
Phrase-Level Simplification
for Non-Native Speakers

Gustavo H. Paetzold1 and Lucia Specia2

1Universidade Tecnológica Federal do Paraná, Brazil
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Abstract. Typical Lexical Simplification systems replace single words
with simpler alternatives. We introduce the task of Phrase-Level Sim-
plification, a variant of Lexical Simplification where sequences of words
are replaced as a whole, allowing for the substitution of compositional
expressions. We tackle this task with a novel pipeline approach by gener-
ating candidate replacements with lexicon-retrofitted POS-aware phrase
embedding models, selecting them through an unsupervised comparison-
based method, then ranking them with rankers trained with features
that capture phrase simplicity more effectively than other popularly
used feature sets. We train and evaluate this approach using BenchPS, a
new dataset we created for the task that focuses on annotations on the
needs of non-native English speakers. Our methods and resources result
in a state-of-the-art phrase simplifier that correctly simplifies complex
phrases 61% of the time.

Keywords: Phrase Simplification, Lexical Simplification, Text Simpli-
fication

1 Introduction

Text simplification strategies can take various forms: lexical simplifiers (LS) re-
place complex words – referred to as target words – with simpler alternatives,
syntactic simplifiers (SS) apply sentence-level transformations such as sentence
splitting, and data-driven simplifiers (DDS) learn lexico-syntactic simplification
operations from parallel data.

While LS is usually addressed using word embeddings and machine learning
models that rank candidate replacements, sentence simplification is more often
tackled using translation-based DDS approaches such as sequence-to-sequence
neural models, which learn transformations from complex-simple parallel cor-
pora. To date, using DDS methods is the only general alternative to simplifying
sequences longer than individual words, i.e. phrases [32, 41, 36, 38], except for
some domain-specific expressions, such as medical terms, which have been ad-
dressed in early LS strategies [9, 10].

Using DDS methods to simplify phrases is, however, “risky”, as they can also
perform other, spurious transformations in the sentence. In addition, although
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in theory DDS simplifiers can learn how to replace or remove complex phrases,
complex-to-simple modifications are bounded by the often limited coverage of
phrase simplifications present in the training corpus available, which tend to
be much smaller than traditional bilingual parallel corpora used areas such as
machine translation [15, 37]. Moreover, DDS models offer little flexibility during
simplification: it is not easy to control which phrases should be simplified. In user-
driven systems [8, 1], where the user chooses which portions of text to simplify,
this approach would not be suitable.

LS approaches [24] can be adapted to address phrase simplification. By
“phrase” we mean any sequence with more than one word. LS approaches usually
simplify a complex word through a pipeline of four steps:

– Complex Word Identification (CWI): Consists in finding the words in
the text that would challenge the target audience being addressed. There
have been some efforts in creating effective supervised complex word iden-
tifiers [31, 26], but most LS approaches do not explicitly address this step,
and choose instead to perform it implicitly, such as by considering the tar-
get complex word as a candidate substitution for itself [14], or by checking
whether or not the replacement produced by the lexical simplifier at the end
of the pipeline is actually simpler than the target complex word [13, 21].

– Substitution Generation (SG): Consists in finding a set of candidate
substitutions for a target complex word. Different ways to generate these
candidates have been devised, such as through lexicons and thesauri [7, 6],
complex-to-simple parallel corpora [2, 14, 21], and word embedding models
[13, 27]. Generators often produce candidate substitutions without taking
into account the context of the target complex word, which means that they
are rarely able to differentiate between the multiple senses of ambiguous
complex words.

– Substitution Selection (SS): Consists in choosing among the candidate
substitutions generated in the previous step best fit the context of the tar-
get complex word. Much like CWI, this step is rarely addressed explicitly,
the exception being some word sense disambiguation [19] and unsupervised
approaches [2, 27]. Many lexical simplifiers usually skip this step and instead
train context-aware Substitution Ranking approaches.

– Substitution Ranking (SR): Consists in ranking candidate substitutions,
either all candidates or those remaining after the SS step, according to their
simplicity. Ranking candidates by their frequencies in large corpora is a very
popular way of doing so [7, 27], but most recent lexical simplifiers use more
elaborate supervised strategies [14, 23, 21].

Pipelined approaches are inherently flexible as they allow to target specific
words. They have led to substantial performance improvements over early ap-
proaches [14, 13, 21]. However, since they only target single words, these strate-
gies cannot be directly applied to simplify phrases, particularly in the case of
phrases with compositional meaning.

In this paper we address the task of Phrase-Level Simplification (PS),
which has a clear motivation: many phrases cannot be simplified word for word.
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Take the phrase “real estate” in the sentence “John had to hire a company to
manage his real estate.”, as example. Using a single-word LS to replace real and
estate individually for, say factual and land, the phrase’s original meaning would
be lost. A phrase simplifier should be able to replace “real estate” with a simpler
alternative, say property, or “land”.

In an effort to address this problem, we propose an approach to PS that
builds on the inherently flexible pipelined LS approaches. Similar to previous
LS work, we do not address the challenge of identifying complex phrases, under
the assumption this will be done by the user. The main contributions of this
paper are:

– A novel phrase embeddings model for Substitution Generation that incorpo-
rates part-of-speech tags and lexicon retrofitting and outperforms well-known
resources (§2);

– A cost-effective comparison-based technique for configurable Substitution
Selection (§3);

– A study on phrase-level features that can improve the performance of state-
of-the-art Substitution Ranking models (§4); and

– BenchPS: an annotated dataset for PS targeting the needs of non-native En-
glish speakers, which maximizes simplification coverage and efficiently han-
dles the problem of ranking large candidate sets (§5). BenchPS contains 400
instances composed by a complex phrase in a sentence, and gold replacements
ranked by simplicity. Between 1,000 and 24,000 annotations were collected
in each annotation step, totaling 36,170.

These contributions as well as our experiments (§6) are described in what
follows.

2 Phrase-Level Substitution Generation

The most recent LS approaches employ word embeddings for SG. [13] use a typ-
ical GloVe [30] model to create an unsupervised approach that performs com-
parably to other strategies that use complex-to-simple parallel corpora [14]. [27]
introduce another unsupervised approach that uses embeddings trained over a
corpus annotated with universal part-of-speech (POS) tags. [21] improve on the
latter by incorporating lexicon retrofitting the embeddings. To generate candi-
dates using these models, they simply extract the words with the highest cosine
similarity with a given target complex word, then filter any morphological vari-
ants amongst them.

