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Abstract. This paper presents a neural network classifier approach to detecting
precise within-document(WD) and cross-document(CD) event coreference clus-
ters effectively using only event mention based features. Our approach does not
rely on any event argument features such as semantic roles or spatio-temporal
arguments and uses no sophisticated clustering approach. Experimental results
on the ECB+ dataset show that our simple approach outperforms state-of-the-art
methods for both within-document and cross-document event coreference res-
olution while producing clusters of high precision, which is useful for several
downstream tasks.
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1 Introduction

Event coreference resolution is the task of identifying spans of text that refer to unique
events and clustering or chaining them, resulting in one cluster/chain per unique event.
This is an important part of an NLP system that performs topic detection [2], informa-
tion extraction, question answering [25], text summarization [4] or any other system
that is predicated on understanding natural language. Unlike entity coreference, which
refers to clustering of nouns or pronouns that refer to the same entity, event corefer-
ence is a fundamentally harder problem. This is because the event as a semantic unit
is structurally more complex to identify and resolve coreference for, as it has event ar-
guments such as participants and spatio-temporal information that could be distributed
across the text [6]. Furthermore, different event mentions can refer to the same real
world event and thus the context of the mentions and their arguments may also need to
be considered [30]. For instance, in the sentences “Lindsay Lohan checked into New
Promises Rehabilitation Facility on Sunday morning.” and “News of this development
caused the media to line up outside the facility.”, “checked into” and “development” are
coreferent. However, devoid of context, “checked into” and “development” are not se-
mantically related. Additionally, events arguments (e.g., Lindsay Lohan, New Promises
Rehabilitation Facility, Sunday morning) don’t appear in the second sentence.

There are two types of event coreference resolution, within-document (WD) and
cross-document (CD) event resolution. WD resolution is typically easier to solve as
there is a higher chance of true coreference if there is similarity in the words used,
contexts and event arguments. On the other hand, more evidence is needed to resolve



coreference across documents as different documents are less likely to talk about the
same events in the same way. Therefore, some coreference systems solve WD corefer-
ence first and then later use this information to solve CD coreference [30, 11].

We try to solve both within-document and cross-document coreference without ex-
plicitly identifying event arguments and their semantic roles in the event as these are
still difficult to extract with high accuracy [7]. We build two feed-forward neural nets
for pairwise event coreference prediction with a small feature set, one for WD corefer-
ence and one for CD coreference that output the probability of coreference of the pair
of events in question. We prioritize high precision over recall in the pairwise classifiers.
Both CD and WD classifiers are trained separately since we expect that the importance
for the features for CD and WD coreference to differ [11]. Once all pairwise event
coreference predictions are complete, we construct a graph where each node is an event
mention and each edge weight is the probability produced by the classifier represent-
ing a potential coreference relation between the nodes. We then find all the connected
components (equivalent to finding the coreference clusters) in the graph after edges are
filtered using a (high) threshold value, determined through experiments with our de-
velopment set to favor precise clustering. Precise clustering might be more useful in
several downstream tasks like text summarization and question answering systems.

Experimental results on ECB+ dataset show that our simple system outperforms the
state-of-the-art methods for both WD and CD event coreference resolution when we
use the widely used CoNLL[26] measure which is the average of the CEAF-E [23], the
MUC [29] and the B3 [5] measures.

2 Related work

Different approaches, focusing on either WD or CD coreference chains, have been
proposed for event coreference resolution. Works specific to WD event coreference
include pairwise classifiers [1, 10], graph-based clustering [9] and information propa-
gation [19]. Works focusing purely on CD coreference include Cybulska and Vossen
[15] who created pairwise classifiers using features indicating granularities of event
slots, and in another work [14], use discourse analysis at the document level along with
‘sentence’ templates amongst documents that have possibly coreferent events. Several
papers have studied event extraction and event coreference as a joint process [3, 21].

