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Abstract. In this paper we develop a decision support system for hierarchical text clas-
sification. We consider text collections with fixed hierarchical structure of topics given by
experts in the form of a tree. The system sorts the topics by relevance to a given document.
The experts choose one of the most relevant topics to finish the classification. We propose
a weighted hierarchical similarity function to calculate topic relevance. The function calcu-
lates the similarity of a document and a tree branch. The weights in this function determine
word importance. We use the entropy of words to estimate the weights.
The proposed hierarchical similarity function formulate a joint hierarchical thematic classi-
fication probability model of the document topics, parameters, and hyperparameters. The
variational Bayesian inference gives a closed form EM algorithm. The EM algorithm es-
timates the parameters and calculates the probability of a topic for a given document.
Compared to hierarchical multiclass SVM, hierarchical PLSA with adaptive regularization,
and hierarchical naive Bayes, the weighted hierarchical similarity function achieves supe-
rior ranking accuracy on a collection of abstracts from the major conference EURO and a
collection of websites of industrial companies.

Keywords: Text classification · Bayesian variational inference · Document similarity · Word
entropy · Hierarchical categorization · Text ranking.

1 Introduction

A thematic model of a text collection is a map, which determines a set of topics from a given
hierarchical structure of topics for each document from the collection. The text collections are
scientific abstracts [17, 3], conference proceedings, text messages from social networks [26], web
sites [28], patent descriptions, and news articles [15, 11]. The thematic model assists in searching
through collections efficiently. However the model construction is often labour intensive. Some
collections already have a structure and a subset of documents that have been partly classified
by experts. To simplify the procedure of expert classification the authors propose an algorithm
that ranks a collection’s topics for a given document. On user demand, the algorithm puts a new
document into the topic with the highest rank.

This paper investigates the thematic modelling problem for partially lablled collections with
fixed expert tree structure of topics [22, 19, 12]. In the tree structure, the leaf topic of a document
determines the topics for this document on the other levels of the hierarchy. Thus, the required
solution is a map, which determines the ranks of the leaf topics for a given document. The ranks
of the expert topics determine the quality of the solution.

The relevance of a leaf topic to a given document determines the rank of the topic. The
relevance is determined by the value of a discriminant function or the probability estimate of a
discriminative or generative model. For a non-hierarchical classification problem [16–18], SVM,
kNN, and Neural Networks return a value of the discriminant function. In [7, 8, 13], the Naive
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Bayes, Multinomial logistic regression, and dPM models give probability estimations for a topic
of a given document.

In hierarchical classification the “top–down” approach [12] yields better results than non-
hierarchical classification among leaf-level topics. Starting from the top of the hierarchy it relates
a document to one of the children topics using non-hierarchical classification methods [24, 28]. Its
drawback is that a misclassification at the top level immediately leads to a misclassification on the
leaf level. To rank the leaf topics using a “top-down” approach the algorithm sorts them according
to the ranks of the parent topics on each level. An alternative method is to consider all clusters of
the tree branch at once [22, 27].

Taking into account the word importance improves the classification quality. A common ap-
proach is to change a frequency-based document description to tf · idf features [25]. Another ap-
proach is to optimize a weighted metric or similarity function [21, 4, 29, 23]. The disadvantage of
the last approach is the huge number of optimization parameters, equalling the dictionary size
of the collection. In [20], the authors use the entropy to estimate the importance of words and
reduce the number of parameters. In this paper we improve this approach and generalize it to the
hierarchical case.

We propose a weighted hierarchical similarity function of a document and a branch of a cluster
tree. The function considers the word importance and hierarchical structure of the collection. We
put priors on parameters of the similarity function to regularize them and take into account our
assumptions regarding their default values. The similarity function formulate a joint hierarchical
thematic classification probability model of document topics, parameters, and hyperparameters.
We use the variational Bayesian inference [6, 9, 5] to derive the EM algorithm and estimate the
probabilities of topics for unlabelled documents.
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Stream (⇠ 150)
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Fig. 1: Structure of the EURO conference.

