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Abstract. Multiword expression (MWE) identification can be handled
by using sequence tagging approach accompanied with stochastic mod-
els and variants of IOB tagging scheme. In this paper, we introduce a
new tagging scheme called bigappy-unicrossy to rise to the challenge of
overlapping MWEs. The bigappy-unicrossy tagging scheme is compared
with the two other well-known tagging schemes which are IOB2 and
gappy 1-level in the verbal multiword expression (VMWE) identification
task using bidirectional Long Short-Term Memory model with a Con-
ditional Random Field layer on top (bidirectional LSTM-CRF). Both
the bigappy-unicrossy and the gappy 1-level tagging schemes outperform
the IOB2 tagging scheme. The bigappy-unicrossy tagging scheme com-
petes with the gappy 1-level tagging scheme. We believe that our tagging
scheme will show better performance on corpora with higher frequency
of overlapping cases.

Keywords: IOB tagging scheme · Multiword expressions · Gappy 1-
level tagging scheme · Bigappy-unicrossy tagging scheme · Long Short-
Term Memory.

1 Introduction

Multiword expressions (MWEs) are lexical items consisting of more than one
word that show some degree of idiomaticity at the lexical, syntactic, semantic,
pragmatic, and/or statistical levels. The idiomatic character of MWEs means
that the properties of MWEs cannot be derived from their component items.
For example, the semantics of kick the bucket whose lexical meaning is to die is
not predictable from its parts [1].

The processing of MWEs is a key issue for natural language processing (NLP)
tasks such as parsing and machine translation. In the context of MWEs, the
automatic annotation of MWEs in running text is defined as the task of MWE
identification. The techniques used in identifying MWEs can be grouped into



four main categories: rule-based methods, classifiers, sequence tagging models,
and parsing [4].

PARSEME (PARSing and Multi-word Expressions) [11], a research com-
munity which is involved in the treatment of MWEs, organizes a shared task
on automatic identification of verbal multiword expressions (VMWEs) which is
one of the subtypes of MWEs. The community aims to compare and evaluate
language-independent VMWE identification systems using a gold standard cor-
pus annotated by PARSEME participants. For Edition 1.1. of the PARSEME
Shared Task on automatic identification of VMWEs in 2018, the PARSEME
network released annotated corpora for 20 languages. The corpora for each lan-
guage are sampled from various resources such as news, newswire and articles,
not restricted to a specific domain. In PARSEME Shared Task, systems can
submit their results in two tracks: open and closed. In the open track, systems
are allowed to use additional resources like MWE lexicons, raw corpora, word
embeddings and so on.

In recent years, deep neural network architectures have been broadly applied
for a wide range of NLP tasks, especially for sequence tagging. The most recent
sequence tagging approaches [7], [8], [10] have delivered the state-of-the-art re-
sults for part-of-speech (POS) tagging and Named Entity Recognition (NER).
Moreover, the performance of the studies can be evaluated on various languages
without requiring feature engineering methods. It is possible to address the iden-
tification of MWEs in the same sophisticated ways. However, different from other
sequence labeling tasks, the discontinuity and overlapping properties inherent in
MWEs necessitate developing a special procedure for the MWE identification
task.

In this study, we present a novel tagging scheme called bigappy-unicrossy
to treat MWE-specific challenges using bidirectional Long Short-Term Memory
with a Conditional Random Field (BiLSTM-CRF) neural network architecture
proposed by [7]. Additionally, we test our proposed solution on the corpora
released in Edition 1.1. of the PARSEME Shared Task for 19 languages. In
our experiments, we juxtapose bigappy-unicrossy with IOB2 [14] and gappy 1-
level [17] tagging schemes. All in all, the difficulties in identification of MWEs
can be tackled in some degree by representing all gappy words and crossing
boundaries of nested MWEs in sequences.