Several studies have considered both WD and CD event coreference resolution tasks
simultaneously. Such approaches [17, 6, 7] create a meta-document by concatenating
topic-relevant documents and treat both WD and CD coreference resolution as identi-
cal tasks. Both Yang et al. [30] and Choubey et al. [11] use the same ECB+ corpus as
ourselves. Yang et al. [30] apply a two-level clustering model that first groups event
mentions within a document and then groups WD clusters across documents in a joint
inference process. Choubey et al. [11] use an event coreference model that uses both
pairwise CD and WD classifiers to build event clusters iteratively by switching between
WD and CD coreference resolution, using additional information that is available about
the clusters as they are being merged, until the results converge. Kenyon-Dean et al.
[16], much recently build a general framework for clustering that uses supervised rep-
resentation learning for the event mention embeddings using clustering oriented reg-



ularization terms. Although they also the ECB+ corpus, their results are not directly
comparable to ours or the two published systems mentioned above, as they use a differ-
ent criteria in selecting their testing data.

Fig. 1: Feed-forward Neural Network structure for CD resolution

3 Detecting pairwise event coreference

The first step of both WD and CD event coreference resolution are implemented using
feedforward neural nets with ReLU units that take two featurized events, their contexts,
syntactic and semantic information, and determine if the events are coreferent. The
basic architecture is as shown in 1. The WD NN is a single hidden layer neural net with
300 hidden units, while the CD NN has two hidden layers with 400 and 150 hidden units
for layer 1 and layer 2 respectively. The number of hidden layers and units of the NNs
were determined by experiments described in Section 3.4. The final output layer of both
NNs is a softmax that gives the probability of coreference between the pair of events.
Each feed-forward back-propagation cycle of the NN aims to minimize the negative
log cross entropy of the softmax distribution. Figure 1 shows an overview of the CD
resolution model, which takes as input a pair of sentences, featurizes them into neural
network inputs comprising of contextual features and relational features, passes them
through the two layer NN and produces a coreference score, which is the probability of
coreference between the two event mentions in the input sentences.



3.1 Event features

We selected our features through extensive ablation studies and error analysis discussed
in 3.4 and 5.4 to provide high precision for pairwise event coreference. We use 6 fea-
tures of two types of features for characterizing event mentions: three contextual fea-
tures and three relational features. Contextual features are extracted from each sentence
independently and relational features depend on the relationships between the two sen-
tences.

The contextual features are the embeddings of the event word(s), the POS tag of the
event word, and embedding of words in a pre-defined window around the event word.
We use pre-computed word embeddings of size 400 from a word2vec model [24] that
we built using the gensim implementation from the English Wikipedia corpus [27]. The
embeddings we included are that of the event mention as well as the two words on
each side that appear in the word2vec model. For event mentions with multiple words,
we average the embeddings. We generated the POS tags for the event mentions using
the Natural Language ToolKit (NLTK) package [8] and represented them as one-hot
vectors.

The relational features are the the cosine similarity of the (average) embeddings of
the event word(s), the cosine similarity of the lemmatized head word of the event3 and
the WordNet similarities using variations of the main event words. The cosine similar-
ities are quantized into 11 buckets (including one bucket for unknown similarities) and
represented as one-hot vectors.

The WordNet similarities we calculate are the maximum path similarity of all the
senses of both event words, the maximum path similarity between hypernyms of both
event words and the path similarity between derivationally related verb forms of both
event words. The path similarities, senses and derivation related to WordNet are gener-
ated through TextBlob [20]. When we analysed WordNet features, we discovered that
despite an observable semantic relation between words, the WordNet similarity was low
(especially for words that had the same hypernym). Therefore, we quantized the Word-
Net path similarity between the hypernyms and added it as a feature as a one hot vector.
Additionally, we found that the WordNet path similarity differentiated greatly between
words of different syntactic categories. Therefore, we also generated the derivationally
related verb form of each event word, and added the path similarity between them. The
WordNet similarities are also quantized and represented as a one-hot vector.

