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Abstract. Social media users differ in how they write such as writing
style and topics. This suggests that personalized language models — lan-
guage models tailored to a specific person — could outperform a single
generic language model. One challenge, however, is that language mod-
els typically require a large volume of text to train on, but for many
people such a volume of text is not available. In this paper, we train
n-gram and neural language models on relatively large in-domain back-
ground corpora, and on relatively small amounts of text from individual
social media users, specifically authors of blogs. In experiments with in-
terpolated language models, we find that, although user-specific language
models trained on a small amount of text from a user perform relatively
poorly, they can be interpolated with language models trained on a large
background corpus to give improvements over either approach on its own.
We further find that n-gram and neural language models are complemen-
tary, and can be interpolated to give improvements over either approach
used individually. Our evaluation considers perplexity, and two evalua-
tion measures motivated by next word suggestion on smart-phones. We
find that although perplexity is widely used for intrinsic evaluation of
language models, it is a poor indicator of performance in terms of these
other measures.

Keywords: Language models · User-specific language model · Person-
alization.

1 Introduction

The difference in the writing styles of people on social media platforms, such as
blogs, suggests that language models tailored towards individuals can outper-
form generic language models. However, language models often require a large
amount of text to train on, which is often not available for many people. There-
fore, we interpolate language models that we trained on a large in-domain corpus
with language models that are trained on far less text from a single person by av-
eraging the probabilities from each model. Our evaluation considers perplexity,
and two other evaluation measures motivated by next word suggestion on smart-
phones. We find that although perplexity is widely used for intrinsic evaluation
of language models, it is a poor indicator of performance in terms of these other



2 Milton King and Paul Cook

measures. We show that even though the language model that was trained on a
single user performs fairly poorly on its own, it can increase the performance of
the generic language model that was trained on a large background corpus. We
look at two types of language models, a long short-term memory neural network
(LSTM) and an n-gram language model which uses Kneser-Ney smoothing [3]
and found that using an LSTM as a background model outperformed all other
models by themselves. However, we achieve better performance when interpolat-
ing an LSTM-based background model with a user-level model that was trained
on only 1000 tokens for two of our three evaluation metrics. Furthermore, we
show that the type of model used as the the background model largely affects the
performance of the interpolated models. Nevertheless, we find that both types
of background language models achieve better results when interpolated with a
user-level language model. We also look at the effects that the volume of text
from a user has on the language models’ performance.

2 Related work

Personalizing language models can be viewed as a domain adaptation problem,
which often involves models that train on a large out-of-domain corpus and
then adapted to a specific domain. Such approaches for language modeling often
involve a recurrent neural network at its base with a method to perform the
adaptation such as [11], who used a topic distribution vector fed into the hidden
and output layers of their network. Another common way to achieve domain
adaptation is to initially train on a background corpus and then continue training
on text from the target domain [8]. A model can also leverage metadata about
the author such as age, gender, and personality, to assist in personalized NLP
tasks [9]. [7] used metadata about the author as well, along with two LSTM
models — with one model being used to model an author and another model
being used to model how the author’s text changes given a specific addressee.
Although metadata can be helpful, it is often not available and therefore we only
consider text from authors in our following experiments.

[5] achieved domain adaptation, with the domains being categories of YouTube
videos, by combining multiple LSTMs, where each LSTM represents a specific
domain and are then combined with a “mixer” LSTM that determines how much
weight to give to each domain-specific LSTM. Similarly, we combine the output
of multiple language models with the difference that we average our outputs
across all language models instead of using an LSTM to combine them and are
using text from individual users. Language models are also commonly used in
an extrinsic evaluation such as text classification. This includes domain-adapted
language models in sentiment analysis, question classification, and topic classi-
fication [4], or determining if a tweet is relevant to a natural disaster [2].

There have been many different domains that have been approached with
domain adaptation techniques such as Youtube speech recognition [5] and news-
paper sections [6]. Our work differs from many of the previous works because
our background corpus and test set are within the same domain and therefore,
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we are adapting to the user’s writing style and not the domain itself. This is a
more subtle change, where the only thing that differs is the authors themselves.

