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Abstract Deep neural networks have emerged as a flexible framework that achieved
state-of-the-art performance in many NLP applications such as machine transla-
tion, named entity recognition, sentiment analysis and part-of-speech tagging.
The main advantage of these neural models is their ability to learn useful repre-
sentations without hand-engineering features. While this success, these models
still suffer from the interpretability issue. More recently, probabilistic soft logic
(PSL) is a promising framework based on first-order logic that achieves interest-
ing results in both computer vision and NLP by capturing semantic relationships
between entities. Moreover, unifying knowledge driven modeling approaches and
data-driven approaches is a promising framework that will have an exciting im-
pact on structured based problems. In this paper, we developed NeuralGLogic a
generalization framework of the previous model proposed by [1] that combines
deep neural networks with logic rules built either using Soft Logic (SL) or Prob-
abilistic Soft Logic (PSL). Furthermore, we evaluate our framework on different
neural networks architectures applied to two NLP tasks: sentiment classification
and part-of-speech tagging. Experimental results showed that we were able to
improve the results over the baselines and outperformed all the previous state-of-
the-art systems emphasizing the utility of both SL and PSL rules in reducing the
uninterpretability of the neural models thus validating our intuition.

1 Introduction

Deep neural networks are powerful machine learning models able to learn interest-
ing representations from data. In recent years, they achieved state-of-the-art results in
various domains and difficult problems such as speech recognition [2,3], computer vi-
sion [4] and computer games [5]. In natural language processing, much of the work with
neural nets has tackled neural machine translation [6,7], language modeling [8], named
entity recognition [9,10,11,12], churn prediction [13,14] and sentiment analysis [15,16].
In addition, these models can take advantage from backpropagation algorithm [17] for
training.

Despite the success of these neural models in learning useful representations, they
still suffer from some problems. To learn useful representations, neural models rely
heavily on massive datasets that cause them to learn uninterpretable and sometimes
counter-intuitive features [18]. Furthermore, it is hard to incorporate human intention



allowing these models to capture the intended features since the cognitive process of
humans learn from two different sources: samples (same as neural models) and other
general structured knowledge [19]. Recent work in the computer vision community
tackled this problem by modifying the architecture of these models in order to reduce
their interpretability [20].

To tackle the problem of uninterpretability of the neural models, we propose to use
the powerful expressiveness of both soft logic and probabilistic soft logic [21], which
has been proven to be very useful in capturing human intention in natural language pro-
cessing [1], computer vision applications such as Semantic Image Interpretation [22],
recommender systems [23] and reasoning systems such as causal discovery [24]. They
are useful frameworks for reasoning in relational domains where the logical atoms are
used to represent the random variables, and first-order logic rules are used to capture de-
pendencies between these random variables [25]. The main difference between SL/PSL
and classical logic is allowing soft truth values in the interval [0, 1] instead of just two
values 0 or 1.

In this paper, we present NeuralGLogic a novel and general framework that com-
bines deep neural networks with either SL rules or PSL rules. Our framework is a gen-
eralization of the system developed by [1] in four ways:

1. We applied their technique to one more NLP task namely Part-of-Speech tagging,
and we were able to improve the performance over the baseline.

2. We add more PSL rules to the sentiment classification task while they used one
logic rule.

3. We applied the framework to different neural networks architectures for validation.
4. While they use soft logic, we demonstrate the effectiveness of using probabilis-

tic soft logic for sentiment classification to represent structural relations between
segments in the text.

We apply the framework to two NLP tasks: sentiment classification and part-of-
speech tagging where we took advantage of the hierarchical structure of the text to
construct relational features that helped the system in the prediction task. For sentiment
classification, we used two types of relations: Contrast Relation and Neighborhood Re-
lation. For the part-of-speech (POS) tagging task, we exploit the fact that each sentence
should have at least one verb and one noun where we want our model to capture this
constraint.

For sentiment classification task, we evaluate our approach on four benchmarks. For
POS tagging, we use the Wall Street Journal (WSJ) portion of Penn Treebank (PTB) for
evaluating our model. Experimental results showed that we were able to improve the
performances over the baselines on all benchmarks for sentiment classification and WSJ
benchmark for POS tagging. The results confirm our intuition about the effectiveness
of unifying neural models and SL/PSL in one framework.

2 Background

2.1 Posterior Regularization and Knowledge Distillation
[26] proposed posterior regularization, where they use constraints on posterior dis-

tributions of structured latent-variable models which allowed them to include indirect



(or weakly) supervised learning. They applied the framework to various applications
such as multi-view learning, cross-lingual dependency grammar induction, unsuper-
vised part-of-speech induction, and bitext word alignment. The main idea is to penalize
the log-likelihood of a specific model with the KL divergence between the desired dis-
tribution that includes prior knowledge and the model posteriors.

The following equation defines the posterior regularized likelihood:

G(θ, q) = λ1L(θ)− λ2M(θ) (1)

whereM(θ) has the following form:

M(θ) = min
q∈Q

KL(q(Y )||pθ(Y |X)) (2)

The two hyperparameters λ1 and λ2 are used to balance the choice between the
likelihood and the posterior regularization. Q is a set of valid distributions representing
the constrained posteriors. It is defined as the following:

Q = {q(Y ) : Eq[φ(X,Y ) ≤ b} (3)

where φ(x, y) represents the constraint features and b is the bound of constraint
feature expectations. Therefore, we define the constrained posteriors Q regarding con-
straints features and their expectations. During the learning process, they directly en-
forced decomposable regularization on the next moments of latent variables, which al-
lowed them to maintain the computational efficiency of the unconstrained model while
guaranteeing desired constraints hold in expectation.