3.2 Changes to classifier from earlier work

In comparison to the latest system that uses pairwise classifiers [11] which builds on
[10, 1], our pairwise classifiers have some significant differences. A major difference
between our work and previous work is that we try to build a classifier with high pair-
wise precision, which can then be used to generate accurate clusters. This affects the
feature select we select, while keeping the pairwise model as simple as possible. We use
pre-computed word embeddings, as opposed to computing word embeddings during

3 We determined the head word using the approach by Honnibal and Johnson [20] and used its
embedding.



Train Dev Test Total
#Documents 462 73 447 982
#Sentences 7,294 649 7,867 15,810
#Event Mentions 3,555 441 3,290 7,286
#CD Chains 687 47 486 1,220
#WD Chains 2,499 316 2,137 4,952
Avg. WD chain length 2.84 2.59 2.55 2.69
Avg. CD chain length 5.17 9.39 6.77 5.98

Table 1: ECB+ corpus statistics

classifier training to maintain the simplicity of the model and also so that the embed-
dings for words not seen during training would not lose efficacy during test time as the
trained embeddings might have moved in the N-dimensional space. We also do not ex-
plicitly identify event arguments as part of our pairwise classifier (as mentioned above),
as extracting event arguments and their relation to an event is difficult to identify accu-
rately [6]. Furthermore we use contextual features for both WD and CD coreference,
while Choubey et al.,[11] use contextual features only for CD coreference. Their system
uses only cosine similarity and euclidean distance between their computed embeddings
for their relational features, while we extract other relational features explained in 3.1,
including WordNet path similarities.

3.3 Training the pairwise coreference classifiers

We train the pairwise classifiers using documents from topics 1-23 of the ECB+ corpus
[30, 11]. The statistics of the corpus are provided in Table 1. We extract the training data
clusters, and generate all the coreferent event mention pairs from them. To ensure the
pairwise classifiers become proficient at identifying non-coreferent event mentions even
in similar contexts, we only include those non-coreferent pairs whose event mentions
either belong to the same sentence or belong to sentences that also share a coreferent
pair. We then sample from these non-coreferent pairs to ensure the number of coreferent
and non-coreferent training pairs are the same. Although the number of non-coreferent
pairs outweigh the number of coreferent pairs generated from the training data, we train
our WD model using a 50-50 training split, i.e. equal number of coreferent and non-
coreferent pairs, to avoid developing a bias for some statistical distribution of these
pairs within the ECB+ corpus. However, we train our CD model using the actual train-
ing split, in order to provide more training samples as CD resolution is inherently a more
difficult problem to solve than WD resolution. We train WD and CD pairwise classi-
fiers separately since we expect the importance of neural net learned weights to differ
between for the two cases [11]. To confirm this, we also used the WD classifier during
CD classification and vice-versa, however the results obtained on the development set
were much lower than that obtained when the neural nets were trained separately.



3.4 Intrinsic Evaluation

To ensure successful clustering, it was paramount to have a strong pairwise classi-
fier(and in our case, one that produces precise pairwise results). Therefore we per-
formed intrinsic(i.e. pairwise) evaluations for this classifier using documents from top-
ics (23-25) as the development set and topics (26-45) as the test set [30, 11]. The count-
ing of topic numbers vary slightly between this paper and previous work [30, 11] be-
cause we include topic numbers with no documents while they do not. Additionally, we
have verified that the training, development and test splits are the same despite the dif-
ference in topic counting numbers, by ensuring that we obtain the same corpus statistics
as them.