2 Related Work

In the literature on MWEs, several variations of standard IOB tagging scheme
have been evaluated and discussed so far. The IOBES tagging scheme within a
supervised approach based on a neural network model is used by [9]. A new tag-
ging scheme named as gappy (discontinuous) 1-level tagging is described by [17]
in order to encode gappy MWEs.

In Edition 1.1. of the PARSEME Shared Task, the participated systems ex-
ploited several neural architectures. While SHOMA [18], which is the best per-
forming system with respect to the overall macro-average MWE-based F1 score,



employs a combination of convolutional network, bidirectional long-short term
memory (BiLSTM) network and conditional random field (CRF), Deep-BGT [2]
makes use of BiLSTM-CRF with the gappy-1 level tagging scheme in the open
track. The two systems use pre-trained word embeddings released by fastText [6].
Mumpitz [5] uses only BiLSTM layer, while GBD-NER [3] adds a graph-based
encoding layer to the BiLSTM layer. Besides Deep-BGT, Veyn [19] also presents
a recurrent neural network (RNN) model that combines three different tagging
schemes.

Similar to Deep-BGT and SHOMA, we decide to explore a neural network
architecture and benefit from the availability of fastText word embeddings for
several languages. Also, Deep-BGT adopts an advanced tagging scheme to its
system, which is different from other competitors, but it does not extend it
to all languages. Therefore, we choose to implement the same model which is
bidirectional LSTM-CRF for all languages with our new tagging scheme.

3 Corpus

The corpora provided by the PARSEME Shared Task Edition 1.1 consist of
20 languages. We cover 19 languages which are Bulgarian (BG), German (DE),
Greek (EL), English (EN), Spanish (ES), Basque (EU), Farsi (FA), French (FR),
Hebrew (HE), Hindu (HI), Crotian (HR), Hungarian (HU), Italian (IT), Lithua-
nian (LT), Polish (PL), Portuguese (PT), Romanian (RO), Slovenian (SL), and
Turkish (TR). We do not use the Arabic (AR) corpus because it is not publicly
available yet. The corpus of each language is divided into training, test, and de-
velopment sets. Most of the languages contain more than 2000 VMWEs but EN
and LT include less than 1000 VMWEs which are the smallest corpora among
the datasets. The language specific statistics are summarized in Table 1. It con-
tains information about number of tokens and VMWEs in each corpus. Also,
percentage of VMWEs and percentage of discontinuous VMWEs are provided.

The corpus is released in cupt format [11], which is publicly available in [12].
The cupt format is the extension of the conllu format6. The current format
represents each token in a sentence by 11 columns. The first 10 columns specify
the rank, token, lemma, part-of-speech, morphological features, and syntactic
dependencies, as in the conllu format. The 11th column introduces the VMWE
annotation.

The language team members have annotated the corpora following the an-
notation guidelines prepared by PARSEME [11]. The categories of VMWEs are
the followings:

– Universal categories which exist in all participated languages:
– Light Verb Constructions with two subtypes (LVC.full and LVC.cause)
– Verbal Idioms (VID)

– Quasi-universal categories which some languages include:
– Inherently Reflexive Verbs (IRV)

6 http://universaldependencies.org/format.html



– Verb-Particle Constructions with two subtypes (VPC.full and VPC.semi)
– Multi-verb Constructions (MVC)

– Language-specific categories
– Inherently Adpositional Verbs (IAV)

– Optional experimental category which is added after the annotation process:
– Inherently Clitic Cerbs (LS.ICV)

Table 1. Language-specific statistics for the corpora.