These models cannot be used for our purposes since they only contain em-
beddings for single words. Obtaining phrase-level embeddings has also been ad-
dressed in previous work. [35] surveys supervised phrase composition models.
These models are usually tested on phrase similarity tasks, and in order to per-
form well at those, they are trained over large resources, such as PPDB-2.0 [29],
which are used as phrase similarity databases. However, preliminary experiments
with such models did not yield promising results since, as pointed out by [22],
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models that perform well in similarity tasks do not necessarily perform well in
LS.

In contrast, simpler unsupervised approaches are a promising fit for PS. For
example, [40] and [39] simply join words that form phrases extracted from lexi-
cons in the corpus with a special symbol (e.g. underscore) and use off-the-shelf
word embedding models. We go a step further to obtain better informed phrase
embeddings by using POS tag annotation and retrofitting, which have been
shown to improve the performance of word embeddings in LS [21].

2.1 Retrofitted POS-Aware Phrase Embeddings

To create our phrase embeddings, we take the following approach: annotate a
corpus with universal POS tags and phrases, train a typical word embeddings
model over the corpus, and then retrofit the embeddings over a lexicon of syn-
onyms, such as WordNet [12]. As we will show in §6, this improves over existing
phrase embedding models.

The corpus we annotated has 7 billion words taken from the SubIMDB cor-
pus [25], UMBC webbase1, News Crawl2, SUBTLEX [3], Wikipedia and Simple
Wikipedia [15]. We POS-tagged the corpus using the Stanford Tagger [34]. To
identify phrases, we resorted to SimplePPDB: a corpus containing complex-to-
simple English phrase pairs [28]. From SimplePPDB we extracted all bigrams and
trigrams as our phrase set, totalling 409,064 phrases. We chose SimplePPDB be-
cause it contains a wide variety of phrase types, ranging from non-compositional
phrasal constructs to compound nouns and multi-word expressions.

Many of our phrases share n-grams. The phrases “administrative council
body” and “council body representative”, for example, have distinct meanings,
and should hence compose individual units in our corpus. The challenge is how
to annotate both of them in a sentence such as “The administrative council body
representative resigned” without turning them into a single unit. To do so, we
introduce Algorithm 1, which takes a sentence S and a set of phrases P , and
returns as output a set R containing various copies of S, each annotated with a
different subset of phrases in P that can be found in S. Function copy(S) returns
a copy of a sentence, and join(p, S) replaces the spaces separating the tokens of
phrase p in sentence S with underscores (“ ”).

According to Algorithm 1, if the phrase “administrative council body” is an-
notated onto a copy of the sentence “The administrative council body represen-
tative resigned”, it will result in the sentence “The administrative council body
representative resigned”, which no longer allows for the annotation of “council
body representative”, given that it does not exactly match with “council body
representative”. Consequently, another copy of the sentence will be made for
this annotation.

After phrase annotation, we tagged each content word that was not part
of a phrase with its universal POS tag (V for verbs, N for nouns, J for adjec-
tives and A for adverbs). Phrases were not annotated with sequences of POS

1 http://ebiquity.umbc.edu/resource/html/id/351
2 http://www.statmt.org/wmt11/translation-task.html
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Algorithm 1: Phrase Annotation

input: S, P ;
output: R;

R← {S};
Sc ← copy(S);

while ‖P‖>0 do
foreach p ∈ P ∩ n-grams(Sc) do

join(p, Sc);
P .remove(p);

end
R.add(Sc);
Sc ← copy(S);

end
return R;

tags to reduce sparsity. The previously mentioned example would be POS an-
notated as “The administrative council body representative-N resigned-V ”. We
then trained a continuous bag-of-words model (CBOW) with 1,300 dimensions
using word2vec [17]. We chose these settings based on findings in previous work
for LS [22]. The final step was the retrofitting the model. Through retrofitting,
it is possible to approximate vectors of words that share linguistic relationships
such as synonymy, which are useful in simplification. We retrofitted the model
over the synonym relations between all words and phrases in WordNet using the
algorithm of [11]. We refer to this retrofitted POS-aware model as Embeddings-
PR.

For comparison purposes, we built three other models:

– Embeddings-B: A base model, trained without POS-annotation nor retrofitting.
– Embeddings-R: A model enhanced with retrofitting only.
– Embeddings-P: A model enhanced with POS annotations only.

We explain how we apply these models for SG in the following section.

2.2 Generating Candidates with Phrase Embeddings

To find candidate substitutions for a given target complex phrase with our em-
beddings, we use a three-step process: vocabulary pruning, vocabulary ranking,
and ranking pruning.

Vocabulary Pruning The first step of SG strategy is to discard any words and
phrases from the embedding model’s vocabulary that are too unlikely to yield
useful candidate substitutions. We employ a simple heuristic pruning approach
for that. Given a target complex phrase in a sentence, we discard from the
model’s vocabulary any words/phrases that:
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– have numbers or spurious characters, e.g. @#$%,
– are a substring of the target complex phrase, or vice-versa,
– lead to a grammatical error with determiners, e.g. a vs an preceding candi-

date,
– lead to a comparative/superlative accordance error, e.g. more vs most pre-

ceding candidate.

Vocabulary Ranking Once the model’s vocabulary is pruned, we then rank the
remaining words and phrases according to their cosine similarity with the target
complex phrase. This is a very intuitive way of determining which candidates in
a CBOW model are most suitable for the simplification of a target phrase, since
this type of model tends to group synonyms together.

Ranking Pruning The final step is to choose the value of α, which determines
how many of the best ranking candidates will be passed onto SS. This step is
crucial in ensuring the quality of the phrase simplifications produced by our PS
approach. If too few candidates are pruned, then the tasks of SS and SR will
be more complex to filter and rank the remaining unsuitable candidates, which
can lead to frequent ungrammatical and/or meaningless replacements. If too
many candidates are pruned, this could compromise the simplicity of the output
produced, since the ranker would not have enough options to choose from.