3 Data and evaluation

3.1 Dataset

The dataset that we use contains blogs and was used in [14], which contains
19, 320 users. We use the sentence splitter from [10] to generate one sentence
per line and prepended each sentence with a start-of-sentence token and append
each sentence with an end-of-sentence token. We hold out the 10 users with
the most tokens and divide their text into USER — a set of 10 user-specific
corpora, which will be used to train our user-level models — and TEST, which
will be our test set. The partition is approximately a 25/75 split. TEST consists
of a 38, 219 sentences, containing a total of 765, 614 tokens with the number of
tokens from a single author ranging from 52, 633 to 112, 049. We hold out the
next 20 users with the most tokens for future analysis. We take a maximum
of 30, 000 tokens (not including start and end-of-sentence tokens) from each of
the other 19, 290 user to form our background corpus BACKGROUND. The
30, 000 threshold is implemented to avoid biases and promotes a more evenly
distributed corpus across multiple users and is based on the token count for
each user. We further modify BACKGROUND by replacing all words that occur
less that 10 times with the unknown token unk. This gives us a background
corpus of 6, 668, 281 sentences containing 129, 549, 606 tokens (including start
and end-of-sentence tokens) with a vocabulary of 92, 578 types. The number of
sentences from any single user ranges from 1 to 4024 and number of tokens from
a user ranging from 112 to 38053, including start and end-of-sentence tokens.
All corpora have numerals replaced with a num token and were casefolded and
tokenized by Stanford Core NLP [10].

3.2 Evaluation

One of the most common language models used in language modelling is an
LSTM due to its often superior performance [15] and therefore the two types
of language models that we look at include an LSTM implemented in Pytorch1

and an n-gram model that uses Kneser-Ney smoothing known as Kenlm [3]. We
trained each type of language model exclusively on either a single user’s corpus
from USER or on the collection of blog posts that we call BACKGROUND and
will be denoted as language model-corpus from hereon. For example, an LSTM
trained on USER would be LSTM-USER. The language models are trained
across sentence boundaries. The language models are tested on TEST, with the
models trained on USER only testing on their corresponding test sentences from
the same user.
1 Implementation is based off the code from https://github.com/yunjey/

pytorch-tutorial/blob/master/tutorials/02-intermediate/language_model/

main.py#L30-L50
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3.3 Evaluation metrics

There are a few common metrics that are used to evaluate the performance of a
language model and some may be preferred over others depending on the target
application for the language model. We use three different evaluation metrics
in order to achieve a better understanding of how our models compare. In this
section, we discuss the evaluation metrics that we use to evaluate our models.

Adjusted perplexity Perplexity is defined below in Equation 1

perp = − 1

N

N∑
i=1

log(p(wi)) (1)

with N being the size of the vocabulary. It is one of the most common intrinsic
evaluation metrics used to evaluate language models that are trained on the
same corpus, but does not give a fair comparison of language models that have
different vocabulary. This is due to the fact that language models can artificially
inflate their score by decreasing their vocabulary size and predict most words
as unk. Adjusted perplexity was proposed by [12], which penalizes a language
model that predicts unk and therefore allows us to fairly compare models that
were trained on different corpora. The overall perplexity calculation does not
change, but the probability of unk is calculated using Equation 2, defined below
as

p(unk) =
p(unk)

|UNK-TYPES|
(2)

with UNK − TY PES being the set of types that are converted to unk in the
test file. During our evaluation, the start-of-sentence type is never predicted
as the target word but the LSTMs generate probabilities for all words in its
vocabulary, including the start-of-sentence type and therefore we remove the
probability given to it before applying our softmax function making the size
of our output layer v − 1, where v is the size of the vocabulary. The n-gram
models do not give a probability for the start-of-the-sentence type as a default.
All models are still given the start-of-sentence token as the starting token. The
models are expected to predict the end-of-sentence token for this metric.

Accuracy at k Accuracy at k is a metric that is closely associated with the
down stream application of next word prediction on smart-phones where many
soft keyboards provide three suggestions for the next word. Accuracy at k cap-
tures the number of times that a model predicts the target word in the top k
words of its vocabulary. We look at k in a range from 1 to 5. Unlike adjusted
perplexity, we do not evaluate a model on their ability to predict the end-of-
sentence token. This is to reflect the use of word suggestion on smart-phones
where the end-of-sentence is not useful to the user. The probabilities for unk
and end-of-sentence are set to 0 because these will never be the target word.
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Accuracy at k given c keystrokes We take the accuracy at k one step
closer to how many smart-phones perform next word prediction by allowing the
language model to look at the first c characters of the target word. This is similar
to the task of query completion on the character level, which was approached
by [6] and [13]. This evaluation metric simulates that the user types the first c
characters of the target word. We set k to 3 because this is common for most
smart-phones and look at c on a range from 0 to 3. If c is equal to or larger than
the target word then we say the model predicted the word with a probability of
1 for that c. Similar to accuracy at k, we do not evaluate the model’s ability to
predict the end-of-sentence token. Again, the probabilities for unk and end-of-
sentence are set to 0 because we never expect them to be the target word in a
real-world environment, such as on a smart-phone.

