
Sentence Generation Using
Selective Text Prediction

Samarth Navali, Jyothirmayi Kolachalam, and Vanraj Vala

Samsung R&D Institute, Bengaluru, India.
{s.pnavali,jyothi.kolac,vanraj.vala}@samsung.com

Abstract. Text generation based on comprehensive datasets has been
a well-known problem from several years. The biggest challenge is in cre-
ating a readable and coherent personalized text for specific user. Deep
learning models have had huge success in the different text generation
tasks such as script creation, translation, caption generation etc. Most
of the existing methods require large amounts of data to perform sim-
ple sentence generation that may be used to greet the user or to give
a unique reply. This research presents a novel and efficient method to
generate sentences using a combination of Context Free Grammars and
Hidden Markov Models. We have evaluated using two different methods,
the first one is using a score similar to the BLEU score. The proposed
implementation achieved 83% precision on the tweets dataset. The sec-
ond method of evaluation being a subjective evaluation for the generated
messages which is observed to be better than other methods.

1 Introduction

Machine Learning has found a lot of application in almost all the major indus-
tries such as finance, IT, healthcare, etc. Machine Learning has started to replace
the traditional methods mainly because of the power of these algorithms. They
are used for a variety of tasks such as generation, classification, localisation etc.
They learn features from the training data and then use what it has learnt to
perform the respective task. They were not preferred initially as there wasn’t
enough computational power to run these algorithms. With computational power
easily available these days, machine learning has emerged as the go-to solution.

One such application is natural language processing. In this application ma-
chine learning models try to gain some understanding from textual,voice data
and then use it for various other applications. Machine learning for NLP may
be used to generate text, identify parts of speech, NER etc. These kinds of tasks
are used to gain intelligence from the text,voice based data and then utilise this
information as and when required.

One of the tasks that come under NLP is generation of text. This generation
is based on some existing textual data. At times it so happens that somebody
wants to caption an image, but that person doesn’t know what would be a good



caption or when somebody wants to write a poem which seems as if it’s written
by Robert Frost. All these are tasks that involve generation of text. With the
help of Machine Learning one can use the previous occurrences of the task and
learn from it and generate text.

Neural Networks have been found to attain state-of-the-art results in a ma-
jority of the natural language processing tasks such as sentiment analysis, text
generation etc. Within NLP, quite a number of tasks involve generating text
based on some input data. Neural Networks are really powerful and can gain
more insights from the input data as compared to the other machine learning
algorithms.

In the recent years Recurrent Neural Networks(RNN) and Long Short Term
Memory Networks (LSTM) have taken over in such tasks. They have the power
to remember the contexts from before and use that context details in generating
text. Text is generally generated from these models that takes a sample from a
distribution that is conditioned on the previous words and the hidden state con-
sists of some representation of all the words generated so far. At times they are
trained with a method called as teacher forcing, where the ground-truth words
are fed back into the model for the generation of text. This causes problems as
the model is forced to condition on sequences that were not initially observed
during the training time. This leads to unpredictable outcomes in the hidden
state of the RNN. Also as they require large amounts of data to train and gen-
erate presentable sentences, they were not preferred because of the availability
of less data.

As the target for this research work is to generate simple sentences, it’s not
worth going through all the disadvantages of the RNN. Also as for such tasks
we are not utilising the true power of RNN’s and LSTM’s, so using them does
not make sense. So for these cases this research work describes a method where
we combine Context Free Grammar’s and Hidden Markov Models to generate
sentences.

A Context Free Grammar (CFG) is a set of recursive rewriting rules
which are used to generate a variety of strings. It is a quadruple (N,T,P,S)
where,

– N is a set of non-terminal symbols.
– T is a set of terminals where N intersection T = NULL.
– P is a set of rules, P: N -¿ (N U T), i.e., the left-hand side of the production

rule P does have any right context or left context.
– S is the start symbol.

We first start off with the starting symbol and then replace each of the start-
ing symbol with the rule associated with that symbol. Then proceed until no
more substitutions can be made or until the desired terminal state is reached.
CFG’s are used to generate patterns of strings, pattern matching etc.



