipedia
articles, the system depicts competence in finding coreference relation between
text and formula.

An approach [5] to disambiguate mathematical expressions computes sim-
ilarity between the words extracted from surrounding text of formula and a
collection of term clusters derived from Content Dictionaries of OpenMath [3].
Subsequently, the cluster which shares highest similarity with the words in sur-
rounding text is considered to be the most accurate textual interpretation of the
formula.

2.2 Extraction of identifier definition

Similar to formula, the meaning of an identifier may differ across documents or
even across the formulae inside same document. For instance, the symbol ‘E’ in
a formula may designate electric field or Young’s modulus. As the extractions
of formula context and identifier definition share same underlying concerns, this
subsection reviews some of the past works related to identifier definition extrac-
tion.
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Mathematical Language Processing (MLP) project [13] computes probabil-
ities of identifier–definition pairs using POS based distance and sentence posi-
tions. Identifier definitions are discovered using pattern–based and statistical ap-
proaches. While the pattern–based approach uses 6 static patterns, the statistical
approach extracts candidate definitions and ranks them using a weighted sum.
Concretely, the statistical approach of MLP is a five–step process: (i) Detecting
formulae from the documents (ii) Extracting identifiers from the formula (iii)
Finding identifiers in surrounding text (iv) Finding candidate phrases/tokens
for identifiers, and (v) Ranking candidate phrases/tokens using weighted sum.
The recall measure for statistical approach is found to be greater than that of
pattern–based approach. Moreover, the statistical approach is least affected by
the change in sentence structure.

Semantification of identifiers in formula is further improved through discov-
ery of namespaces [18]. Although the concept of namespaces primarily applies
to software development, the idea is extended to mathematical identifiers. Using
NLP techniques, namespaces are discovered from the surrounding text of a for-
mula. In summary, the identifier–definition extraction suing namespace approach
is a four–step process: (i) Automatic discovery of namespaces (ii) Clustering of
documents (iii) Building namespaces, and (iv) Building namespace hierarchy.

3 System Description

Key constituents and working principle of the system are explained in subsequent
subsections.

3.1 Corpus Description

The system is experimented using open source Wikipedia corpus5 of NTCIR-12
MathIR task [21]. Unlike arXiv corpus, the Wikipedia corpus is intended for non-
technical users. Each document in the corpus contains scientific text alongside
the formulae encoded using Presentation MathML, Content MathML and TEX.

3.2 Preprocessor

Owing to the presence of redundant HTML tags and spaces in the target sen-
tences extracted from Wikipedia documents, the preprocessing of sentences was
felt necessary prior to parsing. The job of preprocessor, therefore, is to remove
all such redundant tags, spaces, links to footnotes and references, and so on.
Table 2 shows sample examples of the preprocessings done by preprocessor.

3.3 Stanford Shift-Reduce Constituency Parser

The Stanford Shift-Reduce Constituency parser maintains the sentence on queue
and the parse tree on stack. A set of transitions, namely shift, unary reduce,

5 www.cs.rit.edu/ rlaz/NTCIR12 MathIR WikiCorpus v2.1.0.tar.bz2
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binary reduce, finalize and idle, are applied on the current state of the parse
tree, unless the queue gets empty and the stack contains complete parse tree.
Further, details related to the parser can be seen here6. Some sample processed
target sentences and their respective parse trees as generated by the parser are
shown in Table 4.

3.4 Noun Phrase Extractor

After parsing, the parsed target sentences are fed to Noun Phrase Extractor
(NPE), which extracts all different NPs from all the parsed sentences. Some
examples of the candidate NPs extracted by the system are shown in Table 3.
Up to this stage, a total of 4,919 instances (i.e. formulae, their target sentences,
their parsed target sentences and all the candidate NPs present in parsed target
sentences) are generated from 500 Wikipedia documents. Next, out of all such
4,919 instances, a set of 100 instances is selected as development set, and an-
other different set of 100 instances is selected as test set. A development set is
required to tune weights assigned to different candidate NPs of a target sentence.
Moreover, for each instance in development set and test set, a gold context is
manually selected from the candidate NPs. While the purpose of selecting gold
contexts for development set is tuning of weights, the purpose of selecting gold
contexts for test set is testing efficacy of the system for predicting correct con-
text. Table 3 shows some sample entries of the development set. It also shows
different candidate NPs from which the gold context is selected.