Languages # of tokens # of VMWEs VMWE % Discontinuity %

BG 480413 6704 1.40 29

DE 173293 3823 2.21 46

EL 224762 2405 1.07 45

EN 124203 832 0.67 41

ES 182364 2739 1.50 28

EU 157807 3823 2.42 19

FA 61568 3453 5.61 21

FR 528132 5677 1.08 44

HE 369013 2239 0.61 24

HI 35430 1034 2.92 7

HR 89536 2451 2.74 42

HU 156336 7760 4.97 8

IT 430789 4257 0.99 33

LT 208512 812 0.39 40

PL 274318 5152 1.89 30

PT 638002 5536 0.89 43

RO 1015623 5891 0.58 33

SL 280522 3378 1.20 51

TR 376464 7141 1.90 59

4 MWE Identification

According to [4], MWE identification is the process of annotating MWE in-
stances in a given corpus and an automatic annotation system is called MWE
tagger. Most of the NLP applications such as parsing, machine translation, etc.
are in need of MWE identification [4]. However, MWE identification is not
straightforward since it brings about some challenges. These challenges also re-
quire specialized metrics to evaluate the success of an MWE tagger.

4.1 Challenges

Challenges for MWE identification are listed as discontinuity, overlaps, ambigu-
ity, and variability [4]. These challenges stem from the nature of MWEs. There



may be tokens other than the ones belonging to MWE between the tokens of the
MWE. For example, take seriously can have other tokens in between to be in
the form of take someone/something seriously, but the VMWE is still take seri-
ously here. Figure 1 shows an example use. Discontinuity varies from language
to language [4]. This variability can be seen in Table 1.

Overlaps include different cases such as nesting, shared tokens, and so on [4].
Nesting can be defined as having at least one MWE inside an another MWE.
We can give the sentence I took her decision to move on seriously in Figure 1 as
an example. Here, we have two VMWEs which are took seriously and move on.
So, move on is referred as a nested VMWE. Two or more MWEs can also share
one or more tokens. Additionally, there is a special case of overlaps which is
called crossing. In this case, some or all tokens of different MWEs are positioned
crosswise. The sentence I made not only changes but also additions is an example
of both shared tokens and crossing. In this example, not only but also is an MWE
because it is a complex function word. Both made changes and made additions
are VMWEs belonging to LVC.full category. As a result, made changes and made
additions together is an example to shared tokens case. The example to crossing
case is made changes and not only but also. The example sentence also contains
nesting due to made additions and not only but also. Moreover, we can infer that
overlaps also contain the challenge of discontinuity.

Ambiguity stems from the fact that the group of tokens can be either an
MWE or a non-MWE [4]. In other words, tokens can lose their original meanings
or each token can contribute to the sentence with its original meaning. Also, the
same MWE can belong to different types of MWE. An example can be given
by these two sentences: He teaches mathematics as well as physics and His
performance in mathematics is as well as his performance in physics. Here, as
well as is ambiguous.

MWEs do not always appear in fixed forms. This flexibility is called variabil-
ity [4]. Regarding the example in Figure 1, take seriously changes its form and
becomes took seriously.

4.2 Evaluation Metrics

Evaluation metrics are important to correctly determine the quality of a model in
machine learning. However, evaluating a model only with general accuracy score
may not explain how much the model resolves the domain-specific problems.
Therefore, the PARSEME network [11] defines MWE-specific evaluation metrics
which focus on the following challenges:

– Continuity metric is calculated for continuous (EN: set up a meeting) and
discontinuous (EN: set me up) cases.

– Length metric is calculated separately for single-token VMWEs
(DE: aufmachen) and multi-token VMWEs (DE: macht es auf ).

– In terms of Novelty metric, if a VMWE is annotated at least once in the
training corpus, it is accepted as ”seen”; otherwise it is considered as ”un-
seen”.



– Variability metric is provided for seen VMWEs which are not identical to
their original form in the training corpus.

Also, MWE-based score is calculated over fully predicted VMWE sequences,
and token-based score is calculated over partial matches. In this paper, we eval-
uate our system results based on the aforementioned metrics.