Hidden Markov Model (HMM) is a method for representing probability
distributions over a sequences of observations. It gets its name from two main
properties. The first one being, the prediction for the current state comes from a
state St that is hidden from the user. The second one being the assumption that
the state of the hidden process satisfies the Markov property that is the current
state depends solely on the previous state and none of the states before that.

2 Related Work

We have many deep learning models detecting the text based on available cor-
pus by providing input text and grammar corrections. However, these networks
have fallen out of favour for modelling sequential text data, as they require
context lengths, more computation, more data and previous hidden state sum-
mary of different time stamps. In the neural networks approach which chooses
different entities to predict next words, neural networks has to be trained and
data is generated based on previous entity provided which results in additional
memory being consumed. This method performs something similar to teacher
forcing models. These models are trained by feeding the ground truth words to
the network for generating the different parts of the sentence. To avoid this we
have popular variations of Recurrent Neural network models such as long short-
term memory (LSTM) and Gated recurrent unit (GRU) where text generation
happens based on usage of words and its probable occurrence from generated
sentence. In such models, all possible words are predicted and appended for
forming sentences, reassessment will be performed to results later. Though pos-
sible sentence generation is high, evaluating all the possible sentences takes more
computational time and memory. In models where Generative Adversarial Net-
works (GANs) are used will, the generator is trained to produce high quality
samples but accuracy obtained is more for images than for text sequences.

Some of other deep learning models where RNN’s are designed to process
sequential information with help of previous state i.e. memory. At every pro-
cessing step, input sequences, accumulating information from past are presented
to RNN, which modify network state. LSTM sequence-to-sequence models are
special class of RNN’s known for their ability to effectively learn long-term de-
pendencies in sequences. These models maintain a forget gate, which determines
how much of previous cell state should be passed on current time stamp. Se-
quence to sequence models are applied in video captioning, speech recognition
etc. These models use encoder-utilizing words of source sentence in forming con-
text vector, which summarizes semantics of a sentence and decoder for operating
on this semantics vector to generate required translation words. These models
give less execution efficiency and are compute intense.

As deep neural network models are very dense in computing, we have popular
methods of analysis. Hidden Markov Model (HMM) which estimates the proba-
bility of text occurrence in given position based on sequence of preceding values.



Number of occurrences of words length (k+1) in learning vector is calculated.
Transition matrix approach is used for getting probable occurrences of a data
under different conditions. For smaller values of k this approach is efficient but,
as k grows transition matrix also grows and this will make insufficient memory
to store vectors.

Context Free grammar (CFG) tool kits are also available which generated
based on usefulness and reachability of text. Programming languages labora-
tory at university of Calgary provided an online tool for context Free grammar
checker to check basic properties of context free grammars, where in the tool
generates not more than 20 sentences, which are the first ones ordered by sen-
tence length. Generated sentences are too simple. Some of the best CFG tools
are used in several research projects like SAQ and grammar testing methods
where Purdom’s algorithm and CDRC-P algorithms are used but still failed in
generating appropriate text sentences. Our approach is quite simple, we combine
CFG’s and HMM models where context free grammars are generated from the
input text and the structures are stored, which results in higher accuracy and
meaningful texts for the user.

3 Proposed Methodology

We propose the use of Context Free Grammars to understand the structure of
the sentences from the input data and use HMM to predict the words based on
the CFG. We use both of them together in tandem to perform a selective predic-
tion of words. The prediction is a two-step process, we use the CFG’s to identify
the type of word that will be predicted next (such as ADJ, VERB, PROPN etc.)
and then with the help of a second order markov chain we make a prediction of
the next word that is of the type expected in the CFG.

For example if we have to generate sentences for the CFG [ADJ, NOUN,
PUNCT]. As we are using a second order markov chain we choose the first two
words randomly from the part of speech (POS) as mentioned in the CFG. In this
case we choose words from the part of speech type of ADJ and NOUN. While
selecting the first two words we should make sure that it is a part of a valid
second order markov chain (will be explained later in detail). So in this case, as-
suming we choose the words ‘Good’ and ‘Morning’, as it is part of a valid second
order markov chain, we proceed. The next word predicted should be of the type
PUNCT and it should be preceded by ‘Good Morning’. We randomly choose the
next word from the second order markov chains, assuming the selected word is
‘!’. As we have reached the end of the CFG the sentence generation is over and
the final sentence output is ‘Good Morning!’.

