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Abstract. Abstract Meaning Representation (AMR) is a recently de-
signed semantic representation language intended to capture the mean-
ing of a sentence, which may be represented as a single-rooted directed
acyclic graph with labeled nodes and edges. The automatic evaluation
of this structure plays an important role in the development of better
systems, as well as for semantic annotation. Despite there is one avail-
able metric, smatch, it has some drawbacks. For instance, smatch creates
a self-relation on the root of the graph, has weights for different error
types, and does not take into account the dependence of the elements in
the AMR structure. With these drawbacks, smatch masks several prob-
lems of the AMR parsers and distorts the evaluation of the AMRs. In
view of this, in this paper, we introduce an extended metric to evalu-
ate AMR parsers, which deals with the drawbacks of the smatch metric.
Finally, we compare both metrics, using four well-known AMR parsers,
and we argue that our metric is more refined, robust, fairer, and faster
than smatch.

Keywords: Abstract Meaning Representation · Semantic Metric · Eval-
uation.

1 Introduction

Abstract Meaning Representation (AMR) is a semantic representation language
designed to capture the meaning of a whole sentence [4]. AMR got the attention
of the scientific community due to its relatively simpler structure, showing the
relations among concepts and making them easy to read. The creation of AMR
language was motivated by the need of providing to the research community cor-
pora with annotations related to traditional tasks of Natural Language Process-
ing (NLP), such as named entity recognition, semantic role labeling, word sense
disambiguation, and coreference resolution [4]. Moreover, AMR structures are
arguably easier to produce than traditional formal meaning representations [5].

In this way, several annotated corpora arose, for English1, Chinese [12], Span-
ish [15], and Portuguese [3]. Consequently, a considerable number of semantic
parsers emerged [9,7,16,2,13], and, with the available parsers, some applications

1 https://amr.isi.edu/download.html
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were developed and/or improved: automatic summarization [10], text generation
[18], paraphrase detection [11], and others.

Given the growing interest in AMR language, the automatic evaluation of
AMR structures plays a very important role for the AMR parsing task, as well
as for semantic annotation tasks, which create linguistic resources for semantic
parsing. Although there is one metric to automatically evaluate AMR structures,
named smatch [6], it has some shortcomings:

1. Smatch does not take into account the dependence of the elements in the
AMR structure, i.e., its analysis is very simple, masking several analysis
problems. So, smatch often gives higher scores for AMRs that have different
meanings in relation to the reference AMR.

2. Smatch creates a self-relation called TOP for the root of the AMR structure.
That is, smatch gives more weight for the root of the graph than other
elements, distorting the analysis.

3. Smatch has weights for different error types. As discussed by Damonte et
al. [7], three named entity errors are considered more important than six
wrong labels. Nevertheless, it is difficult to conclude which task should have
a higher weight.

Smatch metric computes the degree of overlapping between two AMR struc-
tures. To evaluate an AMR generated by a parser against a reference manually
produced AMR, smatch defines M the correct number of triples, C the produced
number of triples by a parser, and T the total number of triples in reference AMR.
So, precision and recall are calculated according to Eq. 1 and 2, respectively.

P =
M

C
(1) R =

M

T
(2)

For example, when evaluating the AMR graph in Fig. 2 against the AMR
in Fig. 1, smatch returns M equal to four (disaster, describe-01, man, and
mission), C equal to eight (disaster, describe-01, man, mission, TOP, ARG0,
ARG1, and ARG2), and T equal to eight. So, precision and recall are equal to
4/8 = 0.5.

d / describe-01

m1 / mission d1/ disasterm / man

:ARG0 :ARG2

:ARG1

:TOP

Fig. 1: Reference AMR

d / disaster

m / mand1 / describe-01 m1 / mission

:ARG0 :ARG2

:ARG1

:TOP

Fig. 2: Test AMR
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As we may see, smatch adds a TOP relation in the structure. This self-
relation is not provided by AMR language and it distorts the analysis because if
a parser correctly identifies the root of the graph, smatch will compute the root
concept and the TOP relation as correct, otherwise, it will compute only the
root concept as correct. In addition, smatch is not considering the dependence
of the elements. The other issues will be detailed later.