Table 2. Sample examples of preprocessing done by preprocessor

Original target sentence Processed target sentence

〈/dl〉 so Gaussian measure is a Radon mea-
sure; is not translation-invariant, but does
satisfy the relation 〈dl〉 〈dd〉〈/dd〉〈dt〉

so Gaussian measure is a Radon measure; is not
translation-invariant, but does satisfy the relation

The magnetic diffusivity is defined
as:〈sup〉1〈/sup〉

The magnetic diffusivity is defined as:

〈 h3 id=“equation”〉Equation〈/h3〉 The
mathematical equation for Boyle’s law is

The mathematical equation for Boyle’s law is

.

6 https://nlp.stanford.edu/software/srparser.html
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Table 4. Target sentences and their respective parse trees

Target sentence Parse tree

The RMSD of an estimator (ROOT (NP (NP (DT The) (NN RMSD)) (PP
(IN of) (NP (DT an) (NN estimator)))))

The level of interaction can be
measured by the Gravity model
of trade

(ROOT (S (NP (NP (DT The) (NN level)) (PP
(IN of) (NP (NN interaction)))) (VP (MD can)
(VP (VB be) (VP (VBN measured) (PP (IN by)
(NP (NP (DT the) (NN Gravity) (NN model))
(PP (IN of) (NP (NN trade))))))))))

The units of specific contact re-
sistivity are typically therefore in

(ROOT (S (NP (NP (DT The) (NNS units))
(PP (IN of) (NP (JJ specific) (NN contact) (NN
resistivity))))(VP (VBP are) (ADVP (RB typi-
cally))(ADVP (RB therefore)) (X (IN in)))))

The wave number k is the abso-
lute of the wave vector

(ROOT (S (NP (DT The) (NN wave) (NN num-
ber) (NN k)) (VP (VBZ is) (NP (NP (DT the)
(JJ absolute)) (PP (IN of) (NP (DT the) (NP
(NN wave) (NN vector))))))))

3.5 Weight Assigner

Weight Assigner (WA) uses certain heuristics in assigning weights to different
NPs as extracted by the NPE. Specifically, the following heuristics govern weight
assignment:

(a) The WA only considers isolated NP (an NP which neither subsumes any
NP nor is subsumed by any NP), maximal NP (an NP which subsumes
one or more NPs, but is not subsumed by any other NP) and nearest NP
(an NP which is nearest to the formula and may or may not be isolated
and/or maximal NP) for weight assignment, and the rest candidate NPs
are discarded. The isolated or maximal NP, which occurs farthest from the
formula, is assigned a weight Wbegin (Wbegin ∈ IR). Weight assigned to a
subsequent maximal or isolated NP differs from its antecedent by an addend
value f (f ∈ IR). More specifically, the weight assigned to second farthest
will be Wbegin + f , third farthest will be Wbegin + 2f , and so on.

(b) In some cases, it is observed that the nearest NP itself is the most appropri-
ate context for formula. Therefore, an additional weight, equal to Wnearest

(Wnearest ∈ IR and Wnearest ≥ 0), is added to the existing weight of nearest
NP.

(c) Yet another heuristic is based on the observation that in most cases, if the
farthest NP in original set of candidate NPs is an isolated NP, and the second
farthest NP is a maximal NP, then the isolated NP is often trivial and the
maximal NP is most appropriate context for formula. Consider the below
given example to elucidate this point.
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Example 3.1:

Target sentence: The following formula approximates the Earth’s
gravity variation with altitude

Formula: gh = g0

(
re

re+h

)2

Candidate NPs: •The following formula •the Earth ’s gravity
variation with altitude •the Earth ’s gravity variation •the Earth ’s
•altitude

Gold context: the Earth ’s gravity variation with altitude

Here, the farthest NP is “The following formula”, which is also an isolated
and trivial NP. Furthermore, the second farthest NP is “the Earth ’s gravity
variation with altitude”, which is also a maximal NP and the gold context
for formula.
Therefore, under such situation, an additional weight equal toWsecond (Wsecond ∈
IR and Wsecond ≥ 0) is added to existing weight of the maximal and second
farthest NP.

Table 5 describes weights assigned to different candidate NPs, using above-
mentioned heuristics, under different example situations. After the weights are
assigned to different candidate NPs of a target sentence, and the weights are
tuned using Weight and Addend Tuner (see subsection 3.6), the one having a
maximum weight is predicted as the context of corresponding formula.