To provide more variety to the generated sentences, synonyms of the pre-
dicted word are placed in the generated string. Once the word is predicted,
synonyms of that particular word are obtained and put into the generated sen-



Fig. 1. Proposed Methodology to generate sentences

tence. As synonyms have the similar meaning to the original predicted word even
if we do substitute the actual word with the synonym word the semantics of the
generated message will not vary.

This research work presents two different phases, the training phase and
the generation phase. The training phases involves the preparation of the data
and the creation of all the required components for the inference phase. These
include the POS tags, the Context Free Grammar list etc.

3.1 Training Phase

In this phase we extract all the necessary details from the input data and then
store them for further use in the generation phase. The first step in this phase
is the POS tagging for the input data. This is important as it would help in
understanding the structures of the sentence in the input data and also would
get rid of ambiguity by realising all the parts that each word takes, for exam-
ple the word ‘sun’ can either be a verb or a noun. Part of speech also helps us
understand what the word means in that particular context. So the first step is
tag the input data to with the POS tags, this is done with the help of the spacy
tool. Spacy internally tokenizes the text and gives the POS tags to each token.
For the tweets input data, about 13 unique parts of speech have been identified
and used for prediction. These POS tags are used for two different tasks. Firstly
they are used to store all the words for the 13 unique identified parts of speech
and secondly to create the CFG’s for all the sentences in the input data.

The first use of the POS tagging is to store all the words and their respective
tags. A dictionary is created where the keys are the 13 unique parts of speech



Algorithm 1: Procedure for sentence generation

POS tagging on input data

POS[tag] = word_list

obtain markov_chains from input data

obtain CFG_sentence_structure from input data

for each CFG in CFG_sentence_structure

final_sentence = ""

w1 = random_word(POS[CFG[0]])

w2 = random_word(POS[CFG[1]])

while (w1,w2) not in keys(markov_chains) :

w1 = random_word(POS[CFG[0]])

w2 = random_word(POS[CFG[1]])

for i from 2 to len(CFG)

if markov_chains[(w1,w2)] intersection POS[CFG[i]] exists

next_word = random_word(POS[CFG[i]])

while next_word not in markov_chains[(w1,w2)]

next_word = random_word(POS[CFG[i]])

final_sentence += " " + next_word

w1 = w2

w2 = next_word

print final_sentence

Fig. 2. Algortihm that is used to generate sentences

and the values are all the words having the respective part of speech. This dic-
tionary will be used in the selective prediction of words, that is the next selected
word is not completely random and that it will be guided by the CFG’s and this
particular dictionary.

The second use of the POS tagging is to obtain all the sentence structures
from the input data. As we take the assumption that the input data has the
right sentence structure, we will retain the same sentence structure and use it
to generate sentences. Each sentence from the input data comprises of one right
sentence structure and all of them are stored. Each CFG/sentence structure will
be used to generate sentences and they are one of the main requirements as the
predictions are based on these structures. Only unique sentence structures are
used for the prediction. These two steps consist of the training phase of this work.

3.2 Generation Phase

This is the phase where the actual word prediction happens. The input data is
used to store the second order markov chains. Second Order Chains are used
used mainly because they provide the right amount of variations in the gener-
ated sentences and also makes sure that the generated sentences are not truly
random. Choosing a smaller chain causes the generated sentence to be truly



random and choosing a longer chain will reduce the variety by constricting the
generation to a specific set of words. These chains help us in choosing on what
the sentence begins with, also as the input data already contains the right lemma
of the word, we will reuse this when we predict words. So we will have the right
lemma in the right context when we predict words. Having the right lemma of
words makes sure that the sentence formation and more importantly the sen-
tence sounds right. At this point we have the list CFG’s, POS dictionaries, and
the second order markov chains, that is all of the key items required for predic-
tion.