Thereby, we believe that assessing the dependence in which the elements are
arranged in the AMR structure may help to better understand the semantic
analyzers potentialities and limitations and to produce better applications.

Given these shortcomings and inspired by Damonte et al. [7] to better under-
stand the limitations of AMR parsers and to find their strong points, we propose
a new metric for evaluating AMR parsers, named SEMA (Semantic Evaluation
Metric for AMR). Our metric deals with these issues of the smatch metric,
presenting a new way to evaluate concepts and relations in AMR structures,
computing precision, recall, and f-score values between two AMRs. Moreover,
we compare smatch and SEMA, using four well-known AMR parsers in order to
analyze the differences between the metrics and, finally, we discuss the obtained
results.

In what follows, Sect. 2 presents the essential related work. In Sect. 3, we in-
troduce the AMR fundamentals. Sect. 4 details our developed metric. In Sect. 5,
we compare smatch and SEMA and, finally, Sect. 6 concludes the paper.

2 Related Work

Compared to traditional meaning representations, AMR is a relatively new rep-
resentation, as well as AMR parsing is a new task. Thus, there are few works
involving semantic representation measurements.

Allen et al. [1] adopted a logical form representation for evaluating its seman-
tic representation. The authors proposed a metric that computes the maximum
score by any alignment among logical form graphs. This representation needs an
alignment between the input sentences and the semantic analysis. However, the
authors did not address how to determine the alignments.

Dridan and Oepen [8] directly evaluated a semantic parser output by compar-
ing semantic sub-structures. The authors also adopted a logical form representa-
tion for evaluating its semantic representation. For that, the authors required an
alignment between sentence spans and semantic sub-structures. One limitation
of that metric is the need for an alignment between the input sentences and their
semantic analyses.

Cai and Knight [6] developed a metric named smatch that calculates the de-
gree of overlap between two AMR structures. The metric computes the maximum
f-score obtainable via one-to-one matching of variables between two AMRs.

As the smatch metric, our metric is also focused on AMR structures. How-
ever, our metric is more robust, because it deals with the several drawbacks
that smatch has, as the dependence of elements (nodes, edges), the self-relation
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created on the root of the graph, and the weights generated for different error
types.

3 AMR Essentials

Abstract Meaning Representation (AMR) is a semantic representation language
designed to capture the meaning of a sentence, abstracting away from elements
of the surface syntactic structure, such as morphosyntactic information and word
ordering [4]. Hence, words that do not significantly contribute to the meaning of
a sentence are left out of the annotation.

AMR focuses on the predicate-argument structure of a sentence, as defined
by the PropBank resource [17]. It may be represented as a single-rooted di-
rected acyclic graph with labeled nodes (concepts) and edges (relations) among
them. Nodes represent the main events and entities mentioned in a sentence, and
edges represent semantic relationships among nodes. AMR concepts are either
words in their lexicalized forms (e.g., boy, girl), PropBank framesets (want-01,
adjust-01), or special keywords such as date-entity, distance-entity,
government-organization, and others. PropBank framesets are essentially verbs
linked to lists of possible arguments and their semantic roles. In Fig. 3, we show a
PropBank frameset example. The frameset edge.01, which represents the “move
slightly” sense, has six arguments (Arg 0 to 5).

  

Frameset edge.01 “move slightly”

Arg0: causer of motion Arg3: start point

Arg1: thing in motion Arg4: end point

Arg2: distance moved Arg5: direction

Ex: [
Arg0

Revenue] edge [
Arg5

 up] [
Arg2-EXT 

3.4%] [
Arg4 

to $904 million] 
[

Arg3
 from $874 million] [

ArgM-TMP
 in last year’s third quarter]. (wsj_1210)

Fig. 3: A PropBank frameset [17]

For semantic relationships, in addition to PropBank semantic roles, AMR
adopts approximately 100 additional relations. We list some of them below. For
more details, we suggest consulting the original paper [4].