5 Tagging Schemes

In this work, we approach the MWE identification task as a sequence labeling
problem together with IOB encoding. However, the challenges of discontinuity
and overlaps cannot be addressed using the classical IOB tagging schemes [13,
14]. Therefore, we make use of the gappy 1-level tagging scheme [17] but still
it is not adequate for overlaps. For this reason, we developed a novel tagging
scheme called bigappy-unicrossy to rise to the challenge of overlapping MWEs.
Furthermore, we accept that MWEs can be both single-token and multi-token.
Since there is a difference between the IOB1 [13] and the IOB2 [14] tagging
schemes regarding the single-token ones, we applied the IOB2 tagging scheme.
We also modified the gappy 1-level tagging scheme because it does not accept
single-token MWEs in its original definition.

5.1 IOB1 Tagging Scheme

The IOB tagging scheme was first proposed by [13] which approach text chunking
as a tagging problem. In this scheme, the tag set is {I, O, B}. I represents a
token in the chunk, B stands for a token which is the beginning of the chunk
spanning more than one token, and O denotes a token outside of any chunk.
Therefore, B cannot be used alone without I. In other words, a single-token
chunk gets the I tag. The IOB tagging scheme is also called the IOB1 tagging
scheme in the literature [16] after the IOB2 tagging scheme is introduced.

5.2 IOB2 Tagging Scheme

The IOB2 tagging scheme is derived from the idea of giving B tag to every initial
token of the chunk ignoring the chunk size [14, 16]. It has same tag set with IOB1
which is {I, O, B}. B represents a token in the beginning of the chunk, I is used
for a token in the chunk other than the initial token, and O is used for a token
outside of any chunk. Hence, the only difference is that each chunk begins with
B and B is followed by I if the chunk contains more than one word. In other
words, a single-token chunk gets the B tag. We think that the IOB2 tagging
scheme is more suitable for MWE identification by taking single-token MWEs
into consideration. Hence, this tagging scheme rather than the IOB1 scheme is
used in the experiments to create a baseline for comparing the performance of
the other tagging schemes.



5.3 Gappy 1-level Tagging Scheme

Both of the IOB tagging schemes are more suitable for tagging continuous
chunks. However, MWEs include not only continuous chunks but also discon-
tinuous chunks. The nature of MWEs can also pose nesting which cannot be
represented by the IOB tagging schemes. Therefore, a new tagging scheme which
is called the gappy 1-level tagging scheme is introduced by [17].

The tag set of the gappy 1-level tagging scheme is {I, O, B, i, o, b}. I,
O, B tags are similar to the ones in the IOB tagging schemes. I symbolizes a
token in the chunk, B represents a token which is at the beginning of the chunk,
and O is used for a token outside of the chunk. Since [17] accepts MWEs as
chunks containing more than one word, the difference between the IOB1 and
IOB2 tagging schemes disappears. So, all B tags are followed by one or more I
tags.

i, o, b tags have similar roles as I, O, B tags. The only difference is that the
lowercase tags are used for nested chunks. i symbolizes a token in the nested
chunk, b represents a token which is at the beginning of the nested chunk, and o
is used for a token outside of the nested chunk which is also a gap for the chunk
outside. Again, all b tags are followed by one or more i tags. Figure 1 shows an
example use of this scheme.

The gappy 1-level tagging scheme accepts only multi-token MWEs. According
to our definition of an MWE, we allow single-token MWEs too. Therefore, we
modified the gappy 1-level tagging scheme such that it also allows single-token
MWEs in the IOB2 tagging scheme fashion by using the B tag for the single-
token MWEs that are not nested and the b tag for the nested single-token
MWEs. The modified version is used in the experiments and it is referred as
gappy 1-level.

The gappy 1-level tagging scheme solves the discontinuity and nesting prob-
lems partially. The discontinuity problem is solved by the o tag. Nesting problem
which is a particular case of overlaps is solved partially because the gappy 1-level
tagging scheme accepts only continuous nested MWEs.