As the ECB+ corpus is incompletely annotated in both event mentions and event
coreference [12], running an event detection tool will not be necessarily instructive
as some coreferences between events and actual events themselves are left unmarked
in the database. Therefore we extract gold standard event mentions. Regardless, to be
able to compare our results to previously published results [30, 11], we perform event
detection using the same event detection tool used by these systems on the same test
set. The event detection tool used is a CRF-based semi-Markov model that is trained
using sentences from ECB+ to provide more accurate detection of events [30]. Once we
extract the event mentions, we only use those mentions also found in the gold standard
as the ECB+ corpus is incompletely marked and it’s not possible to determine if pairs
generated from non-gold event mentions are actually non-coreferent.

Once the mentions are finalized, we generate all possible coreferent pairs are gen-
erated for both detected event mentions and gold standard event mentions. For the WD
case, the non-coreferent pairs are all pairs within a document that are not marked coref-
erent, while for the CD case, they comprise all pairs within a sub-topic that are not
marked coreferent.

We report the results on the final test set for both types of event mention pairs, one
generated from the gold standard event mentions (called WD-gold and CD-gold) and
one from the extracted event mentions (WD-detect and CD-detect).

The purpose of this intrinsic evaluation is two fold: to find a feature set for our pair-
wise models that prioritizes high clustering precision and to tune the hyperparameters
of the classifier: size and number of hidden layers of the neural network along with a
coreference threshold. To this end we did several experiments on our development sets.

To find a feature set that maximizes clustering precision, we did ablation studies
to determine our ideal feature set. The results for WD are in Table 3. For descrip-
tion of each feature, refer to subsection3.1. As it can be observed, each feature we
added improves the average precision of the three clustering metrics while increasing or
maintaining the average recall of the clustering metrics. The only exception is average
mention similarity which slightly reduces average clustering precision while improving
average clustering recall. Nevertheless, we felt comfortable keeping this feature since
error analysis revealed that adding this feature enabled resolving interesting cases (as
described in subsection 5.4). It has to be noted that for the WD classifier when we add
the POS tags, we lemmatize the headword before we calculate headword similarity. We
feel lemmatization will ensure higher similiarity scores for different conjugations of
verbs and the POS tags can act as the safety that ensures too much information is not



lost in the process. This works well in practice, as is shown in 5.4. For CD coreference,
lemmatization even with POS tags led to loss in the pairwise results(and subsequently
clustering), which makes sense. For CD coreference, loss in information is tough to
overcome as evidence for coreference is already low even in case of true coreferences.

To determine the pairwise coreference threshold, we ran experiments an example
of which is shown in 2. The value chosen to maximize clustering metric’s precision
scores for the WD pairwise classifier was 0.85 and for the CD pairwise classifier this
threshold was 1.0 (i.e. the probability of coferenece is high enough to overflow to 1).
The high threshold value for CD coreference is necessary to mantain precision as higher
confidence is needed to resolve CD coreference, which is a much harder problem than
WD coreference(for reasons mentioned in Section 1). As we can see from the table,
our system has high precision in detecting coreference and performs well on the large
amounts of incoreferent pairs(especially striking in the WD case which is trained on a
balanced training set to avoid distribution bias).

Fig. 2: Determining WD classifier threshold to maximize precision



Coreference #Coref #Non-coref TP TN R P F1 Accuracy Accuracy
Threshold Links Links (Non-Coref) (All)

WD-gold 0.85 1,799 12,701 947 12466 52.64 80.12 63.54 98.14 92.50
WD-detect 0.85 1,212 7927 663 7785 54.70 82.36 65.74 98.20 92.43
CD-gold 1.00 24,315 144,515 10488 142817 42.97 86.02 57.31 98.88 90.78
CD-detect 1.00 16,329 91333 7,555 90278 46.27 87.75 60.59 98.84 90.87
Table 2: Intrinsic evaluation for pairwise classifier with the test sets using final model