General semantic relations: :mod, :manner, :location, :name, :polarity
Relations for quantity: :quant, :unit, :scale
Relations for date-entity: :day, :month, :year, :weekday, :dayperiod
Relations for list: :op1, :op2, :op3, and so on

In addition to the graph structure, AMR may be represented in two different
notations: traditionally, in first-order logic; or in the PENMAN notation [14],
for easier human reading and writing. For instance, Table 1 presents sentences
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with similar senses, which are represented in the canonical form in PENMAN
format and in the corresponding graph notation, in Figs. 4 and 5, respectively.

Table 1: Sentences with similar meaning

Sentences
The girl made adjustment to the machine.

The girl adjusted the machine.
The machine was adjusted by the girl.

  

(a / adjust-01
:ARG0 (g / girl)
:ARG1 (m / machine))

Fig. 4: PENMAN notation

  

a / adjust-01

g / girl m / machine

:ARG0 :ARG1

Fig. 5: Graph notation

As it is possible to see, AMR assigns the same representation to sentences
with the same basic meaning. In the example, the concepts are adjust-01, girl,
and machine and the relations are :ARG0 and :ARG1, represented by labeled
directed edges in the graph. In Figs. 4 and 5, the symbols “a”, “g”, and “m” are
variables and may be re-used in the annotation, corresponding to reentrancies
(multiple incoming edges) in the graph.

4 SEMA Metric

Following Cai and Knight [6], semantic relationships encoded in the AMR graph
may also be viewed as a conjunction of logical propositions, or triples. For exam-
ple, suppose that the sentence “Tolerance is certainly not fear, and sincerity does
not have to be cowardice.” produces triples according to Fig. 6 and its graph
notation in Fig. 7.

Each AMR triple takes one of these forms: relation (variable, concept), re-
lation (variable1, variable2) or relation (variable, constant). The first form en-
compasses the first seven triples, the second the six triples then, and the third
the last two triples in Fig. 6.

Assuming a second AMR annotation for the same sentence, according to
Fig. 8 and graphically in Fig. 9, we may compare the two structures considering,
for instance, that one is produced by a parser and must be compared to the
other one, which would be a reference AMR.

Our metric computes precision, recall, and f-score, evaluating the test triples
against the reference triples, analyzing the root of the graphs and, then, relations
and concepts, similar to a Breadth-First Search (BFS), taking into account its
dependence.
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instance (a, and) ^
instance (b, fear) ^
instance (c, certain) ^
instance (d, tolerance) ^
instance (e, obligate-01) ^
instance (f, cowardice) ^
instance (g, sincerity) ^
op1 (a, b)
op2 (a, e)
manner (b, c)
domain (b, d)
ARG2 (e, f)
domain (f, g)
polarity (b, ‘-’)
polarity (e, ‘-’)

Fig. 6: Reference triples

o / obligate-01

a / and

f / fear

c / certain t / tolerance c1 / cowardice

s / sincerity

-

- :op1 :op2

:polarity
:manner

:domain

:ARG2

:domain

:polarity

Fig. 7: Graph notation for reference triples

instance (a, and) ^
instance (b, fear-01) ^
instance (c, tolerate-01) ^
instance (d, certain) ^
instance (e, obligate-01) ^
instance (f, cowardice) ^
instance (g, sincerity) ^
op1 (a, b)
op2 (a, e)
ARG0 (b, c)
mod (b, d)
ARG2 (e, f)
ARG1 (e, g)
polarity (b, ‘-’)
polarity (e, ‘-’)

Fig. 8: Test triples

  

o / obligate-01

a / and

f / fear-01

c / certain t / tolerate-01

c1 / cowardice s / sincerity

- :op1

:op2

:ARG1

:mod
:ARG1

:ARG2

:polarity

-

:polarity

Fig. 9: Graph notation for the test triples

First, our metric analyzes if the root of the test graph (and) belongs to the
reference graph, that is and. We may verify that the two concepts are equal. Thus,
the metric computes the concept (and) as correct (M), one produced element and
(C), and one reference element and (T). Table 2 presents the root analysis by
SEMA.