For each CFG there exists a start state. This start state marks how the sen-
tence begins. In our case the start state is nothing but a part of speech. So we
randomly pick a word (w1) from the POS dictionaries for the start state and
then build from it. As we are using second order markov chains we repeat the
same step that is we randomly obtain another word (w2) as per the second part
of speech in the CFG. If the pair [w1, w2] doesn’t have any word following it
which is the part of speech of the next position in the CFG, then we reselect w1
and w2 and move forward. If it does have one or more words following [w1, w2]
that have the part of speech as expected in the CFG, we randomly select until we
obtain a word (w3) that is of the expected part of speech and then append that
word to the generated string. As we are using a second order markov chain the
searching key changes from [w1, w2] to [w2, w3] and then the process continues.
In case there are no words following the pair [w2,w3] that is of the expected part
of speech then we just ignore that part of speech and move to the next expected
part of speech.

Once we predict a word, to provide more variety in the strings that are gener-
ated we have synonyms for the words. We once again randomly pick a synonym
each time and that particular synonym is appended to the final generated string.
As the synonyms have the similar lemma and have the similar meaning, replac-
ing them with the actual predicted word will not a cause a huge change in the
semantics of the generated sentence or the structure of the sentence.

3.3 Dataset

The dataset that was used was the Good morning Tweets Dataset. This dataset
consists of all the tweets that contain the phrase ‘Good Morning’ . The dataset
consists of about 3000 tweets. The tweets were formatted by removing the
retweets and the duplicates. The data was further formatted by getting rid of the
url links. All the hashtags were removed as they are not uselful in this particular
task. The dataset is available online[6]



4 Evaluation criteria

We use two different evaluation criteria. The first one is a score very similar
to that of the Bilingual Evaluation Understudy (BLEU) score. In this scor-
ing method, from the generated text we calculated the number of second order
markov chains that are present from the initial input data. All second order
markov chains are obtained from the generated dataset and counted if that
chain is present in the input data. If it is present then we know that the pre-
dicted text has the right lemmas for the word and that the context will mostly
be maintained, so we count it as a right chain, else it is identified as a bad chain.
One side effect we noticed from this was that, in the predicted text we had syn-
onyms instead of the actual predicted words. As some of the synonyms were not
present in the initial vocabulary of words, it was giving a false score in some of
the cases but it’s not a wrong thing because that sequence has similar meaning
but is being wrongly penalised. So to overcome this effect we replace all the key
words with the actual word that had been predicted.

As one word can be part of multiple synonyms, there will be a clash as
to through which predicted word we got the particular synonym. To solve this
problem we store each synonym with a particular version (such as 1.0 or 1.1)
to depict which predicted word the synonym had come. So based on the version
of the synonym we replace it with the respective predicted word. And then go
forward with this criteria.

Precision =
nv

na
(1)

where,
nv = number of valid chains in generated sentences,

na = number of chains in generated sentences.

As seen from above, the score is the number of matching second order markov
chains divided by the total number of markov chains.

The second criteria is a subjective evaluation of the generated sentences.
A 1000 sentences were randomly selected from the generated sentences. Each
sentence was evaluated on 3 main key points

– Sentence structure
– Vocabulary in the sentence
– Semantic meaning preservation

Sentence Structure means to check if the general structure of the sentence is
maintained or not. We check how the generated sentence is arranged grammat-
ically, that is evaluate if the parts of speech are placed in the right part of the
generated sentence.



Vocabulary is the second stage of checking. In this we check the usage of the
words. Also the check of the right lemma in the different contexts verifies that
the vocabulary in the generated sentence is right.

The third and final check in this evaluation criteria is the revival of the se-
mantic meaning from the input data. This is to check if the semantic meaning
of the generated sentence is similar to the one form the input sentence. Here
the generated sentence is compared with the ground truth and if they do have
similar semantics then it is considered as a good generated sentence.

All the above three criteria are based on comparison with the ground truth.
If sentence satisfies all the above criteria then it was counted as a valid sentence.