We consider the process of constructing a thematic model of the major conference “European
Conference on Operational Research (EURO)” as an example of the thematic modelling task. A
program committee builds the thematic model for this conference from a set of received abstracts
every year. The structure of this model consists of 26 major Areas, each Area consists of 10� 15

Streams, each stream consists of 5� 10 Sessions, and each Session consists of four talks 1. Partic-
ipants send short abstracts to program committee to apply. There are two types of participants:
invited participants and new participants. The invited participants already have a determined
session, so the collection of abstracts is partly labelled. For each new participant, the program
committee should choose the most relevant session according to his/her abstract and the confer-
ence structure. The program committee invites up to 200 experts from different research areas to
construct the thematic model.

We construct a decision support system for the creation of the thematic model of the conference,
which gives the expert a ranked list of possible clusters for a given document. We use expert models
of this conference from previous years to estimate the parameters, and we compare the quality of
the proposed algorithm with commonly used classification methods.



2 Weighted hierarchical similarity function

Let w be a word. A document d is an unordered set of words {w1, w2, . . . , w|d|}. A document
collection D is an unordered set of documents

D = {d1, d2, . . . , d|D|}. (1)

A dictionary W of the collection D is an ordered set of unique words w that form the collection D.
Each document dn is represented by a real value vector xn. The element xi,n of xn equals the
number of words wi in the document dn.

A cluster c is a subset of documents from the collection D. The experts define a collection
structure as a graph of topics. In this paper we consider only trees as possible collection structures.
Each node (leaf) of the topic tree corresponds to a cluster c of documents from this topic. Let h

be the height of the tree. Indexes ` and k of a cluster c`,k denote the level in the tree and the
index on this level, respectively. Cluster c1,1 is a root of the tree. Let K` be the number of clusters
on the level `. Cluster c1 is a parent cluster for c2 if it contains all documents d from c2. Then
cluster c2 is a child cluster of c1. Let B be an operator that returns that parent cluster of a given
cluster. We use the B operator h � ` times B

h�`
(ch,k) to get the parent cluster on the level ` of

the lowest level cluster ch,k (see. Fig. 2).
Let c(d) be an expert cluster of document d on the lowest level h. Matrix Z determines the

expert clusters on the lowest level for all documents:

znk = [dn 2 ch,k], znk is the element of Z. (2)

The leaf cluster determines the classification of the document on all other levels of the hierarchy.
Thus, the matrix Z determines an entire expert thematic model.

Quality criterion for hierarchical ranking. For each document the algorithm ranks all leaf
clusters according to their relevance. Then, the expert chooses one best cluster from the ranked
set. The rank of the chosen cluster determines the quality of the ranking: the lower the rank, the
better the quality.

Let S
Kh be a permutation set of order Kh. Let R be a relevance operator. The relevance

operator maps each document x 2 R|W | to a cluster permutation q(x) 2 S
Kh of level h. The

clusters in permutation q(x) are sorted by relevance to document x in descending order. The rank
of each cluster is equal to its position in the permutation. The goal is to find the operator R(x)

that has the best quality on the expert classification Z:

AUCH(R,D,Z) ! max,

c1,1

c2,1 c2,K2

ch,k

c`,k0 B
h�`

(ch,k)

Fig. 2: Basic notation in the hierarchical structure of the collection.



where AUCH(R,D,Z) is a quality function that depends on the ranks of the expert clusters.
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Fig. 3: A branch with the number k of a cluster hierarchy. The value of ✓`k denotes the weight of
the cluster c`,k in the branch.

A common ranking quality criterion is the discounted cumulative gain DCGk and p@k:

DCGk = rel1 +

kX

i=1

reli

log2 i
, p@k =

rk

k
, (3)

where reli is the relevance of the cluster with rank i, and ri is the number of relevant clusters
among the first i clusters in the permutation q(x). In our case, an expert always selects a single
cluster. If he selects the cluster with the rank j, then reli = 1 if i = j and 0 otherwise. The same
is true for rk: if the rank of the selected cluster is less then k, then rk = 1 and 0 otherwise.

DCGk and p@k are too detailed in the context of our problem. We propose a simplified quality
criterion AUCH instead. By pos

�
R(xn), c(xn)

�
denotes the rank of the expert cluster c(xn) of

document xn according to the permutation R(xn). We introduce a monotone increasing cumulative
histogram of documents with respect to their expert ranks:

#{n : pos
�
R(xn), c(xn)

�
 k}, k 2 [1, Kh]. (4)

The quality criterion AUCH(R) 2 [0, 1] (from Area Under Cumulative Histogram) equals the area
under this histogram, normalized by the number of documents and clusters:

AUCH(R) =
1

Kh|D|

KhX

k=1

#{n : pos
�
R(xn), c(xn)

�
 k}. (5)

Fig. 8 illustrates an example of the envelope curve for the histogram. The value AUCH(R) = 1

corresponds to the optimal case, when the expert cluster of each document is located in the first
position in the permutation.