[13], [27] and [21] achieve good results by using α = 10, but provide no
explanation with respect to how they arrived at this number. If there is no
training/tuning data available, keeping only the 10 best candidates is a good
choice, since it at least allows for more meaningful comparisons with previous
work. If there is training/tuning data available, however, one can simply perform
an exhaustive search with a large range of pruning settings to determine the best
value. In the following section, we discuss how we optimise pruning jointly with
the parameters of the SS approach.

3 Comparison-Based Substitution Selection

With few exceptions [19, 2, 27], most lexical simplifiers do not perform explicit
SS.

[19] use typical word sense disambiguation methods trained over thesauri.
These methods are inherently unsuitable for PS, since these thesauri rarely con-
tain phrases. [2] introduces an unsupervised approach that does not rely on the-
sauri. They instead use a word co-occurrence model to calculate the similarity
between the target word and the candidates, then discard any candidates that
are either too similar or not similar enough to the target word. Although this
approach could be adapted to our purposes, it has been shown not to suitable for
embedding-based candidate generators [24]. To address this problem, [27] present
a method called Unsupervised Boundary Ranking (UBR). They calculate fea-
tures of the target word and generated candidates, create a binary classification
dataset by assigning label 1 to the target word and 0 to all candidates, train
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a linear model over the data, rank the generated candidates themselves (which
were used for training) based on the boundary between 1’s and 0’s, and select
a proportion of the highest ranking ones. [27] show that this approach yields
noticeable improvements for embedding-based models.

The SS approach of [27] has two main strong points: it does not require man-
ually annotated data for training, and it is configurable, allowing one to decide
how conservative the selector should be depending on the type of generator used.
We devised an unsupervised comparison-based SS approach to further improve
this selector.

The intuition behind our approach is as follows: the more evidence there is
that a candidate fits the context of a target complex phrase even better than
the target phrase itself, the more likely it is to be a valid candidate substitution.
Given a set of generated candidate substitutions for a target complex phrase in
a sentence, our approach:

1. Calculates the following 40 features for the target phrase and each candidate:
– The n-gram frequency of all n-grams composed by the target/candidate

and the i preceding words and j succeeding words in the sentence for all
possible combination of values of i and j between 0 and 2 (9 in total).
We calculate these features using frequencies from 4 distinct corpora:
SubIMDB [25], SUBTLEX [4], Wikipedia [15], and OpenSubtitles 2016
[16] (9 ∗ 4 = 36 total features of this kind).

– The language model probability of the sentence in its original form (for
the target), and with the target replaced by each candidate. We train
3-gram language models for all four of the aforementioned corpora using
SRILM (totalling 4 features of this kind).

The features were chosen based on the findings of [20], where they proved
effective in capturing grammaticality and meaning preservation in simplifi-
cation.

2. Compares the feature values of the candidates and the target phrases, and,
for each candidate phrase, calculates the proportion of features that yield
a higher value for the candidate than for the target phrase (which we call
“winning features”).

3. Discards any candidates for which the proportion of winning features is
smaller than a selected β value.

If there is no training/tuning data available, one can choose β empirically
depending on the type of simplifier and/or the type of candidate generator that
is used. If it is known that the generator tends to produce a large number of spu-
rious candidates, a large β can be used, for example. If there is training/tuning
data available, exhaustive search over all possible β values is not costly. The ex-
periments in §6.1 show how β can be optimised in conjunction with the number
of pruned candidates during SG.

Once the candidate substitutions are filtered by our comparison-based selec-
tor, they are passed onto our SR approach, the last step of the phrase simplifi-
cation process.
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4 Ranking with Phrase-Level Features

The SR approaches of [21] and [13] have been shown the most effective supervised
and unsupervised LS ranking strategies, respectively.

The rank averaging approach by [13] ranks candidates according to various
features, then averages their ranks in order to produce a final ranking. [21], on
the other hand, employ a multi-layer perceptron that quantifies the simplicity
difference between two candidate substitutions. To train their model, they calcu-
late features for the gold candidates ranked by simplicity in a manually produced
training set, pass them in pairs to the multi-layer percetron, and use as output
the rank difference between the two. Given an unseen set of candidate substitu-
tions for a complex word in a sentence, they calculate the simplicity difference
between every pair of candidates, then average the differences for each candidate
to create a full candidate ranking list.

However, these approaches cannot be directly used in our work, since the
features used, which are in their majority n-gram frequencies, are not enough to
capture phrase simplicity. We propose a set of 16 additional features:

– the phrase’s number of characters,
– the phrase’s number of tokens,
– the phrase’s raw frequency in the corpus of 7 billion words described in §2.1,

as well as SubIMDB [25], Wikipedia and Simple Wikipedia [15],
– the sentence probability after replacing the target phrase with a candidate

phrase according to 3-gram language models trained on the same corpora,
– the maximum, minimum and average raw frequency of the phrase’s tokens

in the 7 billion word corpus,
– the maximum, minimum and average cosine similarity between the target

phrase and each of the candidate’s tokens according to our retrofitted POS-
aware phrase embeddings model (Embeddings-PR).

In order to evaluate this pipeline for phrase simplification, we created a new
dataset, as we describe in what follows.

5 BenchPS: A New Dataset

Since PS has not yet been formally addressed, there are no dedicated datasets
for the training and/or evaluation of PS systems. We created a dataset that
follows the same format of typical LS datasets [14, 5, 27, 24], where each instance
is composed of:

– a sentence,
– a target complex word in that sentence, and
– a set of gold candidates ranked by simplicity.

An important step in creating a dataset of this kind is deciding on which
target audience to focus. We chose non-native English speakers, which has been
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a popular target audience in previous work, including the SemEval 2016 shared
task on LS. Four challenges were involved in creating such a resource: finding
complex phrases that can be potentially replaced, finding sentences containing
such complex phrases, collecting simpler alternatives for the complex phrases,
and ranking them according to their simplicity.

5.1 Collecting Complex Replaceable Phrases

This step involved finding a set of phrases that can pose a challenge to non-native
English speakers, but also are replaced by alternatives. If the phrases selected
do not have any semantically equivalent alternatives, it would be impossible to
gather candidate simplifications.

In order to find replaceable complex phrases, we first collected an initial set of
complex phrases from SimplePPDB. From the complex side of SimplePPDB, we
gathered all two and three-word phrases that did not contain any number. After
the initial filtering, we ranked the remaining phrases according to how many
distinct simpler phrases they were aligned to in the SimplePPDB database with
a probability >= 0.7, and then selected the 1,000 highest ranking phrases as an
initial set of target complex phrases. We chose 0.7 based on a manual inspection
of phrase pairs in SimplePPDB. This heuristic also serves as an initial clue as
to how replaceable the phrases are.