5.4 Bigappy-Unicrossy Tagging Scheme

The variants of IOB tagging schemes propose partial solutions to the challenges
of MWE identification. The IOB2 tagging scheme only identifies continuous
chunks. The gappy 1-level tagging scheme partially solves the discontinuity prob-
lem because it does not allow discontinuous nested MWEs. Due to the elimina-
tion of discontinuous nested MWEs, nesting is also partially solved. Also, there
is no attempt to solve other cases of overlaps such as crossing and shared tokens
and so on. For this reason, there is a need of a new tagging scheme. We devel-
oped a novel tagging scheme called bigappy-unicrossy to represent overlaps in
sequence labeling tasks and to solve the discontinuity problem accordingly.

The tag set of the bigappy-unicrossy tagging scheme is {I, O, B, i, o, b}. B
stands for the beginning of the chunk. It is also used for single-token chunks.



I represents a token in the chunk. It is used in the case of multi-token chunks
where B is followed by one or more I. O is used for a token outside of the chunk.

The bigappy-unicrossy tagging scheme allows two levels of discontinuity, one
level of nesting, and one level of crossing. The name bigappy-unicrossy is given
accordingly. i, o, b tags are in charge of nested chunks, chunks with crosswise
positioned tokens, and discontinuous chunks.

The o tag is used for a token outside of the nested chunk. It is also used for
a token that does not belong to the nested chunk but between the tokens of the
nested chunk. Tokens that are in between of the chunk but does not belong to
the chunk can be called gaps [17]. In other words, o is used for all gappy chunks
and each gap is tagged with o. We treated all the gaps the same. We do not
differ the gaps between a chunk or a nested chunk because we assume that the
tokens belonging to the gaps have the same role, which is being a token that can
be inserted to the chunk without being a part of the chunk.

As an example, consider the sentence I take her decision to make some
changes seriously. take seriously and make changes are VMWEs. The gaps for
take seriously are her, decision, to, make, some, and changes. Since make changes
is a nested VMWE here, the actual gaps are her, decision, to, and some. The
gap for make changes is some. some has the same role for both of the VMWEs
and tagged with o. Consequently, bigappy-unicrossy handles two levels of dis-
continuity: one level for gaps in the outer chunks and one level for gaps in the
nested chunks.

Lowercase tags resemble uppercase tags in terms of their roles. b stands for
the beginning of the nested or crossy chunk. It is also used for single-token ones.
i represents a token in the nested or crossy chunk. It is used in the case of
multi-token chunks where b is followed by one or more i. o is used for a token
belonging to a gap of the gappy chunk.

In this tagging scheme, crossing cases and nesting cases are treated in a
similar way, because the identification of crossing cases are like nesting cases.
Here is our tagging procedure: Firstly, the first token of the chunk (we can call
it chunk X ) is identified if it is the first chunk appeared in the sentence and it
is tagged with B. If the chunk X is multi-token, the remaining part is tagged
with I. If there is a token belonging to beginning of another chunk (we can call
it chunk Y ) within the chunk X, the chunk Y can be nested and/or positioned
crosswise with chunk X. Then, it is tagged with b. If the chunk Y is multi-token,
the remaining part is tagged with i. Here, the index of the last token of chunk
Y can be either smaller or bigger than the index of the last token of chunk X.
The first case is called nesting and the latter one is called crossing. If the middle
tokens of chunk X and chunk Y are positioned crosswise in the first case, there
is also crossing.

The bigappy-unicrossy tagging scheme allows only one level of nesting or
crossing because we have only two types of tag sets which are uppercase and
lowercase. Here, the B and I tags belong to chunk X. So, they are held until the
end of chunk X. After the last token of X, the B and I are released. The same
rule applies for the b and i tags. The b and i tags belong to chunk Y. So, they



are held until the end of chunk Y. After the last token of Y, the b and i are
released.

On the other hand, it solves discontinuity problem in two levels. Incorporating
more levels is not necessary since such a case is very scarce. Some examples are
given in Table 2. Example 3 shows a crossing case. Other examples include
nesting cases. Shared tokens are ignored in this tagging scheme. Table 2 shows
different ways of eliminating shared tokens. In Example 3, made additions is
eliminated. In example 4, made changes is eliminated. Therefore, it overcomes
the challenge of overlaps partially.