Weighted similarity of a document and cluster. To rank the clusters one should estimate
the relevance value of each cluster c`,k to a given document x. Let the similarity s(x, y) of
documents x and y be a weighted cosine similarity function

s(x, y) =
x

T
⇤yp

x
T
⇤x

p
y

T
⇤y

. (6)



If the denominator equals zero, the similarity also equals zero. A symmetric non-negative definite
matrix ⇤ determines the importance of the words. In this paper we consider a diagonal ⇤, because
optimization of all its |W | ⇥ |W | elements leads to an inadequate increase in model complexity.
We normalize all documents to unclutter the notation:

x 7! xp
x

T
⇤x

, s(x, y) = x
T
⇤y. (7)

Let µ(c`,k) be the mean vector of a cluster c`,k

µ(c`,k) =
1

|c`,k|
X

x2c`,k

x. (8)

The similarity s(x, c`,k) of a document and a cluster is the similarity function value (6) of the
document vector x and the mean vector µ(c`,k) of the cluster:

s(x, c`,k) = x
T
⇤µ(c`,k). (9)

Entropy model of word importance. The number of weight parameters in the diagonal
matrix ⇤ equals the size of the dictionary |W |. We propose an entropy model to decrease the num-
ber of parameters and avoid overfitting. It maps the entropy of a word wm to the importance �m
of this word.

Words that separate clusters are the most important for classification. To understand what it
means for a word to separate clusters, consider the following example. Let all documents from a
cluster c`,k contain a word w, while all documents from the other clusters do not contain w. Then
it is adequate to classify a new unlabelled document with the word w to the class c`,k. The entropy
approach formalizes this idea.

Let p
`
m,k = p(c`,k|wm) be a probability of cluster c`,k given word wm. We can estimate p

`
m,k

p
`
m =

⇥
µ(c`,1)m, . . . , µ(c`,K`)m

⇤T
, p

`
m 7! p

`
m

kp`
mk1

, (10)

where µ(c`,k)m is the m-th component of the cluster’s c`,k mean vector. We define the entropy of
word wm according to expert classification on level ` as

H
`
(wm) = �

KX̀

k=1

p
`
m,k log(p

`
m,k). (11)

The smallest entropy value H
`
(wm) = 0 corresponds to the case, in which the word wm occurs only

in the documents of one cluster and this cluster is separate from the others. The maximum entropy
value corresponds to the uniform distribution of the word wm over all clusters, p`m,k = const. In
this case, wm is an unimportant word.

In the case of a hierarchical structure, we calculate the entropy of the word according to each
level `. We combine these values to obtain the importance value �m of the word wm:

�m = 1 +

hX

`=1

↵` log
�
1 + H

`
(wm)

�
. (12)

Parameter ↵` determines the influence of word entropy on level ` to the importance of the words.
The expression log

�
1 + H

`
(wm)

�
does not contain any variables, so we calculate it for each word

and level ` and denote
◆m` ⌘ log

�
1 + H

`
(wm)

�
.

Then, model (12) takes the form
�m = 1 +↵T◆m. (13)



Hierarchical ranking. One solution for hierarchical ranking is the top-down approach. Let Ch(c`,k)

be a set of level h clusters, which are children clusters for c`,k. Let idx(c`,k) be the rank of the
cluster c`,k on level `. We go down from the root of the tree and, on each level `, rearrange the
lowest-level clusters Ch(c`,k) so as to preserve the condition that

idx(c`,k1) < idx(c`,k2) ) idx(ch,k0
1
) < idx(ch,k0

2
), 8k1, k2, ch,k0

1
2 Ch(c`,k1), ch,k0

2
2 Ch(c`,k2).

This approach retains the top-down disadvantage: an incorrect ranking on the high level of the
tree immediately leads to incorrect ranking on the lowest level. Let i be the rank of the cluster c2,k̂
that contains expert cluster c(x) for a given document. Then, the rank of the expert cluster for
this document on the lowest level h will be at least

idx(c(x)) >

X

k : idx(c2,k)<i

|Ch(c2,k)|.