Manual inspection of a sample selected phrases and their given simplifications
in the database showed that the alignments alone were not enough to determine
whether the phrases were indeed replaceable, given that a lot of the simplification
pairs are very similar to each other. The word establish, for example, is aligned
to “as to determine”, “in order to determine”, “determine whether” and “de-
termine that”, among many others. To remedy this, we conducted a user study
on the replaceability of phrases. We presented annotators with a set of complex
phrases, each accompanied by ten candidate replacements: the five alignments in
SimplePPDB with the highest probability, and the five words/phrases with the
highest cosine similarity with the complex phrase in our Embeddings-B phrase
embeddings model (trained without POS annotation or retrofitting). We did so
to minimise any biases in our subsequent experiments with the retrofitted POS-
aware embedding models, which is one of our main contributions. Annotators
where then tasked to judge each complex phrase as being either:

– Highly replaceable: You can think of at least three replacements for this
phrase.

– Mildly replaceable: You can think of up to two replacements for this
phrase.

– Non-replaceable: You can think of no replacements for this phrase.

The candidates presented serve as suggestions on how the complex phrase
could be replaced, but annotators could think of different replacements. It is im-
portant to highlight the fact that this annotation methodology was used for the
purpose of fulfilling our ultimate goal of finding phrases that could be replaced
by others, rather than to quantify phrase replaceability in general.
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We hired four volunteers who are computational linguists to annotate the
phrases. Each annotator judged 250 phrases. Figure 1 illustrates the interface
used for annotation through an example. This user study, as well as all others
described henceforth, were conducted using Google Forms3.

Fig. 1. Annotation interface used for our user study on phrase replaceability

Table 1 shows counts and examples of each annotations on each category.
While the phrases judged either highly or mildly replaceble are quite apparently
so, not all of the candidates judged non-replaceable by the annotators are, indeed,
non-replaceable. For example, the phrase “shall be able” could be replaced with
“will be able” in the sentence “One of our attendants shall be able to help you
with any outstanding matters”. However, this is not a problem since we are
strictly looking for replaceable target phrases to compose our dataset, so high
precision is more important than high recall.

Type Frequency Examples

Highly replaceable 285
hazardous substance, walk away, formidable

challenge, very beautiful, proceed along, critical
phase

Mildly replaceable 297
principal aim, more apparent, alternative form,

main tool, fully understand, agricultural product

Non-replaceable 418
establish clear, shall be able, more widespread,

question remain, provides opportunity, exist means
Table 1. Replaceability degrees and respective example phrases

To compose a final set of target complex phrases, we selected all 285 very
replaceable phrases along with 115 randomly selected mildly replaceable phrases,
totalling 400. 351 (87.7%) of them are two-word phrases, while 49 (12.3%) are
three-word phrases. The next step in our dataset creation process was to find
sentences which contain these complex phrases. To do so, we used the 7 billion
word corpus described in §2.1, whose sentences have 32 words on average, to
search for one distinct sentence for each of the 400 complex phrases selected.

3 https://www.google.co.uk/forms/about
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5.2 Collecting Phrase Simplifications

With sentences and target complex phrases at hand, we began the process of
collecting gold simplifications for them. For that, we employed a two-step anno-
tation process: open and suggested simplification judgements.

Open Simplification Judgements In this step we presented annotators with
the complex phrase in its respective sentence and asked them to suggest as
many simpler equivalent words or phrases as they could think of. 307 fluent
English speakers annotators, all of which are volunteer students or academic
staff of various universities, participated in the process. Each annotator received
10 complex phrases to simplify, and each complex phrase was annotated by at
least 5 annotators. Figure 2 illustrates the annotation interface used for this
step.

Fig. 2. Annotation interface used for the open simplification step

In total, 3,070 annotations were produced (307 ∗ 10 = 3, 070) and 3,367 gold
simplifications suggested. The average number of gold simplifications suggested
per complex phrase is 8.4 (±3.1), ranging from 1 to 23. Table 2 shows some
examples of annotations produced.

While inspecting the simplifications suggested by annotators along with those
automatically produced for our replaceability user study, we noticed that there
were many simpler, grammatical and meaningful alternatives among the can-
didates that were not suggested by any annotators. To address this problem
and hence complement the simplifications in our dataset, we conducted a second
annotation step.

Suggested Simplification Judgements In this step we presented annotators
with the complex phrase in its context along with five automatically produced
candidate replacements, and asked them to select those, if any, that could sim-
plify the complex phrase without compromising the meaning or grammaticality
of the sentence. For each complex phrase, we randomly selected up to five out of
the ten candidate replacements used in our replaceability user study described
in §5.1 which had not yet been suggested by any annotators in the previous
annotation step.
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Sentence with target phrase Suggestions

This is not an obscure philosophical argument but a
practical issue of {considerable importance}.

significant importance, serious
importance, considerable

significance, great relevance

If elected, he would also be eligible for immunity
from {criminal prosecution}.

criminal judgment, facing trial,
legal action, being punished

He said a special {educational curriculum} is
being prepared for the youngsters.

learning timetable, educational
timetable, educational programme

The IRS shall file a {fairly significant} claim
against R. Allen Stanford he said.

big, crucial, quite significant,
important, significant

Mr Hutchinson suggested that issues, such as
dealing with the past, could be dealt with {more

speedily} in devolved setting

more effectively, quicker, more
rapidly, faster

Table 2. Example annotations from the open simplification step

400 fluent English speakers with the same profile as in the previous step
(§5.2) participated in the annotation process. Each annotator received 12 com-
plex phrases with five candidates each to judge (12∗5 = 60 candidates in total),
and each candidate was judged by at least 8 annotators. Figure 3 shows the
annotation interface used for this step.