WD Model
MUC B3 CEAF-E CoNLL

R P F1 R P F1 R P F1 F1

Embeddings(mention + context) 39.20 33.56 36.16 81 72.22 76.36 67.36 73.15 70.14 60.89
+Headword cos. sim. 44.00 68.75 53.65 82.1 92.59 87.03 87.72 77.64 82.37 74.35
+Avg. mention cos. sim. 65.6 60.74 63.07 88.18 84.01 86.04 79.20 82.87 80.99 76.7
+WordNet path similarities 74.4 64.58 69.14 90.68 83.73 87.06 80.40 86.71 83.44 79.88
+POS tags 69.59 67.44 68.50 89.09 87.55 88.31 84.54 86.74 85.63 80.81

Table 3: WD ablation Results

4 Clustering Events

From our pairwise classifier, our next step is to build clusters of event mentions such
that all mentions in a cluster are considered coreferent to each other. In order to build
such coreferent clusters, we model our problem as finding connected components in
a weighted graph. We represent event mentions as nodes and coreference scores of
event mention pairs (given by the pairwise classifier) as weights of the edges between
those mention pairs. In the case of WD resolution, an edge between a pair of mentions
(nodes) exists if they belong to the same document. In the case of CD resolution, an
edge between a pair of mentions (nodes) exists if they belong to the same topic, since
we know that there are no CD coreferences between event mentions from different
topics.

For WD resolution, we filter out all edges with weights less than our WD thresh-
old and find all the connected components in the graph. These components are the WD
coreferent clusters which we later evaluate against the WD gold standard clusters. For
CD resolution, we first perform WD resolution on all WD edges. We then build CD
components if there is a CD edge satisfying the CD threshold between the WD compo-
nents. These components are the CD coreferent clusters which we later evaluate against
the CD gold standard clusters.

5 Evaluation

We perform all our experiments on the ECB+ news corpus [13]. As described in Table
1, our test set consists of documents from topics 26-45. We evaluated our system using



three widely used coreference resolution metrics: MUC, B3 and CEAF-E, computed
using the most recent version (v8.01) of the official CoNLL Scorer [26]. MUC [29]
measures how many links need to changed to get the correct clustering. B3 [5] measures
the overlap between the predicted and gold clusters for each mention and computes the
average scores(hence can overcount same chain). CEAF-E [23] measures the alignment
of the gold-standard and predicted clusters. We also calculate the CoNLL F1 score,
which is the average of the F1 scores across all three evaluation metrics.

5.1 Baseline Systems

We compare our system using three baseline systems published in previous work.

1. LEMMA: This baseline groups event mentions into clusters if they have the same
lemmatized head word. This is often considered a strong baseline [30].

2. HDDCRP: This baseline is the supervised Hierarchical Distance Dependent Chi-
nese Restaurant Process [30] that is evaluated on the same ECB+ dataset. This
model uses distances between event mentions generated, using a feature-rich learn-
able distance function, as Bayesian priors for single pass non-parametric Bayesian
clustering.

3. Iterative WD/CD Classifier: This baseline is the iterative event coreference model
that gradually builds event clusters by exploiting inter-dependencies within both
WD and CD mentions until the clusters converge [11].

5.2 Our System

We evaluate our system with two sets of testing data. The first set uses the gold standard
event mentions marked in the ECB+ corpus (WD-gold and CD-gold); the second set
uses events marked using the aforementioned event detection tool (WD-detect and CD-
detect). We can also compare the results from the latter set to the last two baseline
systems mentioned above as they use the same testing data.

5.3 Results

Table 4 shows the results obtained for WD coreference while Table 5 shows the re-
sults obtained for CD coreference. Critically, in all clustering measures, our precision
is very high achieving our aim of high quality clustering. We notice that in the case
of WD coreference, our system overall performs slightly better than the state-of-the-art
[11] for the CoNLL F1 score. However for CD coreference our system performs about
5% points better than the state-of-the-art in the same measure. Our MUC recall scores
for both our Detect systems drop sharply compared to our Gold systems. Since MUC
recall is the number of common links between the reference clusters and the system
generated clusters, divided by the number of links in the reference clusters (a very non-
descriminate measure to the quality of the links missing/present). Our simple system is
not sophisticated enough to prioritize making links explicitly between the detected men-
tions; hence such a fall in performance can be expected for MUC recall. Additionally,
the pairwise recall of our gold system is low to begin with, since our pairwise system