We propose the hierarchical similarity function to address this problem. It considers the simi-
larity with all clusters of the tree branch at once and ranks the set of tree branches instead of single
clusters on each level. Tree branches and lowest-level clusters have one-to-one correspondences, so
we further do not differentiate the rankings of branches and rankings of the lowest-level clusters.
We also refer to the branch that the contains the lowest-level cluster ch,k as branch number k; see
Fig. 3.

Let ✓k 2 Rh be the weight vector for branch k. Element ✓`k of this vector denotes the importance
of the level ` cluster in the branch for classification. In general, if branches k1, . . . , kn contain
internal cluster c`,k, then there is a set of weights {✓`k1

, . . . , ✓
`
kn
} that corresponds to this cluster

and these weights can be different.
Let µ`,k be the mean vector of the parent cluster B

h�`
(ch,k) of cluster ch,k

µ`,k = µ
�
B

h�`
(ch,k)

�
.

Placing all these vectors for branch k together gives us the mean vector matrix Mk. Column ` of
this matrix corresponds to the parent cluster B

h�`
(ch,k) and equals µ`,k:

Mk = [µ1,k, . . . ,µh,k].

We define the weighted hierarchical similarity sh(x, ch, k) of a document x and the lowest level
cluster ch, k as the weighted sum of similarities of the document x and clusters c`, k of the branch k

sh(x, ch, k) =

hX

`=1

✓
`
ks
�
x, B

h�`
(ch, k)

�
⌘

hX

`=1

✓
`
kx

T
⇤µ`,k ⌘ x

T
⇤Mk✓k. (14)

The document should be similar to all clusters of the branch to be similar with the lowest level
cluster of this branch.

3 Model and parameter estimation

The hierarchical similarity function contains two sets of parameters: the parameter vector ↵ of
the entropy model and the set of branches weight vectors ✓ = {✓k}. In this section, we describe
a way to optimize these parameters, directly maximizing the quality AUCH (5) of the relevance
operator.

Let DV0 [DV1 [DV2 be a disjoint subsets of a training set D. We set the initial values of the
parameters as

↵ = 0, ✓k =


1

h
, . . . ,

1

h

�
. (15)

The optimization algorithm alternates between the following steps:



1) find optimal values of ↵ given fixed values of ✓k using subset DV1 ,
2) find optimal values of ✓k given fixed values of ↵ using subset DV2 .

In the next subsections we describe each of these steps in more detail.

Optimization of entropy model parameters ↵. We calculate the mean vectors {µ(c`,k)}
of the clusters using subset DV0 . These vectors provide estimates of the word entropy using (10)
and (11) for each level of the hierarchy. We find the optimal ↵1, . . . , ↵h parameters of the entropy
model (13) by solving the AUCH(R) (5) maximization task using the training subset DV1 :

↵⇤
= argmax

↵
AUCH(R). (16)

For a small number of levels h, this can be done via a grid search. Changing ↵ leads to a
new ⇤ value, so after each iteration, we should renormalize the document vectors x to preserve
the x

T
⇤x = 1 condition and recalculate the mean vectors µ(c`,k).

Optimization of the weight vectors {✓k}. Given the training subset DV2 , we need to find
the set of {✓k} that maximizes the hierarchical similarity of documents from DV2 with their expert
clusters. We keep ↵ fixed, so the values of ⇤ and x

T
⇤Mk are known for all documents x. This

leads to a convex quadratic programming task that is solved using the interior point method:

✓⇤
k = argmax

✓k

X

x2ch,k

x
T
⇤Mk✓k +  k✓k � hk22, (17)

k✓kk1 = 1, ✓k � 0, k 2 {1 . . .Kh}, h =


1

h
, . . . ,

1

h

�T

, (18)

where  – is the regularization parameter. We should keep  6= 0; otherwise, we face overfitting
because (17) becomes a linear programming task and optimal solution will be a vertex of the
simplex which makes one element of each ✓k equal 1 and all others equal 0.

The complexity of this algorithm is

O(ba
h|D||W |hKh), (19)

where b is the number of steps 2 and 3 and a is the number of ↵` different values in the optimization
grid. Experiments showed convergence in b ⇠ 10 steps. Code in [2] shows an example of estimating
the parameters of hierarchical similarity function.