3.6 Weight and Addend Tuner

As the initial values of three different weight measures (Wbegin, Wnearest and
Wsecond) and the addend f may not be optimal, these values need to be tuned
to ensure maximum F–score and, hence, optimal context prediction ability. The
values of weight measures and addend are tuned using Weight and Addend
Tuner (WAT), which compares the system predicted contexts (for development
set) against the gold contexts to tune the weights and addend in trial and error
fashion. Eventually, the WAT discovers best configuration (best set of values for
Wbegin, Wnearest, Wsecond and f), which exhibits optimal performance (in terms
of F–score) in context prediction.

3.7 System Testing

The efficacy of best configuration selected by WAT is examined using a test set
comprising 100 previously unseen test instances. System predicted contexts are
compared with the gold contexts of test instances, and the F–score is computed.

Figure 1 shows working principle and different constituents of the imple-
mented system.
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Fig. 1. Overall architecture of the implemented system
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4 Experimental Design

To develop and test the system, following experimental setups are employed:

(a) As mentioned in previous section, the system predicted contexts are evalu-
ated on the ground of F–score. However, to compute F–score (see Equation
3), precision and recall measures need to be computed beforehand. While
precision (see Equation 1) gives a measure of the correct context predictions
out of the total contexts predicted, recall (see Equation 2) gives a measure
of correct context predictions out of the total gold contexts.

Precision (P) =
Count of correct context predictions

Count of predicted contexts
(1)

Recall (R) =
Count of correct context predictions

Count of gold contexts
(2)

F–score =
2 ∗ P ∗R
P +R

(3)

(b) Also, as defined in previous section, the weight Wbegin and the addend f
may attain any real value during tuning, whereas the weights Wsecond and
Wnearest only attain either 0 or positive real values.

5 Results and Analysis

System results and their comprehensive analysis are presented in this section.
Following points regarding the implemented system and the predicted contexts
are worth noting:

(a) System attains a maximum development set F–score of 67% for the following
values of weights and addend: Wbegin = 0.6, Wsecond = 0.4, Wnearest = 0.1
and f = −0.2. A negative value of addend f is indicative of the fact that
the value of weight Wbegin is decremented by 0.2, every time, on going from
farthest maximal/isolated NP to the nearest maximal/isolated NP.

(b) F–scores of the implemented system for development set and test set are
67% and 65%, respectively. The system predicts contexts (either correct or
incorrect) for all the instances in development and test sets. Some sample
examples of gold contexts, predicted contexts and their associated weights
are shown in Table 6. For some of the test target sentences, there are more
than one probable gold contexts (see example 5 of Table 6). In all such
cases, the predicted context is considered relevant, if it is any one of the gold
contexts.

(c) To assess the comparative strengths, the performance of proposed system
is compared with those of nearest NP and sentence–pattern based methods
(see Table 1 of Related Works section for different sentence patterns). Figure
2 shows F–scores of the three methods for development and test sets, and
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Table 6. Sample examples of gold contexts and predicted contexts

Target sentence Gold context Predicted context (weight)

Using this free-body diagram the
torque required to lift or lower a
load can be calculated:

the torque required to
lift or lower a load

the torque required to lift or
lower a load (0.8)

In its general form, the steering law
can be expressed as

the steering law the steering law (0.9)

The gravity depends only on the
mass inside the sphere of radius

radius the mass inside the sphere of ra-
dius (0.8)

The Young Equation relates the
contact angle to interfacial energy

The Young Equation The Young Equation (0.6)

The BEST theorem states that the
number ec(G) of Eulerian circuits
in a connected Eulerian graph G is
given by the formula

(a) The BEST theorem

(b) the number ec(G)
of Eulerian circuits in
a connected Eulerian
graph G

the number ec(G) of Eulerian
circuits in a connected Eulerian
graph G (0.8)

the scores are indicative of the fact that the proposed method significantly
outperforms the two conventional and naive methods in predicting most
appropriate context for a given formula. While the nearest noun method
assumes nearest NP to be the context of formula, the sentence-pattern based
method assumes presence of certain patterns between context and formula.
Such naive assumptions need not always be correct, and hence the poor
performance.