WD Model
MUC B3 CEAF-E CoNLL

R P F1 R P F1 R P F1 F1

Baseline 1: Lemma, Yang et al. (2015) 56.80 80.90 66.70 35.90 76.20 48.80 67.40 62.90 65.10 60.20
Baseline 2: Yang et al. (2015) 41.70 74.30 53.40 67.30 85.60 75.40 79.80 65.10 71.70 66.83
Baseline 3: Choubey et al. (2017) 58.50 67.30 62.60 69.20 76.00 72.40 67.90 76.10 71.80 68.93
WD-detect (this paper) 43.95 84.79 57.90 64.44 95.86 77.07 72.79 78.14 75.37 70.11
WD-gold (this paper) 60.94 84.56 70.83 82.92 95.11 88.6 87.99 77.7 82.53 80.65

Table 4: WD Coreference Results

CD Model
MUC B3 CEAF-E CoNLL

R P F1 R P F1 R P F1 F1

Baseline 1: Lemma, Yang et al. (2015) 39.50 73.90 51.40 58.10 78.20 66.70 58.90 36.50 46.20 54.80
Baseline 2: Yang et al. (2015) 67.10 80.30 73.10 40.60 78.50 53.50 68.90 38.60 49.50 58.70
Baseline 3: Choubey et al. (2017) 67.50 80.40 73.40 56.20 66.60 61.00 59.00 54.20 56.50 63.63
CD-detect (this paper) 41.94 82.58 55.63 64.96 95.38 77.28 73.41 76.96 75.14 69.35
CD-gold (this paper) 61.2 75.00 67.40 84.08 90.52 87.18 84.13 76.94 80.38 78.32

Table 5: CD Coreference Results

is tuned for higher precision. We also notice that our WD-gold and CD-gold systems
perform, as expected, significantly better than the WD-detect and CD-detect systems,
illustrating the need for better mention detection systems.

The strength of our results are explained primarily by the strength of our pairwise
classifier. Here are some observations about the strength of the pairwise classifier even
though its relatively very simple:

– The fact that we prioritize precision in the pairwise classification stage through
selection of features and threshold mean that we also get better quality clusters as
evidence by our high clustering precision scores

– When we train our pairwise classifier, we use generate non-coreferent pairs by se-
lecting for each mention m which is alteast coreferent with one other mention, a
non-coreferent mention from the same sentences as itself (the two mentions making
a non-coreferent pair), or a non-coreferent mention from a sentence which contains
a mention coreferent to m. This is to ensure that the classifier learns to discriminate
between the mention pairs well, leading to higher precision in pairwise coreference
resolution.

– Unlike in previous work, we do not use event arguments explicitly and avoid the
error propagation from that source. In fact when we did use event arguments, we
noticed that our performance dropped on the development set.

– The inclusion of WordNet (not used in previous work) seems to help in a lot of non-
trivial cases. For “Ram-raiders ploughed their vehicle into an upmarket jewellery
boutique near. . . ” and “The police source . . . said the men drove a large four - by
four car into. . . ”, WordNet indicates that there is a sense of ‘drove’ that is related



to application of force which is a sense that helps in coreference with ‘ploughed’.
Wordnet also helps solve the coreference between rammed in the sentence “Four
men rammed their car into an upmarket jewellery store” and ‘drove’ in the second
sentence above.

5.4 Error Analysis

Since we construct coreferent clusters of event mentions in an agglomerative way, the
primary disadvantage we face is error propagation from pair-wise coreference. To mit-
igate this, we employ high thresholds to determine if two clusters (components) can
be merged. However, there still are several false positives as can be seen from Table
2. Additionally despite the high thresholds, there are also some smaller proportion of
false negatives. We have performed an analysis of our system’s final predictions on the
development set to identify why we get these errors. We will first describe two major
problems and then describe our ablation based error analysis in more detail.