4 Bayesian approach in parameter estimation

The quality criterion AUCH (5) is based on the ranking and has discrete values. It restricts the set
of possible optimization approaches. Still, the valid one from section 3 has an exponential increase
in complexity (19) with the number of hierarchy levels h. It also involves dividing the training set
into three subsets and decreases the number of objects available for optimization with respect to
each set of parameters ✓ and ↵. In this section, we use likelihood instead of AUCH to use more
effective optimization methods. We define the likelihood of the document class matrix Z as

L(Z|✓,↵) =

NY

n=1

KhY

k=1

p
znk(znk = 1|xn,✓k,↵), (20)

where the probability of class ch,k given document xn is calculated using a softmax function of
the weighted hierarchical similarity values sn,k of document x and tree branch k:

p(znk = 1|xn,✓,↵) =
exp(sn,k)Pkh

k0=1 exp(sn,k0)

, sn,k = sh(xn, ch,k|✓k,↵). (21)



We assume that the parameters {✓k} and ↵ are random variables with the following distributions

p(↵) = N (↵|0, a�1
I), p(✓k) = N (✓k|mk,V

�1
k ). (22)

These priors normalize the values of ↵ and {✓k} and take into account our assumptions regarding
them. Vector ↵ determines the influence of the word entropy on the word importance. A zero value
of ↵ leads to the equal importance of all words. The weights vector ✓k determines the weights
of clusters in the branch k and has unknown expectation and covariance matrix. We put another
prior on these hyperparameters

p(mk|Vk) = N (mk|m0, (bVk)
�1

), p(Vk) = W(Vk|W, ⌫), (23)

where W is a Wishart distribution. The mean vector m0 sets the initial assumption that clusters
of each branch have the same weight m0,k = 1/h. The same idea was used for regularization in
the previous section (15). The difference from regularization (18) is that elements of ✓k now do
not have to sum to 1. Still, we want to preserve the assumption that an increase in the weight
of one cluster in the branch leads to a decrease in the others’ weights. The Wishart parameter
matrix W determines the covariance matrices (bVk)

�1 of ✓k. We define the W initial value in
that manner to obtain negative correlations between ✓k elements. We propose a joint model of
document classes Z, parameters ✓,↵, and hyperparameters m,V as

p(Z,✓,m,V,↵) = L(Z|✓,↵)p(✓|m,V)p(m|V)p(V)p(↵). (24)

Estimation of cluster probability given a document. Let Z̃ be the class matrix for
unlabelled documents (2). The relevance operator R ranks clusters of the lowest level according
to the probability of the cluster given the document. We use model (24) to find the posterior
distribution of the hierarchical similarity parameters ↵ and {✓k} and estimate these probabilities.
Two possible types of estimates are found as follows: 1) use the maximum posterior values of
the parameters ✓MAP

k ,↵MAP and calculate the probability as a softmax value (25) of similarities,
or 2) calculate the evidence estimate (26). In this paper we use the second approach because it
takes into account the shape of the posterior distribution and yields better estimates.

p(z̃tk = 1|x̃t) = p(z̃tk|x̃t,✓
MAP
k ,↵MAP

) (25)

p(z̃tk = 1|x̃t) =

Z
p(z̃tk|x̃t,✓,↵)p(✓,↵|Z)d✓d↵ (26)

It is not possible to calculate the posterior distribution of parameters due to the non linearity
of the likelihood L (20) on ✓ и ↵. We use variational inference to obtain the posterior estimate [6,
9, 14] q. Integration (26) also does not have a closed form solution due to the softmax function
structure. To avoid multiple similar approximations, we at once approximate the joint posterior
distribution p(Z̃,✓,m,V,↵|Z) of the unlabelled document classes Z̃, parameters, and hyperpa-
rameters instead of the regular posterior p(✓,m,V,↵|Z). The joint posterior distribution is the
entire expression under the integral (26) and it’s approximation allows us to calculate the integral
analytically.