Table 2: Root analysis

Reference graph Test graph M C T

and and and and and
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Continuing the evaluation, considering the neighbor relations of the root, our
metric analyzes if the relations :op1 and :op2 of the test graph and their parent,
which is the root of the graph, belong to the reference graph.

Although the two relations are present in reference graph, our metric correctly
identifies only the :op2 relation, as the relation :op1, in test graph, is connected
to the concept fear-01 that is different from the reference graph that is fear.
In Table 3, we show the relations analysis.

Table 3: Relations analysis neighbor to the root

Reference graph Test graph M C T

:op1, :op2 :op1, :op2 :op2 :op1, :op2 :op1, :op2

After analyzing the relations, our metric analyzes the neighbor concepts of
the root, that is, it verifies if the concepts fear-01, and obligate-02 of the test
graph and their parent, which is the root of the graph, belong to the reference
graph.

Table 4: Concepts analysis

Reference graph Test graph M C T

fear,
obligate-01

fear-01,
obligate-01

obligate-01
fear-01,

obligate-01

fear,
obligate-01

As one may see, the concept obligate-01 is correct and the concept fear-01
is wrong, since the correct concept is fear. So, the metric computes correctly
one element fear, shown in Table 4.

In the same manner, our metric will calculate the remaining relations and
concepts. At the end of the evaluation, our metric returns six correct triples
{instance (a, and), instance (e, obligate-01), op2 (a, e), instance (f, cowardice),
ARG2 (e, f), polarity (e, ‘-’)} and both test and reference AMRs produced
fifteen triples. So, precision, recall, and f-score are equal to 6/15 = 0.40, respec-
tively.

Analyzing the previous example, the smatch metric returns as precision, re-
call, and f-score values equal to 0.69 for each measure. Smatch considers as
correct the triples {instance (a, and), instance (e, obligate-01), instance (d, cer-
tain), instance (g, sincerity), instance (f, cowardice), op1 (a, b), op2 (a, e) ARG2
(e, f), polarity (b, ‘-’), polarity (e, ‘-’), TOP (a, ‘and’)} . The metric tries to
maximize the f-score, so, it does not evaluate the dependence of the elements
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in the AMR structure. Besides that, the smatch scores the root and and its
self-relation :TOP, distorting the analysis2 (see Fig. 10).

  

o / obligate-01

a / and

f / fear-01

c / certain t / tolerate-01

c1 / cowardice s / sincerity

- :op1

:op2

:ARG1

:mod
:ARG1

:ARG2

:polarity

-

:polarity

:TOP

Fig. 10: AMR considered by smatch metric

In contrast to the smatch metric, our metric considers the dependence of the
elements arranged on a graph, i.e., the metric evaluates the relations/concepts
and their parents. Furthermore, our metric does not create a :TOP relation at the
root of the graph, not distorting the evaluation and making the analysis fairer
than smatch metric. More than that, our metric produces a deterministic result
since it works as a Breadth-first search where in the worst-case the performance
is O(|V |+ |E|), which is faster than to compute the maximum score via one-to-
one matching of variable, as the smatch metric.

In addition to the above shortcomings, Damonte and Cohen [7] detected
that smatch has weights for different error types. For example, considering two
parses for the sentence “Silvio Berlusconi gave Lucio Stanca his current role of
modernizing Italy’s bureaucracy”, in Fig. 11.