Fig. 3. Annotation interface used for the given simplification step

In total, 24,000 judgements were produced (400 ∗ 60 = 24, 000). To comple-
ment the pool of simplifications of a given complex phrase in our dataset, we
selected only the candidates which had been judged positively by at least 4 an-
notators. We found through manual inspection that this number of judgements
best separated good from spurious candidates. A total of 697 new simplifications
were produced through this step. After adding these new simplifications to our
dataset, the average number of gold simplifications per complex phrase moved
from 8.4 (±3.1) to 9.7 (±3.4), ranging from 1 to 24. Amongst our gold candi-
dates, 1,161 (29.8%) are single words, 2,213 (56.8%) phrases with two words, 392
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(10%) phrases with three words, and 94 (2.4%), 25 (0.6%) and 14 (0.4%) are
phrases with four, five and six words, respectively. Table 3 shows some examples
of annotations produced in this step.

Sentence with target phrase Selected suggestions

This is not an obscure philosophical argument but a
practical issue of {considerable importance}.

great interest, great significance,
particular interest, significance

If elected, he would also be eligible for immunity
from {criminal prosecution}.

disciplinary action, prosecutions

He said a special {educational curriculum} is
being prepared for the youngsters.

course of study, education
program, syllabus

The IRS shall file a {fairly significant} claim
against R. Allen Stanford he said.

sizable, substantial, very big

Mr Hutchinson suggested that issues, such as
dealing with the past, could be dealt with {more

speedily} in devolved setting

right away, very quickly, without
delay

Table 3. Example annotations from the given simplification step

5.3 Simplification Ranking

The last step in our dataset creation process was to rank our gold simplifications.
This is arguably the most challenging step in this process. It is very difficult for
a human to confidently rank a large number of gold simplifications such as what
we have in our dataset. While ranking 3 or 4 candidates is not too challenging,
providing a full rank for 24 candidates (our maximum number of gold candidates
for a given complex phrase) is most likely not feasible, and hence would yield
unreliable data.

To address this problem, instead of asking annotators to produce full rank-
ings, we could generate all possible candidate pairs from the set, present each
pair to the annotators, and then ask them to select which of the candidates is
simpler. With all pairs annotated, we could then use inference algorithms to
produce full rankings. This annotation approach would reduce the amount of
information presented to the annotator, but it introduces a new problem: The
number of instances that have to be annotated increases in combinatorial fash-
ion with respect to the number of candidates available. For a phrase with 24
candidate substitutes, for example, 276 pairs would have to be annotated. Be-
cause of this limitation, we conceived a new ranking-by-comparison annotation
approach. We reduce the number of comparisons in two ways: by presenting the
annotator with more than two candidates at a time, and by sampling the space
of comparisons based on the minimum number of comparisons in which each
candidate must be featured.

Suppose we have a set of five candidates 〈a, b, c, d, e〉 and are willing to com-
pare three candidates at a time such that all of them appear in at least three
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comparisons. To do so, we could present annotators with six comparison tasks
featuring the following sets of candidates:

〈a, b, c〉 〈c, d, e〉 〈a, c, d〉
〈a, b, e〉 〈b, d, e〉 〈a, b, d〉

By doing so, we would reduce the number of annotations required from 10,
which is the number of distinct pairs that can be extracted from 〈a, b, c, d, e〉, to
only six, which is 40% less. Notice also that this approach is flexible, given that
one can adjust the number of candidates presented at a time and the minimum
number of comparisons per candidate based on the number of candidates to be
ranked, degree of informativeness desired and annotation budget.

For this annotation step, we presented annotators with three candidates at a
time and required each candidate to appear in at least five comparisons. Each in-
stance presented to annotators was composed of a sentence with a gap in place of
the complex phrase and three candidate simplifications. Annotators were asked
to select which candidate, when placed in the gap, would make the sentence
easiest to understand, and which candidate would make the sentence most dif-
ficult to understand. By asking for both the easiest and most difficult of the
candidates, we get a full local ranking between the three candidates presented,
which allows us to more accurately quantify the simplicity differences between
them. In order to produce a set of comparisons to present to the annotators,
we randomly selected comparisons from the set of possible 3-candidate combi-
nations that could be extracted from the candidate set until every candidate
was featured in at least five comparisons. The annotation interface we used is
illustrated in Figure 4.

Fig. 4. Annotation interface used for the candidate ranking step

300 non-native English speakers took part in this annotation step (same pro-
file as in §5.2). Each annotator received 27 comparisons with three candidates
each to judge. Due to the limited annotation budget available, each comparison
was judged by only one annotator. In total, 8,100 judgements were produced
(300 ∗ 27 = 8, 100). To generate a final ranking of candidates, we first assigned
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score 3 to the candidates judged easiest, 1 to the candidates judged most com-
plex, and 2 to the remaining candidates. Then we averaged the scores of each
candidate across all comparisons in which they appeared, and used the aver-
age to rank them in decreasing order (ties were allowed). Table 4 shows some
examples of annotations produced in this step.

Sentence with target phrase Ranked candidates

This is not an obscure philosophical argument but a
practical issue of { }.

1 - significant importance
2 - great relevance
3 - concern

If elected, he would also be eligible
for immunity from { }.

1 - being punished
2 - criminal judgment
3 - criminal prosecution

He said a special { } is being prepared
for the youngsters.

1 - teaching method
2 - educational curriculum
3 - learning timetable

The IRS shall file a { } claim against
R. Allen Stanford.

1 - significant
2 - very big
3 - quite significant

Mr Hutchinson suggested that issues, such as
dealing with the past, could be dealt with { } in

devolved setting.

1 - faster
2 - more effectively
3 - more speedily

Table 4. Example annotations from the candidate ranking step. Candidates are ranked
from simplest (1) to most complex (3).

The full process resulted in a new dataset – BenchPS. It contains 400 in-
stances composed of a sentence, a target complex phrase, and an average of 9.7
gold replacements ranked by simplicity. Table 5 shows examples of instances in
BenchPS.

6 Experiments

In this section we present experiments conducted with the approach and re-
sources presented earlier.

6.1 Candidate Phrase Generation

In our first experiment we conducted an exhaustive search for the best values of
the hyperparameters of our SG and SS approaches jointly:

– α: The number of candidates to generate with our retrofitted POS-aware
embeddings (Embeddings-PR) for SG.