– Incorrect coreference Links: One recurring issue is that the ECB+ corpus is in-
completely marked. This leads to several instances where the system correctly (by
our judgment) detects coreference but is not marked as such in the corpus. For
example, consider the following pair of events: “Robbers crash 4x4 into store ,
grabbing jewelry and watches , before setting car ablaze.” and “Four men rammed
their car into an upmarket jewellery store in central Paris on Monday, smashing
the shop window . . . ”. Not having event arguments also plays a role leads to inabil-
ity to distinguish between events, for instance, for the same two sentences above,
our system marked the events grabbing and smashing as co-referent, but knowl-
edge of the arguments of those events (if they could be accurately identified) will
help differentiate between them (jewelry and watches are grabbed, shop window is
smashed) even though are contextual cues for event co-reference. We also noticed
that having information about event-event relations (such as sequencing, causation,
sub-event) will greatly help in avoiding both false positives (as well as false nega-
tives). For instance, consider the following sentences: “The heist near the upscale
Place Vendome is the latest to hit France after a spate of high - profile robberies
in the southern resort of Cannes .” and “The heist near the upscale Place Vendome
is the latest to hit France after a spate of high - profile robberies in the southern
resort of Cannes .”. The detection of the after relationship would have ensured the
prediction of lack of co-reference, but our system incorrectly marks these sentences
as coreferent.

– Missed coreference links: Another issue is that the word2vec model is not able
to not always successfully compare between multi-word events like scooping up,
making off, cleaning up and stay alive and other idiomatic phrases, since we use
pre-computed word2vec model model embeddings.

– Scare training data for pronominal event coreference The ECB+ corpus also
does not have substantial amounts of events referenced to as pronouns (it, itself,
etc.) and hence is not good at resolving events to pronominals. Consider the fol-
lowing pair of events: “Pierre Thomas was placed on injured reserve by the New
Orleans Saints on Wednesday, meaning he won’t play in the 2011 NFL playoffs.”



and “This means they will be missing two of their best players in the rushing game,
and it could weaken the attack that the Saints have on offense even further.”.

In addition to the above general problems we did some ablation based error anal-
ysis to figure out what each feature we add contributes using our development set.
For this purpose we analysed development set pairs(event mention pairs) that move in
the confusion matrix(e.g. FN to TP) when a new feature is added(i.e. between abla-
tions). The development set has 173 coreferent pairs and 1432 non-coreferent pairs.
We started with the first row in table 3 and proceeded downwards. Starting from the
embeddings((average event mention embeddings and context embeddings) as the first
feature is intuitive, since it’s considered the single most important feature in terms of
performance[22].

– Adding headword cosine similarity: Of the 251 pairs that move in the confusion
matrix, 178 cases move from FP to TN. This massively increases pairwise preci-
sion. Were before the model was unable to resolve non-coreference between actions
like ”climb” and ”fall” that occur in similiar contexts, our new model correctly re-
solves to non-coreference between ”. . . died while climbing to a. . . ” and ”. . . when
he fell in the. . . ” (event mentions in bold). 33 cases move from FN to TP and most
of these movements is cases where the event mention embeddings are very simil-
iar. For e.g., event mention pairs like: ”. . . Pierre Thomas placed on injured. . . ” and
”. . . Orleans Saints placed Pierre Thomas. . . ” is now marked as coreference with
high confidence.