5 Results

The evaluations were done on five different models. The five models are as given
below,

– The first model generated sentences using only a Context Free Grammar

– The second model generated using a Hidden Markov Model

– The third one was another implementation which uses the above two tech-
nologies

– The fourth one was our implementation which combines both CFG’s and
HMM’s

– The fifth one being a LSTM Model

As stated above we use two methods for evaluation. The first one is a score
similar to a BLEU score. The second method is a subjective evaluation.

In the first method we create all second order markov chains from the gener-
ated sentences and observe how many of these chains have been observed before.
With this method we have observed a precision of 83%.

Table 1. These results depict the amount of second order markov chains that hae been
retained from the ground truth. Results are shown for all five models where the fourth
model is our implementation

Dataset CFG HMM CFG & HMM CFG & HMM II LSTM

Good
Morning
Tweets

25.9% 86.2% 30.5% 83.7% 28.8%



As seen from Table 1 a comparison was made between the number of second
order markov chains that were retained from the original dataset. The Hidden
Markov Model performs the best as it works solely on the second order markov
chains and then comes our implementation. It performs much better than the al-
ternative implementation that also uses both HMM and CFG to predict the text.

Table 2. Subjective evaluation was performed on the five different models. The fourth
model is our implementation.

Dataset CFG HMM CFG & HMM CFG & HMM II LSTM

Good
Morning
Tweets

32.3% 35.5% 40.7% 52.2% 49.82%

The second method we used was a subjective evaluation. As seen from the
table 2 , our implementation performs much better than the other methods. This
is a result of combining two methods that perform fairly poorly and to produce
a model that performs much better. When we combine the two methods we are
utilising the advantages of each model in our own model. The biggest advantage
is that this model will work with less input data.

6 Conclusion

Neural Network models perform really well, but are compute intensive and re-
quire a large amount of data. If there is no large amount of data then they do
not perform well. If there is no computation power then these class of algorithms
go for a toss. The problem of less data for training can be handled using CFG
and HMM to predict text. But individually they do not perform well, but when
combined together they perform much better. The next good part is that not a
lot of computation power is required in the proposed method. It was observed
when combined together, the proposed method was able to retain the semantic
meaning, the grammatical structure and sentence structure from the original
sentences.

The proposed method has a low memory footprint as not all possible sen-
tences are generated and then evaluated. In this case we just pick one of suitable
words based on the context and the structure. In the earlier methods all possible
words are appended to the string rather than word, in this way the proposed
method has a low footprint. In this case the method does not have to go through
the problems of remembering data from the past as it is involved with generating



simple sentences not based on any data from the past.

The proposed work can be used in the cases of greeting the user in a unique
way each time, or in the case of giving an automated reply, or when the system
wants to remind the user to do something. When the variety is given to the user
then it makes the user feel good about the system that they have. This work
has shown that the proposed method can achieve significant results and can be
used in the above mentioned methods.

Going forward, the proposed novel method can be combined with deep learn-
ing techniques so that we can attain the accuracy that is achieved (by Neural
Networks) with lesser data and as well as a lower memory footprint. We can take
the positive things from both the models and work on coupling them together
and obtaining a model that can achieve very high accuracies.

References

1. Sen, Sanchari, and Anand Raghunathan. ”Approximate Computing for Long Short
Term Memory (LSTM) Neural Networks.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37.11 (2018): 2266-2276.

2. Xie, Ziang. ”Neural Text Generation: A Practical Guide.” arXiv preprint
arXiv:1711.09534 (2017).

3. Fedus,William, IanGoodfellow, andAndrewM.Dai.”Maskgan :
Bettertextgenerationviafillinginthe.”arXivpreprintarXiv : 1801.07736(2018).

4. Szymanski, Grzegorz, and Zygmunt Ciota. ”Hidden Markov models suitable for
text generation.” WSEAS International Conference on Signal, Speech and Image
Processing (WSEAS ICOSSIP 2002).

5. Xu, Zhiwu, Lixiao Zheng, and Haiming Chen. ”A toolkit for generating sentences
from context-free grammars.” Software Engineering and Formal Methods (SEFM),
2010 8th IEEE International Conference on. IEEE, 2010.

6. Kaggle, https://www.kaggle.com/tentotheminus9/good-morning-tweets/

kernels