– β: The proportion of winning comparisons required by our comparison-based
SS approach to keep a candidate substitution.
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Sentence with target phrase Gold replacements

A {medical professional} in the government
recommended testing on entry, but was told it was

too expensive to test all

1:physician, 2:doctor, 2:health
care provider, 3:medical advisor,

4:medical doctor

The solution for these symptoms is {very
straightforward} – just go back on the

antidepressant and they go away

1:simple, 2:relatively simple,
3:easy, 4:very easy, 4:fairly simple,

5:not at all difficult, 6:pretty
simple, 7:fortright

In response, Coelho has digitalized all 16 of his titles
in Farsi and posted them today on the internet for

anyone to download, {free of charge}.

1:free-of-charge, 2:for free,
3:freely, 3:free, 4:at no cost,

5:without payment, 5:for no pay,
6:gratis

And the painful irony is that the source of their
money woes is exactly what makes them {most

happy}: cars
1:happiest, 2:pleased, 3:glad

My father died when I was 13 and my mother later
remarried, to a man much more like her in

temperament and who was the {most wonderful}
stepfather imaginable

1:best, 2:nicest, 3:greatest, 4:finest

Table 5. Example instances from the completed BenchPS. Candidate substitutions
are ranked from simplest to most complex.

For α, we checked all integer values between 1 and 50, and for β, all values
between 0.0 and 1.0 in intervals of 0.01 (100 values), totalling 5,000 value pairs.
We also performed a joint exhaustive search between α and a third parameter
γ, which is the proportion of candidates discarded by an unsupervised boundary
ranking selector (UBR). We do this so we can compare our performance against
the current state-of-the-art approach. For γ, we also search for all values between
0.0 and 1.0 in intervals of 0.01. Both SS approaches use the same set of 40 features
described in §3.

We split BenchPS into two equally sized portions (200 instances): One for
training, and one for testing. The unsupervised boundary ranking selector is
trained using the same procedure described by [27] over the training set. For
each possible combination of α×β and α×γ, we calculate the following three
metrics over the training set:

– Precision: Proportion of selected candidates that are in the gold simplifi-
cations.

– Recall: Proportion of gold simplifications that are in the set of selected
candidates.

– F-measure: Harmonic mean between Precision and Recall.

The values obtained are illustrated in Figure 6 in form of heatmaps. Brighter
colors indicate better metric scores. While the behaviours of our comparison-
based approach and UBR are rather similar for Recall, the same cannot be said
for Precision and F-measure. The top left corner of the Precision map of our
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approach is much brighter-colored than that of UBR, which suggests that our
approach is more suitable for the creation of more conservative phrase simplifiers.
And as it can be noticed, the F-measure heatmap of our approach is overall much
brighter colored than that of UBR, specially in the α range between 5 and 20.

Fig. 5. Results of exhaustive hyperparameter search for SS approaches with respect to
our SG approach. The horizontal axes represent α values. Vertical axes on the left and
right column represent γ and β values, respectively.

Interestingly, the α value that yielded the highest F-measure scores for both
approaches was 11. The β and γ values, on the other hand, were 0.32 and 0.0,
respectively. In other words, our SG approach benefits from being paired with
our comparison-based SS strategy, but performs better on its own than when
paired with an unsupervised boundary ranking selector.

With these hyperparameter values selected, we compared our approach to
others. For SG, we include nine strategies in the comparison:

– WordNet: Extracts synonyms, hypernyms, and hyponyms of phrases as
candidates from WordNet.

– SimplePPDB: Extracts aligned paraphrases as candidates from SimpleP-
PDB. We include four variants of SimplePPDB generators: one that extracts
all aligned paraphrases as candidates (SimplePPDB), and three others that
consider only paraphrases aligned with a probability > 0.5 (SimplePPDB-
0.5), > 0.7 (SimplePPDB-0.7), and > 0.9 (SimplePPDB-0.9).

– Embeddings: Extracts candidates using our SG approach. We create one
system for each of the embedding models described in §2.1: the base model
(Embeddings-B), the base model retrofitted over WordNet (Embeddings-R),
the POS-aware model (Embeddings-P) and the POS-aware retrofitted model
(Embeddings-PR).
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We pair each of these nine generators with three SS methods:

– no selection,
– unsupervised boundary ranking (UBR), and
– our comparison-based approach (CB).

To find the best values of β and γ, we perform exhaustive search over the
training set with respect to the F-measure. To evaluate all 27 combinations of
SG and SS approaches we use the same previously introduced Precision (P),
Recall (R), and F-measure (F) metrics over the test set.

The results in Table 6 reveal that, regardless of the selector used, our POS-
tagged retrofitted phrase-annotated embeddings outperformed all other genera-
tors. Pairing them with our comparison-based selector yielded the highest scores
overall. The WordNet generator could not produce a single valid candidate sub-
stitution due to its low coverage for phrases. Finally, due to the large number
of spurious candidates produced, none of the selectors managed to consistently
improve the Precision scores of SimplePPDB generators without detrimental
compromises in Recall.

No Selection UBR CB
P R F P R F P R F

WordNet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SimplePPDB 0.055 0.173 0.084 0.087 0.135 0.106 0.061 0.163 0.089
SimplePPDB-0.5 0.083 0.149 0.107 0.095 0.123 0.107 0.089 0.140 0.109
SimplePPDB-0.7 0.120 0.098 0.108 0.119 0.069 0.088 0.120 0.098 0.108
SimplePPDB-0.9 0.175 0.018 0.032 0.177 0.013 0.024 0.178 0.018 0.032

Embeddings-B 0.140 0.155 0.147 0.163 0.132 0.146 0.163 0.143 0.153
Embeddings-R 0.154 0.171 0.162 0.181 0.146 0.162 0.177 0.157 0.166
Embeddings-P 0.190 0.210 0.200 0.177 0.143 0.158 0.205 0.203 0.204
Embeddings-PR 0.216 0.240 0.227 0.197 0.158 0.175 0.232 0.231 0.232

Table 6. Candidate generation and selection results: Precision (P), Recall (R) and
F-measure (F)

6.2 Phrase Simplicity Ranking

In our second experiment, we assessed the performance of 20 rankers in the task
of capturing phrase simplicity:

– One for each of the 16 features described in §4.
– Glavas: The rank averaging approach of [13], as described in §4, while using

only their original features.
– Glavas+P: The same ranker, but with the original feature set comple-

mented with our 16 phrase-level features described in §4.
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– Paetzold: The supervised neural ranker of [21], as described in §4, trained
over the training portion of BenchPS using only with the features introduced
by [21].