The joint distribution of the proposed model (24) and unlabelled document classes Z̃ is defined
by the following equation

p(Z̃,Z,✓,m,V,↵) = p(Z̃|✓,↵)p(Z,✓,↵,m,V). (27)

Let q(Z̃,✓,m,V,↵) be an approximation of the joint posterior p(Z̃,✓,m,V,↵|Z). We use mean
field approximation (29) and search for the optimal q that minimizes the KL divergence:

KL(q(Z̃,✓,m,V,↵)kp(Z̃,✓,m,V,↵|Z)) ! min
q= q(✓)q(↵,m,V)q(Z̃)

. (28)

q(Z̃,✓,m,V,↵) = q(✓)q(↵,m,V)q(Z̃). (29)



As stated in [5], KL minimization (28) is equivalent to maximization of the lower bound L(q):

L(q) =
Z

q(Z̃,✓,m,V,↵) ln

 
p(Z̃,Z,✓,m,V,↵)

q(Z̃,✓,m,V,↵)

!
d✓dmdVd↵dZ̃ ! max

q= q(✓)q(↵,m,V)q(Z̃)
. (30)

To find the optimal factors of q, we solve (30) according to one factor of q, keeping all other factors
constant. This leads to the following form of factors

ln q(✓) = E↵,m,V,Z̃

⇥
ln p(Z̃,Z,✓,m,V,↵)

⇤
+ const(✓),

ln q(↵,m,V) = E✓,Z̃

⇥
ln p(Z̃,Z,✓,m,V,↵)

⇤
+ const(↵,m,V),

ln q(Z̃) = E↵,m,V,✓

⇥
ln p(Z̃,Z,✓,m,V,↵)

⇤
+ const(Z̃),

(31)

where const(var) defines some expression that does not depend on var. Iterative recalculation of
these factors leads to the maximum because each iteration does not decrease the L(q) value [5].

The likelihood L (20) contains the sum of the exponents of the random variables ✓k and ↵, so we
cannot calculate the factor estimates (31) analytically. We use the method of local variations [10]
to approximate the likelihood with it’s upper bound. Let g(x) be the sum of expectations

g(x) =

KhX

k=1

exp(xk). (32)

The expression � ln
�
g(x)

�
is a convex function (see Fig. 4), so the tangent plane through some

point ⇠ is an upper bound for this expression

y(x, ⇠) = � ln
�
g(⇠)

�
�r ln

�
g(⇠)

�T
(x� ⇠), � ln

�
g(⇠)

�
 y(x, ⇠). (33)

Taking the exponent from both sides of inequality (33), we obtain the upper bound of one over g(x)

1

g(x)
 1

g(⇠)
exp

 
KhX

k=1

exp(⇠k)

g(⇠)
(⇠k � xk)

!
. (34)

The index of the exponent on the right side of (34) is a linear function of x. The product of this
bound and the density functions from the exponential family leaves it inside the exponential class
and makes calculation of the expectation straightforward.

We obtain an upper bound of L(q) using the constructed approximation (34) of the softmax
denominator for each document xn:

L(q)  L̂(q, ⇠), (35)

where ⇠ = {⇠n} is the set of variational parameters. We minimize L̂(q, ⇠) according to ⇠ to find
the closest upper bound of L(q).

The optimal factors (31) calculated for the joint model (27) with the softmax approxima-
tion (34) have the following form

q(Z̃,✓,m,V,↵) = q(↵)

KhY

k=1

q(✓k)q(mk|Vk)q(Vk)

|T |Y

t=1

q(z̃tk),

q(↵) ⇠ N (↵0, a
�1

I),

q(✓k) ⇠ N (m
0
0k, (⌫

0
Vk)

�1
),

q(mk|Vk)q(Vk) ⇠ N (m0k, (b
0
Vk)

�1
)W(Wk, ⌫

0
),

q(z̃tk) ⇠ Bern(ptk).

(36)



Parameters ⌫0 and b
0 equal ⌫0 = ⌫ + 1, b

0
= 1 + b, and parameters m0k,Wk,↵0,m0k0 , and ptk

are recalculated iteratively using

m0k =
E✓k + bm0

b0
, W

�1
k = b

0
m0km

T
0k + bm0m

T
0 + E

⇥
✓k✓

T
k

⇤
+W

�1
,
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where we defined ẑnk,
ˆ̂ztk and ⇣tk to make the formulas uncluttered:
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EM algorithm for parameter optimization. To find the best approximation of the joint
posterior p(Z̃,✓,m,V,↵|Z) we iteratively recalculate each factor of q keeping the other fixed
according to (31).