4 Experimental results

In this section we first tune our LSTM models that are trained on user text.
We then evaluate our models using our three evaluation metrics. We look at the
models’ performances by themselves — allowing user models to train on different
volumes of text from a single user — followed by interpolations involving two
models. The user models that we use for interpolations are trained on 1000
tokens. We then discuss the performance of interpolations involving three and
four models.

4.1 Tuning user-trained language models

We use text from five random users from the BACKGROUND corpus to tune
our parameters for our LSTM that is trained on a user via grid search. Each
model is only given 1000 tokens from a single user. For example, we will have
five models with the same parameters, but each one will be trained on text
from a different user. The parameters for the LSTMs that we tune are num-
ber of layers (1, 2); number of hidden units (128, 256, 512, 1024, 2048); embed-
dings size (64, 128, 512, 1024); number training epochs (1, 2, 3); batch size (1, 2, 5, 15, 30, 454).
Our final user-level LSTM models are single layer with 256 hidden units, an em-
bedding size of 256, trained using a batch size of 2 for 1 epoch.

Our LSTM that was trained on BACKGROUND uses the default parameters
of an embeddings size of 128, 1024 hidden units, 1 layer, a batch size of 45, and
1 training epoch. They were trained using a cross entropy loss function. We
applied the same final parameters that we use for LSTM-user, but preliminary
experiments showed that the default values achieved better results. Our n-gram
model uses the trigram implementation of the KenLM model.

4.2 Impact of volume of data on user-level language models

In this section, we observe the effects of allowing the language models to have
access to a larger amount of training data from a user. We randomly select sets
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containing approximately 1, 000; 10, 000; 100, 000; and 200, 000 tokens from each
user from USER. We train each type of model on each of these sets — with each
model only training on text from one user — and evaluate them on TEST.

Fig. 1. Adjusted perplexity for different amounts of training text (lower is better).

We show the adjusted perplexity for each language model and the effects that
the amount of training text has on our user models in Figure 1. The amount
of training text for LSTM-background and n-gram-background does not change.
We see that both n-gram-user and LSTM-user perform relatively poorly when
given less than 100k tokens to train on but quickly achieve a better score than
n-gram-background around 100k tokens and approaches LSTM-background at
200k tokens. The fact that the models achieve similar score with far less training
text shows the importance of training on text from the user and not a generic
corpus even when generic text is within domain.

Next, we compare the accuracy at k for the four different models. Again,
LSTM-background achieves the highest score. We also see, that the user models
outperform n-gram-background with only 10k tokens instead of the roughly 100k
tokens needed for adjusted perplexity. The findings for accuracy at k show that
user models do not compete with large models trained on in-domain background
corpora, which is not in line with the findings when evaluating with adjusted
perplexity.
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Fig. 2. Accuracy at k for different amounts of training text with k as the x-axis (higher
is better).

4.3 Interpolation

In this section, we show the performance of our interpolated models using the
different evaluation metrics. Since we are interested in users with a small amount
of text, our user models that are involved with interpolations are trained on only
1000 tokens from a single user. As discussed in Section 3.2, we interpolate our
models by averaging their probabilities.

We first look at the effects that two-way interpolation has on adjusted per-
plexity shown in Figure 3. We see that any interpolation involving a background
model outperforms n-gram-background without interpolation. This result is in-
teresting since both user models performed relatively poorly but are still able
to assist the n-gram-background model. Furthermore, each background model
improves its performance when interpolated with either a user model or an-
other background model of a different type, with LSTM-background and n-gram-
background achieving the best score. This supports the findings of [1], who found
that neural language models and n-gram language models are complimentary.
Although, LSTM-user interpolated n-gram-user does not outperform n-gram-
user by itself.