At the left, the output of a parser (Parser 1 ) is not able to deal with named
entities. At the right, in the output of other parser (Parser 2 ), except for :name,
:op, and :wiki the relation label :ARG0 is always used. The smatch scores for
two parses are 0.56 and 0.78 for f-score, respectively. Despite both parses make
obvious mistakes, three named entity errors in Parse 1 are considered more
important than six wrong labels in Parse 2, according to Damonte et al. [7].
SEMA metric solves that issue by assigning equal weights to all relations, making
the evaluation more robust than smatch.

2 The result may be confirmed at https://amr.isi.edu/eval/smatch/compare.html.
We also checked the available source code https://github.com/snowblink14/

smatch
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(g / give-01
:ARG0 (p3 / silvio :mod (n4 / berlusconi))
:ARG1 (r / role

:time (c2 / current)
:mod (m / modernize-01

:ARG0 p4
:ARG1 (b / bureaucracy :part-of (c3 / italy)))

:poss p4)
:ARG2 (p4 / person lucio :mod stanca))

(g / give-01
:ARG0 (p3 / person :wiki “Silvio_Berlusconi”

:name (n4 / name :op1 “Silvio” :op2 “Berlusconi”))
:ARG0 (r / role

:ARG0 (c2 / current)
:ARG0 (m / modernize-01

:ARG0 p4
:ARG0 (b / bureaucracy

:ARG0 (c3 / country :wiki “Italy”
:name (n6 / name :op1 “Italy”))))

:ARG0 p4)
:ARG0 (p4 / person :wiki -

:name (n5 / name :op1 “Lucio” op2 “Stanca”)))

Fig. 11: Sentence “Silvio Berlusconi gave Lucio Stanca his current role of modernizing
Italy’s bureaucracy” parsed by two parsers [7]

By analyzing AMRs according to SEMA, we may measure precision, recall,
and f-score for instance and relation identification tasks, and thus, understand
better the AMR parsing task due to a more fine-grained analysis. A demo version
and the source code of our metric is available at http://143.107.183.175:

23580/sema. In what follows, we compared our metric with smatch using four
well-known AMR parsers.

5 Evaluation

In order to compare our metric with Smatch, we chose four AMR parsers for
English: JAMR parser [9], AMREager parser [7], Neural AMR Parser [16], and
AMR Graph Prediction Parser [13]. These parsers were chosen because they
handle the parsing task differently and they are publicly available.

We focused on two datasets: LDC2015E86 (R1), which consists of 16, 833,
1, 368, and 1, 371 sentences in training, development, and testing sets, respec-
tively, and LDC2016E25 (R2), which contains 36, 521 training sentences, and the
same sentences for development and testing as R1. Table 5 shows the comparison
between the SEMA and smatch metrics on the test set.

Table 5: Comparison between SEMA and Smatch metrics on the test set

Parser Train. Data
SEMA Smatch

P R F P R F

JAMR R1 0.61 0.57 0.59 0.70 0.64 0.67
AMREAger R1 0.59 0.54 0.56 0.67 0.62 0.64
Neural AMR R2 0.67 0.59 0.63 0.76 0.67 0.71

AMR Graph P. R2 0.67 0.64 0.66 0.75 0.72 0.74

As shown in Table 5, our metric is stricter than smatch metric. In order to
understand these values and how the metrics deal with graphs of different sizes,
we carried out a detailed evaluation.
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We calculated the average number of relations in the test set and found that
each sentence has 19.8 relations on average. Thus, we organized the test set
into two sets: those sentences with number of relations below the average (799
sentences) and those with number of relations above the average (572 sentences)
and compared the SEMA and smatch metrics. Tables 6 and 7 present the results.

As shown in Tables 6 and 7, in both configurations smatch values were su-
perior to SEMA values. This is due to two main factors:

1. The distorted analysis of the relation TOP ;

2. A large number of concepts and relations not properly evaluated by smatch.

In the first factor, in 44.75% of the number of relations below the average
and in 77.5% of the number of relations above the average, the parsers did not
correctly produce the root of the graph, and, even so, smatch considered the
roots as correct because the concepts were present in the graph.