The likelihood upper bound (34) with variational parameters ⇠ = {⇠n} and ⇠̃ = {⇠̃t} allows us
to calculate the closed-form solution (37) for each factor using parameters of other factors. This
leads to the EM algorithm, which alternates step E to calculate the q parameters using (37) with
step M to optimize the variational parameters ⇠, ⇠̃ of the L(q) upper bound.

1. Initialize the parameters

W, ⌫,m0, a, b,Wk = W, ⌫
0
= ⌫ + 1, b

0
= b+ 1,m0k = m0, ⇠n.

2. Calculate E✓k,E[✓k✓
T
k ] according to the q(✓k) distributions

E✓k = m
0
0k,

E[✓k✓
T
k ] = (⌫

0
Wk)

�1
+m

0
0k(m

0
0k)

T
,

(39)

and recalculate the parameters of the q(m), q(V), q(↵) factors using (37).



3. Calculate E↵⇤ using the q(↵) distribution

E↵⇤ = ⇤̃ = diag({�0m}), �
0
m = 1 +↵T

0◆m, (40)

and recalculate parameters of q(✓k) factors using (37).
4. Optimize the variational parameters

⇠nk = x
T
n⇤̃Mkm

0
0k, ⇠̃tk = x̃

T
t ⇤̃Mkm

0
0k. (41)

If some of parameters have changed significantly in steps 2-4, go back to step 2.

Probability of a class given a document. The optimal joint posterior approximation has
the form (36), where the distribution of the class ch,k label z̃tk for a document x̃t is a Bernoulli
distribution with parameter ptk (38). The integral from the joint posterior (26) gives a Bayesian
estimate of the cluster probability. Substitution of (36) into (26) gives a straightforward estimate
of the probability p(z̃tk = 1|x̃t) = ptk. For each document, the relevance operator R ranks clusters
according to this estimate.

5 Computational Experiment

To test the proposed approach and compare it with well-known methods we solve a hierarchical
classification task for two text collections: abstracts of the EURO conference and web-sites of
industry companies.

Collection of EURO abstracts. We used programs of the scientific conference EURO
from 2006 through 2016 [1]. To unify data from conferences of different years and to build a
single structure for collection we used the following procedure.

1. Take an expert cluster structure of EURO 2016 as a Base (Fig. 1).
2. For each cluster c of the EURO 2010-2015 conferences search for the same cluster in the Base

structure. If the one is found, merge c with it; if there is no such cluster, add c as a new one
to the Base structure.

3. For each cluster c of the EURO 2006-2009 conferences search for the same cluster in the Base
structure. If one is found, merge c with it; if there is no such cluster, discard all documents
from c.

The joint collection contains |D| = 15527 documents, the dictionary contains |W | = 24304 words,
and the Base hierarchical structure consists of K2 = 26 clusters of the second level (Area) and K3 =

264 clusters of the third level (Stream).

Table 1: Ranking quality AUCH (5) of the different algorithms and training set sizes |DV |.
Algorithm \ |DV | 500 1000 1500 3000 5000 7000 10000
svm 0.76 0.80 0.81 0.84 0.85 0.86 0.87
hNB 0.77 0.82 0.84 0.87 0.90 0.91 0.92
suhiPLSA 0.75 0.79 0.80 0.81 0.82 0.84 0.84
hSim 0.80 0.86 0.88 0.90 0.91 0.92 0.93
hSimWV 0.82 0.86 0.87 0.89 0.92 0.92 0.92

Ranking results for unlabelled documents. For the ranking experiment, we considered
Area and Stream levels of hierarchy. We constructed a relevance operator R using the proposed
weighted hierarchical similarity function hSim (14) and used the EM algorithm from section 4
to optimize it’s parameters on the training subset. The results of this function were compared
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with those of other algorithms for hierarchical ranking: 1) hierarchical naive Bayes hNB [22],
2) probabilistic regularized model SuhiPLSA [19] and 3) hierarchical multiclass svm [12].

We divided collection D into two parts: train DV and test DT in different proportions. The size
of the training subset |DV | varied from 500 documents to 10000. The size of the testing subset DT
was fixed, |DT | = 5000. Each algorithm was trained on DV and returned a ranked list of clusters
for a given document. The qualities of the algorithms were measured using the area under the
cumulative histogram AUCH (5).