– Paetzold+P: The same ranker, but with the original feature set comple-
mented with our 16 phrase-level features described in §4.

We evaluated the rankers on the test set using three evaluation metrics:
Spearman (s) and Pearson (r) correlation between gold and produced rankings,
as well as TRank [33], which measures the proportion of times in which the
simplest gold candidate was ranked first.

The results in Table 7 confirm that the proposed features help rankers cap-
ture phrase simplicity: adding them to the Glavas and Paetzold rankers resulted
in substantial performance gains. The supervised neural ranker complemented
with our features (Paetzold+P) obtained the highest correlation scores, but was
outperformed in TRank by the neural ranker without our features (Paetzold).
We believe this is due to the fact that the Paetzold ranker is better at placing
simpler candidates at the top rank, but worse than the Paetzold+P ranker in
ordering all candidates properly. Additionally, the length and token count of a
phrase do not seem to play a significant role in its simplicity. And contrary to
what was observed in previous benchmarks for single-word LS [24], language
model probabilities tend to capture simplicity at phrase-level more effectively
than raw frequencies. This suggests that the context has a stronger influence in
determining the simplicity of phrases than the simplicity of single words.

6.3 Full Pipeline Evaluation

In this experiment, we evaluated various combinations of candidate generators
and rankers in the creation of full phrase simplifiers. We include two top perform-
ing generators from the ones tested in the previous experiments: SimplePPDB-
0.5 and Embeddings-PR. We pair both generators with the three selectors de-
scribed in the previous experiment, and hence consider six different ways of
producing candidates.

We paired each of the aforementioned generator/selector pairs with the 20
rankers described in §6.2. The metric used here is Accuracy: the proportion of
instances in which the simplifier replaced the complex phrase with one of the
gold simplifications from the dataset. In this context, Accuracy encompasses all
aspects of simplification quality by assuming that the gold candidates in our
dataset ensure grammaticality, meaning preservation and simplicity.

The results are illustrated in Table 8. While the addition of our phrase-level
features did not have a significant impact on the performance of the rankers for
the SimplePPDB-0.5 generator, it led to noticeably higher Accuracy scores for
our Embeddings-PR model. The differences observed are statistically significant
(10-fold bootstrapping significance tests with p<0.01).

Interestingly, although Table 8 confirms the finding of §6.1 that our comparison-
based approach is indeed more reliable than unsupervised boundary ranking,
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TRank r s

Length 0.070 0.003 0.071
Token Count 0.090 0.066 0.123

SimpleWiki-PF 0.230 0.288 0.305
SubIMDB-PF 0.235 0.257 0.270
Wikipedia-PF 0.220 0.254 0.280

7billion-PF 0.225 0.252 0.275

SimpleWiki-LM 0.250 0.319 0.342
SubIMDB-LM 0.250 0.305 0.326
Wikipedia-LM 0.245 0.325 0.366

7billion-LM 0.275 0.338 0.377

Min. Frequency 0.195 0.293 0.319
Max. Frequency 0.140 0.179 0.213
Avg. Frequency 0.185 0.255 0.279

Min. Similarity 0.155 0.162 0.198
Max. Similarity 0.130 0.175 0.219
Avg. Similarity 0.155 0.174 0.221

Glavas 0.255 0.281 0.291
Glavas+P 0.275 0.348 0.372

Paetzold 0.365 0.375 0.345
Paetzold+P 0.355 0.420 0.392

Table 7. Simplicity correlation results

neither of these SS approaches proved more effective than not performing se-
lection at all. Inspecting the results we found that, although both selectors do
manage to improve the precision of the SG approaches evaluated, they discard
too many useful candidates, sometimes leaving none behind.

Overall, the most accurate simplifier combines our phrase and POS-aware
retrofitted embeddings (Embeddings-PR), no selection (No Sel.), and the super-
vised neural ranker with our phrase-level features (Paetzold+P).

To further illustrate the effectiveness of our phrase-level features for SR, we
compared the performance of the Glavas/Paetzold and Glavas+P/Paetzold+P
rankers in thousands of different settings. To do so, we paired each of these
four rankers with all the 5,000 settings described in §6.1 of Embeddings-PR and
our comparison-based selector. For the α value (number of candidates generated
by Embeddings-PR), we considered all integer values between 1 and 50, and
for β (number of winning comparisons necessary for a candidate to be kept),
all values between 0.0 and 1.0 in intervals of 0.01. In total, the performance of
20,000 phrase simplifiers were tested (4 rankers * 5,000 generator/selector pairs).

Figure 6 shows heatmaps for the Accuracy scores obtained in all these set-
tings. The brighter (whiter) the color of a given spot, the higher the Accuracy
score obtained for that setting. The heatmaps reveal that, although the Accu-
racy of the rankers is very similar for α values no larger than 12, the rankers
trained with our phrase-level features (Glavas+P/Paetzold+P) achieve much
higher Accuracy scores when more candidates are generated. This suggests that



Phrase-Level Simplification for Non-Native Speakers 21

SimplePPDB-0.5 Embeddings-PR
No Sel. UBR CB No Sel. UBR CB

Length 0.000 0.115 0.020 0.100 0.100 0.165
Token Count 0.020 0.135 0.035 0.115 0.115 0.155

SimpleWiki-PF 0.130 0.290 0.130 0.350 0.290 0.355
SubIMDB-PF 0.105 0.280 0.105 0.325 0.270 0.325
Wikipedia-PF 0.135 0.285 0.140 0.325 0.275 0.335

7billion-PF 0.115 0.295 0.120 0.320 0.260 0.325

SimpleWiki-LM 0.130 0.315 0.130 0.350 0.310 0.350
SubIMDB-LM 0.145 0.320 0.150 0.365 0.290 0.365
Wikipedia-LM 0.120 0.300 0.125 0.375 0.325 0.375

7billion-LM 0.160 0.325 0.165 0.385 0.325 0.375

Min. Frequency 0.130 0.205 0.130 0.270 0.215 0.270
Max. Frequency 0.130 0.125 0.130 0.040 0.065 0.080
Avg. Frequency 0.130 0.155 0.130 0.110 0.100 0.130

Min. Similarity 0.05 0.290 0.060 0.405 0.320 0.430
Max. Similarity 0.05 0.195 0.060 0.270 0.210 0.320
Avg. Similarity 0.05 0.310 0.060 0.390 0.310 0.410

Glavas 0.120 0.300 0.125 0.380 0.295 0.380
Glavas+P 0.110 0.355 0.115 0.390 0.325 0.395

Paetzold 0.135 0.305 0.140 0.365 0.305 0.345
Paetzold+P 0.135 0.350 0.140 0.460 0.370 0.425

Table 8. Accuracy of full pipeline phrase simplification approaches

adding these features to the ranker is crucial when creating phrase simplifiers
that aim to maximise the recall of candidates generated, and hence increase the
simplicity of the output.