Fig. 2. Performace comparison of proposed method

(d) Different number of candidate NPs are extracted by the implemented system
for different target sentences in development and test sets. The graph shown
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in Figure 3 shows statistical distribution of number of candidate NPs in
the two sets, which can be interpreted as follows: “3 candidate NPs are
extracted for 15 target sentences in development set and 32 target sentences
in test set. Similarly, 2 candidate NPs are extracted for 7 target sentences
in development set and 4 target sentences in test set.” The plot is indicative
of the fact that the two sets vary in terms of the instances corresponding
to different number of candidate NPs. To further ascertain correlation, if
any, between development and test sets, Pearson correlation coefficient (r) is
computed between number of instances in two sets corresponding to different
number of candidate NPs. The value of r equal to 0.387 (more close to 0 than
1) confirms that the two sets are almost uncorrelated. Also, even though
the development and test sets are almost uncorrelated, the implemented
system delivers comparable performance. This confirms that the performance
of system is independent of the nature of target sentences and, hence, the
system is neither overfit nor underfit.

Fig. 3. Statistical distribution of number of candidate NPs in development and test
sets

5.1 Error Analysis

Even though the proposed approach works effectively for substantial variety of
test instances, the following shortcomings are worth considering:

(a) The system incurs failure in situations where the gold context is absent in the
sentence containing formula. In example 5.1 below, the system incorrectly
infers one of the NPs of target sentence to be the correct context, as the
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gold context (i.e “Rayleigh criterion”) is present in some previous sentence
and not in the sentence containing formula. Although it may be accounted
by extending the window size from a single sentence to multiple sentences
or even complete passage, such an attempt will lead to significant increase
in number of NPs which are unrelated to the formula.

Example 5.1:

Target sentence: If one considers diffraction through a
circular aperture, this translates into:

Formula: θ = 1.220 λD

Gold context: Rayleigh criterion

Predicted context: a circular aperture

(b) System lacks ability to combine different NPs in a systematic or meaning-
ful way. More specifically, the system fails to account for situations wherein
the gold context is intricate combination of two or more candidate NPs. For
instance, in example 5.2 below, the gold context is combination of two can-
didate NPs, namely “the pressure force” and “an isothermal fluid”, but the
system incorrectly predicts only partial gold context.

Example 5.2:

Target sentence: For an isothermal fluid, the pressure
force takes the form

Formula: Ffluid = −kBTe∆ne

Gold context: the pressure force for an isothermal fluid

Predicted context: isothermal fluid

(c) The system also incurs failure if the gold context does not adhere to the
heuristics as mentioned in subsection 3.5. For instance, WA assigns weights
only to maximal NP, isolated NP and nearest NP, and discards all other
candidate NPs. However, in some cases, the gold context may be one of the
minimal NPs, instead of being maximal NP, isolated NP or nearest NP. The
gold context “initial momenta” is a minimal NP in example 5.3 below.
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Example 5.3:

Target sentence: In the simplest example of scattering of
two colliding particles with initial momenta of the form

Formula: pi1,pi2

Candidate NPs: •the simplest example of scattering of
two colliding particles with initial momenta of the form •the
simplest example •scattering of two colliding particles with
initial momenta of the form •scattering •two colliding particles
with initial momenta of the form •two colliding particles •initial
momenta •the form

Gold context: initial momenta

Predicted context: the simplest example of scattering of
two colliding particles with initial momenta of the form

6 Conclusion and Future Directions

This paper proposes and implements a system, which can extract textual de-
scription (also called “context”) of math formula present inside scientific docu-
ment. Preprocessor, Shift–Reduce Constituency Parser, Noun Phrase Extractor
(NPE), Weight Assigner (WA), and Weight and Addend Tuner (WAT) form
key constituents of the implemented system, which work in a sequential fashion
to predict most appropriate context for a given formula. After the sentences
containing formula (target sentences) are processed and parsed, different Noun
Phrases (NPs) are extracted from the parse trees using NPE. Eventually, the
WA assigns weights to different NPs using certain heuristics, and the WAT
tunes values of those weights using a development set containing gold contexts
for target sentences. Thereafter, the best set of weight values are used to pre-
dict context for test target sentences. The proposed method achieves a test set
F–score of 65% and significantly outperforms the conventional nearest noun and
sentence–pattern based methods of context extraction.

Followings are some of the future research directions worth exploring:

(a) The WAT, as of now, uses trial and error to discover the best set of weight
and addend values. Instead, in the future, multiple linear regression will be
used to express F–score in terms of weights and addend. Subsequently, the
constrained multivariable optimization, with constraints being Wnearest ≥ 0
and Wsecond ≥ 0, will be used to discover the optimal values of weights and
addend for which the F–score will be maximum.
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(b) Furthermore, it will be interesting to prospect the impacts of followings over
performance of the system: (i) increase in development set size (ii) enabling
support for judiciously combining different candidate NPs, and (iii) extend-
ing the context window size from a single sentence to multiple sentences.
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