– Adding average mention similiarity: Of the 112 pairs that move in the confusion
matrix, 73 cases move from TN to FP but 39 cases go from FN to TP. The for-
mer is mainly due to the fact that adding average mention similiarty for one word
mentions just replicates the event mention embedding itself. Consider the following
pair: ”. . . to their deaths in New Zealand . . . ” and ”. . . Duncan Rait died after slip-
ping. . . ”. Here replicating the event embeddings that are similiar pushes the system
towards coreference even though the former refers to the death of several people.
Of the cases that go from FN to TP, the main factor seems to be illustrated by cases
like the pair ”. . . climber who fell on Friday . . . ” and ”. . . witnessed the fall and had
. . . ” which are coreferent, the replication of the event mention gives confidence
to the system that in fact the pair is coreferent. In other words, one of the effects
of adding this feature is to add weight to the average mention similiarity. Addi-
tionally, averaging the mention does help in correctly resolving multiword events.
For instance, consider the pair: ”. . . [placed Pierre] Thomas on injured reserve
Wednesday because. . . ” and ”. . . placed on injured reserve. . . ” is now correctly
resolved. Overall pairwise precision takes a small hit at the cost of recall.

– Adding WordNet features: Of the 105 pairs that move in the confusion matrix,
21 cases move from FN to TP, 33 cases from FP to TN , 10 cases from TP to FN,
41 cases from TN to FP. Here again, pairwise precision increases. Adding semantic
information boosts the discriminanting capacity of the classifier. Now our classifier
is able to distinguish between pairs like: ”Ram-raiders ploughed their vehicle into
an upmarket jewellery boutique near. . . ” and The police source . . . said the men
drove a large four - by four car into. . . ’ is now correctly marked as coreferent as
mentioned in subsection 5.3.



On the other hand Since we do not perform word sense disambiguation, all senses
of a mention are considered when semantic features are generated, which might
not always be helpful. For instance, consider the pair: ”Climber dead after Aoraki
Mount Cook fall” and ”The man, from Hampton East, fell in the Tasman Glacier
area”. This is a case that moves from TP to FN and it’s attributable to the WordNet
senses in which ”fall” and ”fell” are different.

– Adding POS tags (and lemmatizing head word when calculating headword co-
sine similarity): Of the 53 pairs that move in the confusion matrix, 30 cases move
from FP to TN, 17 cases from TN to FP and 6 cases from TP to FN. Pairwise
precision increases here as well. Adding POS tags helps the classifier identify plu-
rality/singularity and differentiate between event mentions based on them. For in-
stance, consider the following pair: ”France jewels thefts : Robbers ram 4x4 into
Paris shop” and ”French police are investigating a daring jewellery robbery in
Paris . . . ”. This pair is now correctly identified as non-coreferent where as it was
not previously. One reason could be that thefts’ POS tag identifies plurality while
robbery’ identifies singularity. Additionally, in pairs like ”Duncan Rait died after
slipping . . . ” and ”. . . when he fell , sliding down . . . ”, the lemmatization ensures
that the headword similarity is calculated between ”die” and ”fell” which improves
matters. In fact in our development set, this particular type of example(that of dis-
tinguishing between verbs) is improved, once we include lemmatization(accounting
for most of the FP to TN cases).

Thus the error analysis adds support to the conclusion that we chose features that
by and large improves pairwise precision.

6 Conclusion and Future Work

Our results show that pairwise models that favor precision can be used as a basis to find
accurate coreferent clusters of event mentions, and that such models can outperform
existing event coreference clustering systems even without relying on event arguments
explicitly. These results also make manifest that accurate event detection significantly
helps in improving event coreference resolution, as evidenced by the disparity between
our system results when event mentions detected are gold standard and detected by a
event detector.

We would like to explore if event arguments and their relations to the event men-
tion (whether semantic or syntactic) can be extracted in a reasonable way without error
which would propagate upwards. We would also like to do joint entity and event coref-
erence to improve the overall event coreference resolution. We would also like to com-
bine the aforementioned two ideas and explore building a generic neural model without
hand-crafted features that builds sentence representations to solve event co-reference,
in the mould of work used in Recognizing textual entailment [28]. Such an end-to-
end LSTM model can be used for event coreference in line with recent work on entity
coreference[18].
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