Next, we look at interpolating models with respect to accuracy at k shown in
Figure 4. For this metric, language models generate probabilities for each word
in its vocabulary, but we only look at the top 50 probabilities — to reduce the
computational cost. If a word that is present in the top 50 of one model but not
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Fig. 3. Evaluating interpolated models using adjusted perplexity (lower is better).

Fig. 4. Evaluating accuracy at k for interpolated models (higher is better).
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in another, then the probability is set to 0 for the model that does not contain the
word and the interpolation is performed the same as before. Here we see that
any interpolation that involves a background model outperforms either model
by itself, which contradicts the findings from adjusted perplexity in Figure 3.
Furthermore, LSTM-background interpolated with n-gram-background achieves
the best performance in terms of adjusted perplexity, but is outperformed by
LSTM-background by itself or when it is interpolated with either user model
when using the accuracy at k evaluation. We achieve our highest scores with
LSTM-background interpolated with either user model. Interestingly, the two
user models are not complimentary when evaluating with accuracy at k, which
supports the findings when evaluating with adjusted perplexity.

4.4 Accuracy at 3 given c keystrokes evaluation

In this section, we evaluate our models using accuracy at 3 given c keystrokes,
which was explained in Section 3.3. We selected 3 because it is common for
smart-phones to suggest up to 3 words. Given c keystrokes, we normalize the
model’s probabilities across all word types that begin with the c keystrokes.
Similar to accuracy at k, during testing we average the top 50 probabilities for
any given c keystrokes with c being on a range from 0 to 3, inclusive. Again, we
will first look at the models by themselves and then the interpolations.

Fig. 5. Evaluating models using accuracy at 3 given c keystrokes (higher is better).
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Figure 5 shows accuracy at 3 given c for models without interpolation while
allowing user models to train on different amounts of text from a single user. We
see similar findings to accuracy at k in Figure 2, where neither model by itself
beats LSTM-background and either user model trained on at least 10k tokens
outperforms n-gram-background.

Fig. 6. Evaluating interpolated models using accuracy at 3 given c keystrokes (higher
is better).

Next, we evaluate our interpolated models with respect to accuracy at 3
given c keystrokes shown in Figure 6. It shows that the only model to outper-
form LSTM-background by itself is LSTM-background interpolated with n-gram-
background for c≥ 1. This finding is different than the findings shown when eval-
uating with accuracy at k where LSTM-background interpolated with either user
model outperforms LSTM-background interpolated with n-gram-background.

Three-way and four-way interpolations In an attempt to better our results
using our models that were trained on 1000 tokens from a user, we perform
interpolations involving three and four models. We consider all possible three-
way interpolations. However, none of the three-way or four-way interpolations
outperform our previously best models for all our metrics, which were LSTM-
background interpolated with n-gram-background for both adjusted perplexity
and accuracy at 3 given c keystrokes, and LSTM-background interpolated with
either user model for accuracy at k.
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5 Conclusions

In this work, we looked at interpolating language models trained on an in-domain
background corpus with language models trained on a small amount of text from
a single user. We showed that we can outperform a large background model by
interpolating it with a language model that was trained on as little as 1000
tokens from a user in terms of adjusted perplexity and accuracy at k. However,
interpolating two models trained on two large background corpora achieved our
best results for adjusted perplexity and accuracy at 3 given c keystrokes. We
showed that adjusted perplexity does not reflect the performance of a language
model’s ability to perform next-word suggestion and does not give the same
findings as both accuracy at k and accuracy at k given c keystrokes. For example,
LSTM-background interpolated with n-gram-background outperforms all other
models in terms of adjusted perplexity, but is outperformed by both LSTM-
background by itself and LSTM-background interpolated with a user model in
terms of accuracy at k. Our results show that under all metrics, interpolating
either background model with a model trained on text from a user will outperform
either model by themselves except in a few cases. We also found that the type
of the language model used for the background corpus has a large impact on the
final results, with models including LSTM-background outperforming models
that include n-gram-background.

In future work, we would like to apply a weighted interpolation that deter-
mines how much input either model contributes to a final prediction. Also, our
neural language models were trained using a cross entropy loss which is designed
for a model to favour a lower perplexity, but we would like to train the neural
language models with a loss function that takes into account the ranking —
making it more suitable for accuracy at k and accuracy at k given c keystrokes
evaluation metrics.
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