Table 2. Examples to the bigappy-unicrossy tagging scheme.

Example 1 I took her decision to move on seriously
O B o o o b i I

Example 2 I take her decision to make some changes seriously
O B o o o b o i I

Example 3 I made not only changes but also additions
O B b i I i i O

Example 4 I made not only changes but also additions
O B b i o i i I

6 Model and Experiments

We design a language-independent system based on the bidirectional LSTM-CRF
model provided by [7]. Similar to Deep-BGT system [2], we make use of the pre-
trained word embeddings provided by fastText [6]. The word embeddings were
trained on Common Crawl and Wikipedia. The dimension of word embedding
vector is 300. In addition to the word embeddings, we choose the POS and
dependency relation (DEPREL) tags that are available in the cupt files as inputs
for the system.

Fig. 1. The bidirectional LSTM-CRF model of Deep-BGT [2].



As shown in Figure 1, the architecture of the bidirectional LSTM-CRF net-
work composes of three layers. The inputs are fed into the BiLSTM layer. The
bidirectional LSTM network processes both past and future features, respec-
tively, in the forward and backward units whose dimensions are set to 20. The
outputs of the LSTM units pass to the CRF layer, which decodes the VMWE
labels. We optimize the parameters of the model for each language with the
Nadam optimizer without exceeding batch size 32 as suggested by [15]. All cho-
sen hyperpameters of the model are displayed in Table 3. A fixed dropout rate of
0.1 is applied on all the bidirectional LSTM layers. Since the size of the training
data plays a major role in deep learning models, we add the development set to
the training set if a language has a development set and do not make use of the
development set separately. As we use non-deterministic approach, we run our
experiments five times in order to maintain reproducible and reliable results and
take the average.

Table 3. Model parameters.

Languages Batch Size # of Epochs

BG, FR, HE, LT, PT, RO, TR 32 12
DE, EL, ES, EU, HI, HU 16 15
FA, IT, PL, SL 16 12
EN, HR 8 15

7 Results

Table 4 shows the language-specific results for the IOB2, the gappy 1-level and
the bigappy-unicrossy tagging schemes. MWE-based and token-based F-measure
(F1) are presented for all tagging schemes. The results cover 19 languages. Each
language also has the F1 score of the system which is the best for that language
in the open track of PARSEME shared task Edition 1.1 and it is referred as
shared task. The last row in the table shows the cross-lingual macro-averages
which is calculated by averaging the F1 scores for 19 languages.

According to the MWE-based results, both the bigappy-unicrossy and the
gappy 1-level tagging schemes outperform the IOB2 tagging scheme. The rea-
son behind is that bigappy-unicrossy and gappy 1-level capture discontinuous
VMWEs whereas IOB2 cannot capture them.

On the other hand, there is a slight difference of 0.38 between gappy 1-level
and bigappy-unicrossy. The gappy 1-level tagging scheme is the best in 11 lan-
guages while the bigappy-unicrossy tagging scheme is the best in 8 of them. The
results are close in this experiment because the frequency of overlapping cases
is low in the corpora of languages used for the experiment. The corpora only



contains VMWEs. In the case of all other types of MWEs, the overlap frequency
will be higher and the bigappy-unicrossy tagging scheme will show better perfor-
mance. The bigappy-unicrossy tagging scheme is not only for MWEs. It can be
also used in other sequence labeling tasks. The bigappy-unicrossy tagging scheme
can prove itself better in the other domains of NLP or in their combinations.

The F1 scores are close to each other for all the three tagging schemes in
terms of the token-based results in Table 4. While the tagging scheme becomes
more complex, identification also becomes more complex in the case of deep
learning systems.