Same importance for all words, ⇤ = I. Optimized importance of words, ⇤ = ⇤⇤.

Fig. 7: Pairwise similarities of Area level clusters with the entropy model (right chart) and without
it (left chart).

Fig. 5 shows the convergence of parameters during optimization with the EM algorithm from
section 4. Table 1 contains the values of AUCH for all algorithms and the sizes of the training
samples. Bold values correspond to the best statistically equivalent values for each training sample



size. Fig. 6 shows the table data in chart format. The proposed hSim algorithm exhibited the best
results. Fig. 8a. shows the envelope curve for the cumulative histogram (4) for the training sample
size |DV | = 10000.

Table 2: AUCH (5) values for different algorithms. Collection of industry companies web sites.
Algorithm AUCH
svm 0.83
hNB 0.83
hSim 0.89

Fig. 7 demonstrates the effect of the entropy model. It visualizes the matrix of pair similarity of
expert clusters on the Area level of the hierarchy. We suppose that expert clustering is an optimal
solution, so the similarity function should separate intracluster similarity and intercluster similarity
well. The right part of Fig. 7 shows the values of weighted cluster similarity that uses ⇤ = ⇤

⇤

with the optimal entropy model parameter ↵, and the left part of Fig. 7 shows the values of
clusters similarity without optimization, ⇤ = I. We can see from the figures that intracluster
similarities (diagonal elements of the matrix) became greater than intercluster similarities (non-
diagonal elements) after optimization. The optimal ⇤⇤ corresponds to a 0.047 average intracluster
similarity and 0.012 average intercluster similarity.

50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert position

C
um

ul
at

iv
e 

sh
ar

e 
of

 s
am

pl
e

 

 

svm
hNB
SuhiPLSA
hSim
random

a: Collection of EURO conference ab-
stracts, 10000 training objects.

20 40 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert position

C
um

ul
at

iv
e 

sh
ar

e 
of

 s
am

pl
e

 

 

svm
hNB
hSim
random

b: Collection of industry companies web sites.

Fig. 8: Envelope curves of cumulative histograms for different algorithms.

Collection of industrial companies web sites. In this collection each web site is represented
by a set of HTML pages. We merge all pages into one and remove all special symbols and tags to
form a single text document for each site. The final collection contains |D| = 1036 documents, the
dictionary contains |W | = 18775 words, and the hierarchical structure contains K2 = 11 clusters
of the second level and K3 = 78 clusters of the third level.

The training subset DV consists of 750 documents, and the test subset DT consists of the
remaining 286 documents. We compare the results of the proposed weighted hierarchical similarity



function hSim with those of 1) hierarchical naive Bayes hNB [22] and 2) hierarchical multiclass
svm [12]. Table 2 shows the AUCH (5) quality criterion values for these algorithms. Fig. 8b. shows
the corresponding envelope of the cumulative histograms (4).

6 Conclusion

In this paper, we solve a hierarchical text classification task for partly labelled collections with a
tree cluster structure given by experts. To find the relevance of the clusters to the given document,
we propose a weighted hierarchical similarity function of a document and a branch of the cluster
structure. This function allows the ranking of entire branches of the hierarchy instead of using
the common top-down approach. The proposed function contains two sets of parameters: word
importance for classification and weight vectors for each branch of the cluster tree. To estimate
the importance of the words, we propose a model that calculates a word’s importance using its
entropy.

To use effective optimization techniques, we propose a joint probabilistic model of document
classes, parameters and hyperparameters. Variational Bayesian inference and the likelihood upper
bound allow us to approximate the joint posterior distribution of unlabelled document classes
and parameters and calculate the Bayesian estimate of a class probability given a document. The
proposed relevance operator ranks clusters according to the probability estimates. We compare
the results of our approach with those of hierarchical multiclass SVM, hierarchical naive Bayes
and Suhi PLSA on two types of text collections: abstracts of the major conference EURO and
web sites of industry companies. The proposed approach exhibited comparable results on both
collections.

For future work, we are going to use other types of likelihood bounds, such as quadratic
lower bounds; compare the variational inference results with sampling techniques; and generalize
hierarchical similarity to other types of cluster structures, such as directed acyclic graphs.
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