Table 6: For number of relation below the
average

Parser Train. Data
SEMA Smatch

P R F P R F

JAMR R1 0.61 0.55 0.58 0.71 0.65 0.68
AMREAger R1 0.59 0.53 0.56 0.69 0.63 0.66
Neural AMR R2 0.66 0.62 0.64 0.76 0.72 0.74

AMR Graph P. R2 0.66 0.64 0.65 0.75 0.73 0.74

Table 7: For Number of relations above
the average

Parser Train. Data
SEMA Smatch

P R F P R F

JAMR R1 0.62 0.58 0.60 0.69 0.64 0.66
AMREAger R1 0.58 0.54 0.56 0.66 0.61 0.63
Neural AMR R2 0.68 0.57 0.62 0.74 0.63 0.68

AMR Graph P. R2 0.68 0.65 0.67 0.75 0.72 0.73

For the second factor, consider the sentence “How long are we going to toler-
ate Japan?”, which was manually annotated as in Fig. 12. The AMR graph has
six relations and seven concepts (11 triples). For the same sentence, an AMR
parser generated the AMR graph in Fig. 13, which has ten relations and con-
cepts (17 triples).

  

t / tolerate-01

w / we

c / country

n / name“Japan”

:ARG1

:name:wiki

:op1

amr-unknown

:duration

“Japan”

:ARG0

Fig. 12: Reference AMR graph

  

g / go-02

interrogative

t / tolerate-01

c / country

g / go-02

“Japan” n / name

“Japan”

w / we

l / long-03

amr-unknown

:ARG1

:ARG0

:ARG1:ARG1

:mode

:wiki :name

:op1

:degree

:ARG0

Fig. 13: AMR graph generated by a parser
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We may see that the AMR parser produced a subgraph similar to a sub-
graph that was manually annotated. Despite there are other concepts in the
AMR graph produced by the parser that are present in reference AMR graph,
as: tolerate-01, we and amr-unknown, their dependents and/or relations are
wrong. Hence, the SEMA metric considers these concepts as wrong. For instance,
the concept tolerate-01, in the reference AMR graph, is the root of the graph,
whereas, in the AMR produced by the parser, the root is the concept go-02. The
root go-02 is connected to the concept tolerate-01 through the :ARG1 relation.
Finally, the concept tolerate-01 in both graphs is connected to the concept
country but by different relations: :ARG0 and :ARG1 for the AMR generated by
the parser and reference AMR graph, respectively.

Due to these distinctions, our metric evaluates the connection with the sub-
graph as wrong since its relation is different from the reference AMR graph.
On the other hand, the smatch metric evaluates as correct the concepts we and
amr-unknown, although they are not connected to the concept tolerate-01.
Thus, the smatch returns 0.44, 0.67, and 0.53, while the SEMA returns 0.29,
0.45, and 0.36, for precision, recall, and f-score, respectively.

Even though our metric is stricter than smatch metric, we believe that SEMA
is fairer and more robust than smatch. As AMR parsing task is on the semantic
level, the dependence of the elements in AMR structure should be analyzed.
More than that, SEMA metrics neither creates a TOP self-relation on the root
of the graph nor assigns weights for different error types, not distorting the
analysis. In the way smatch is currently computed, several parsing problems are
overlooked.

6 Final Remarks

In this paper, we presented a new metric for evaluating AMR structures. This
metric analyzes the dependence in which the elements are arranged in the AMR
structure and deals with other shortcomings of the smatch metric, as a self-
relation produced on the root of the graph, which distorts the analysis, and
weights for different error types. We compared our metric with the smatch met-
ric, using four AMR parser and showed that, in general, our metric is stricter
than smatch metric. However, we believe that our metric is fairer and robust
than smatch since several parsing problems are being overlooked by smatch.
In addition, we also showed that for both small and large graphs, the parsers
have difficulty in learning the dependence of the elements, and even so, smatch
considers as correct several elements.

As future work, we intend to investigate how to adapt our metric to other
semantic representations.
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