Fig. 6. Accuracy scores for of exhaustive performance comparison. The horizontal axes
represent α values. Vertical axes on the left and right column represent γ values.
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6.4 Error Analysis

To complement our quantitative analyses, we conducted a manual inspection of
the mistakes made by two of the simplifiers featured in the experiments of §6.3:

– Embeddings-PS: the best performing simplifier that uses our Embeddings-
PR generator, which employs no SS approach and the Paetzold+P ranker.

– SimplePPDB-PS: the best performing simplifier that uses the SimplePPDB-
0.5 generator, which employs unsupervised boundary ranking and the Glavas+P
ranker.

The authors of this paper, who are fluent non-native English speakers, con-
ducted the analyses. They were presented with the sentence, target complex
phrase and simplification produced for each instance of the BenchPS dataset in
which these simplifiers failed to produce a simplification that was amongst the
gold simplifications available. The annotator was tasked with deciding which of
the simplifications produced were grammatical, meaning preserving, and simpler
than the target phrase. This type of analysis allows us to truly quantify the pro-
ficiency of these simplifiers, since one can never be sure that every conceivable
simpler alternative to the target complex phrases of a dataset were captured
during its creation. An individual analysis was conducted for each of the afore-
mentioned simplifiers.

We found that, out of the 111 simplification “errors” made by the Embeddings-
PS simplifier, 33 (29.72% of 111) were grammatical, meaning preserving, and
simpler than the target. And for the SimplePPDB-PS simplifier, the proportion
was 47 out of 129 (36.43% of 129). Adding these numbers to the scores in §6.3
results in that Embeddings-PS has an actual Accuracy of 61% (89+33 out of
200), and SimplePPDB-PS 59% (71+47 out of 200).

The feedback provided by the annotator indicated that Embeddings-PS is
more effective than SimplePPDB-PS at finding simplifications for more chal-
lenging complex phrases in the dataset. Some examples are “lodge a complaint”,
which was replaced by “notify” in “... the club says it will lodge a complaint
against Dyfed-Powys police...”, and “purchase and sale”, which was replaced
by “transaction” in “... as well as the purchase and sale of existing residential
real estate properties...”. We hypothesise that this is caused predominantly by
the fact that our Embeddings-PR model is trained over a vocabulary that is
much larger than that featured in SimplePPDB. However, we also found that
the Embeddings-PS simplifier replaces complex phrases with antonyms much
more frequently than SimplePPDB-PS. Some examples are the phrases “pro-
vides details” and “quite rapidly”, which were replaced by “summarizes” and
“gradually”, respectively. This is caused by the fact that this type of embeddings
model tends to group antonyms close together [18].

7 Final Remarks

We introduced resources and approaches that can be used to address the task
of Phrase-Level Simplification. We presented a way of training and employ-
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ing POS-aware retrofitted phrase embedding models for SG, introduced a new
unsupervised comparison-based approach for SS, and proposed a set of phrase-
level features that can complement consolidated supervised and unsupervised
SR strategies.

To train and evaluate phrase simplifiers, we created BenchPS: a new dataset
produced using a flexible annotation methodology that aims to maximize the
recall of gold simplifications available and minimize the costs of producing sim-
plicity rankings. Through experimentation, we found that our enhanced phrase
embeddings provide a more reliable source of simplifications for complex phrases
than stand-alone SimplePPDB. We also found that our comparison-based SS
approach can be more effective in discarding inappropriate candidates than the
former state-of-the-art strategy. Our experiments with candidate ranking show
that adding our phrase-level features to state-of-the-art rankers can increase
their performance significantly, specially when a large amount of candidate sub-
stitutes are produced during SG and SS. We also found that context plays a more
important role in the simplification of phrases than of single words. Through a
manual inspection of the mistakes made by our most reliable phrase simplifier,
we found that it correctly simplifies complex phrases 61% of the time.

In future work, we intend to address the challenges of automatically iden-
tifying complex phrases, as well as simplifying out of vocabulary phrases. The
BenchPS dataset4 is already available online. The code for the phrase simplifica-
tion approaches introduced will be made available once this paper is published.
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of current word frequency norms and the introduction of a new and improved word
frequency measure for american english. Behavior research methods, 41:977–990,
2009.

4. M. Brysbaert and B. New. Moving beyond kucera and francis: a critical evaluation
of current word frequency norms and the introduction of a new and improved word
frequency measure for american english. Behavior research methods, 41:977–90,
2009.

5. J. De Belder and M.-F. Moens. A dataset for the evaluation of lexical simplification.
In Computational Linguistics and Intelligent Text Processing, pages 426–437. 2012.

6. S. Devlin. Simplifying Natural Language for Aphasic Readers. PhD thesis, Univer-
sity of Sunderland, 1999.

7. S. Devlin and J. Tait. The use of a psycholinguistic database in the simplification
of text for aphasic readers. Linguistic Databases, pages 161–173, 1998.

8. S. Devlin and G. Unthank. Helping aphasic people process online information. In
Proceedings of the 8th SIGACCESS, pages 225–226, 2006.

4 http://ghpaetzold.github.io/data/BenchPS.zip



24 Lecture Notes in Computer Science: Authors’ Instructions

9. N. Elhadad. Comprehending technical texts: Predicting and defining unfamil-
iarterms. In Proceedings of the 2006 AMIA, 2006.

10. N. Elhadad and K. Sutaria. Mining a lexicon of technical terms and lay equivalents.
In Proceedings of the 2007 BioNLP, pages 49–56, 2007.

11. M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. Smith. Retrofitting
word vectors to semantic lexicons. In Proceedings of the 2015 NAACL, pages 1606–
1615, Denver, Colorado, May–June 2015. Association for Computational Linguis-
tics.

12. C. Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.
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