The experiments reveal that our application of the gappy 1-level and bigappy-
unicrossy tagging schemes competes with the MWE-based best shared task re-
sults. When the tagging schemes and the best shared task results are compared,
it is observed that gappy 1-level surpasses the best shared task results in 4
languages consisting of BG, DE, FR, HI and bigappy-unicrossy surpasses the
best shared task results in 5 languages consisting of EL, FA, HR, LT, SL. In
the case of token-based results, gappy 1-level is the best in BG, DE, EL and
bigappy-unicrossy is the best in FA.

Table 4. The language-specific results for the IOB2, the gappy 1-level, the bigappy-
unicrossy tagging schemes and the best PARSEME shared task results in the open
track.

MWE-based Token-based

gappy bigappy- shared gappy bigappy- shared
Lang. IOB2 1-level unicrossy task IOB2 1-level unicrossy task

BG 64.60 67.03 66.89 65.56 67.21 67.72 67.24 66.85

DE 42.62 50.75 49.73 45.53 54.28 55.10 53.31 54.65

EL 52.10 60.54 61.11 58.00 63.73 66.97 65.61 66.79

EN 26.97 31.60 31.73 33.27 30.15 31.19 30.86 34.36

ES 31.07 33.59 35.00 38.39 37.54 38.64 39.76 44.69

EU 69.91 72.62 73.07 77.04 75.38 75.03 76.06 80.21

FA 75.07 79.31 81.37 78.35 82.01 81.33 84.48 82.95

FR 53.92 61.96 58.55 60.88 65.05 64.78 61.57 65.80

HE 24.93 27.45 26.74 38.91 28.56 29.30 28.74 44.02

HI 71.28 73.35 72.54 72.71 74.06 74.78 74.35 75.62

HR 44.62 51.85 52.83 47.84 53.68 54.58 56.18 58.19

HU 70.53 74.83 73.84 85.83 73.90 76.48 76.13 86.73

IT 31.52 38.17 37.58 45.40 40.28 42.73 43.61 55.13

LT 19.15 22.85 24.04 22.86 25.31 22.89 24.49 28.13

PL 58.54 65.87 64.65 63.60 64.78 67.70 66.41 67.23

PT 54.62 61.32 60.21 68.17 62.29 62.91 62.39 73.51

RO 82.34 85.89 84.60 87.18 85.31 86.33 85.19 88.69

SL 45.30 54.06 54.22 52.27 56.30 56.46 57.50 61.55

TR 52.26 55.95 52.93 58.66 58.12 57.52 54.30 61.63

AVG 51.12 56.26 55.88 57.92 57.79 58.55 58.33 62.99



Figure 2 shows the relationship between the percentage of discontinuous
VMWEs in the corpora for all languages and the relative success of the bigappy-
unicrossy tagging scheme over the IOB2 tagging scheme. Discontinuity percent-
ages are also available in Table 1 which provides the language-specific statistics.
The relative success is found by subtracting the MWE-based F1 score of bigappy-
unicrossy from that of IOB2. It is seen that there is a correlation to some extent
between the discontinuity ratio and the success improvement with the bigappy-
unicrossy scheme. This result denotes that the effect of the bigappy-unicrossy
tagging scheme increases more on discontinuous MWEs.

Fig. 2. The discontinuity percentages versus the MWE-based F1 score differences be-
tween the bigappy-unicrossy and the IOB tagging schemes.

8 Conclusion

In this study, we described a new tagging scheme called bigappy-unicrossy to
address overlaps in sequence labeling tasks. It is attempted to solve the challenges
of discontinuity and overlaps that include nesting and crossing.

Additionally, we presented an empirical study that explores the effect of a
tagging scheme for VMWE identification on 19 languages by using bidirectional
LSTM-CRF network. The code is publicly available7. The performance of the
bigappy-unicrossy tagging scheme is close to the gappy 1-level tagging scheme
and it gets ahead in 8 languages. To conclude, the bigappy-unicrossy tagging
scheme is expected to be by far the best scheme on data sets with higher fre-
quency of overlaps and we plan to apply our tagging scheme on such data sets
as future work.

7 https://github.com/deep-bgt/Deep-BGT
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