Knowledge distillation is a concept introduced by [27] and it is one of the success-
ful frameworks where the main idea is using a simple machine learning model to learn
a complex task by imitating the solution of another flexible model, mostly a large en-
semble of models. The first simple model called the student while the second is called
the teacher model. In general, we can interpret this concept as a transfer of knowledge
learned by the teacher model, usually more expensive to train, as “soft target” labels
for training the student model. Knowledge distillation framework was widely used in
many applications in natural language processing [28] ), computer vision [29,30] and
recommendation systems [31].

2.2 Sentiment Analysis

Sentiment analysis, also known as opinion mining, is a Natural Language Processing
(NLP) task that receives much attention these years where the main goal is to identify
the sentiment polarity of a sentence to sentiment classes such as positive or negative,
or more fine-grained classes such as very positive, positive, neutral. In the last decade,
sentiment analysis systems play an important role in helping the development of many
online applications for customer reviews and public opinion analysis. More general,



traditional sentiment analysis systems focus on classical opinion such as binary classi-
fication (positive or negative), while others developed systems for multiple categories
such as six basic emotions (anger, happiness, fear, sadness, disgust, and surprise). Sen-
timent systems can then be used to identify sentiment categories from sentences.

2.3 Part-of-Speech Tagging

Part-of-Speech (POS) tagging, also called word-category disambiguation or grammati-
cal tagging, is the linguistic sequence labeling task. It was the early first stages of deep
language understanding, and its importance has been well recognized in the natural lan-
guage processing community and widely tackled NLP applications. Given a sentence,
the goal of POS tagging is to label each word with a unique tag that indicates its syn-
tactic role. It could be a plural noun, adverb, verb, adjective, preposition.

Natural language processing (NLP) systems, like syntactic parsing [32,33], entity
coreference resolution [34], information retrieval [35], word sense disambiguation and
text-to-speech [36] are becoming more robust, in part because of utilizing output infor-
mation of POS tagging systems.

3 Our approach

In this section, we highlight SL and PSL used in our model. We note that throughout
this section, we use logic rules to denote both the soft logic rules and probabilistic soft
logic rules. Figure 1 illustrates our model architecture.

Figure 1: Our model architecture.

3.1 Soft Logic and Probabilistic Soft Logic

Soft Logic for POS. It is a modified first-order logic framework [21]. While classi-
cal logic values can take two values “0” or “1”, soft logic enables continuous truth
values from the interval [0, 1] allowing more flexibility for encoding values. For POS



tagging, given a sentence S containing n words where S = {x1, ..., xn}, we define
TS = {t1, ..., tn} to be the set of possible tags of the sentence S. We expect that each
sentence contain at least one verb and one noun. We capture these two constraints using
two soft logic rules:

Sentence(S) =⇒ ¬fv(S, Ts) < 1

Sentence(S) =⇒ ¬fn(S, Ts) < 1

In the first rule, we define fv(S, TS) to be the number of verbs in the sentence S
which we expect not to be less than 1. We use the same setting to define fn(S, TS) as
the number of nouns in a sentence.

Probabilistic Soft Logic for Sentiment Classification. It is a Statistical Relational
Learning (SRL) method that allows doing probabilistic reasoning in relational domains.
As an SRL framework, PSL uses soft logic to specify rules in order to capture the
structure and relations in a specific domain. We represent a sentence S as a composition
of two segments S1 and S2 related by a keyword, which belongs to either a contrast
relation or neighborhood relation. We define two PSL rules to capture different relations
between segments in a sentence:

• Contrast Relation: if a contrast relation relates two segments S1 and S2, then if S1

has negative sentiment (NegS), then S2 will have a positive sentiment (PosS) which
will be the same for the whole sentence S. Also, if S1 has positive sentiment, then
both S2 and S will have a negative sentiment. Therefore, we can derive four PSL
rules:

S(S1,S2) ∧ Cont(S1,S2) ∧ NegS(S2)⇒ NegS(S)

S(S1,S2) ∧ Cont(S1,S2) ∧ PosS(S2)⇒ PosS(S)

S(S1,S2) ∧ Cont(S1,S2) ∧ NegS(S1)⇒ PosS(S)

S(S1,S2) ∧ Cont(S1,S2) ∧ PosS(S1)⇒ NegS(S)

In order to capture a contrast relation, we consider all the sentences containing the
keywords “but”, “despite”, “though”, “although”, “while” and “however”. To illustrate
this relation, consider the following sentence S: “somewhat blurred, but kinnear’s per-
formance is razor sharp”. It contains two segments S1: “somewhat blurred” and S2:
“kinnear’s performance is razor sharp”related by the keyword “but”. The segment S2

has a negative sentiment while the second carries a positive sentiment, thus the senti-
ment of the whole sentence S will be positive. We found that 17% and 20% of sentences
respectively from the SST2 and MR datasets contain a contrast keyword.

• Neighborhood relation: given two segments S1 and S2 in a sentence S where S1

comes before S2, if segment S1 has positive sentiment, then segment S2 maintains
the same positive sentiment as well as the whole sentence S. The same procedure
can be applied if S1 has negative sentiment. We can derive four PSL rules like the
following:



S(S1,S2) ∧ Neigh(S1,S2) ∧ NegS(S2)⇒ NegS(S)

S(S1,S2) ∧ Neigh(S1,S2) ∧ PosS(S2)⇒ PosS(S)

S(S1,S2) ∧ Neigh(S1,S2) ∧ NegS(S1)⇒ NegS(S)

S(S1,S2) ∧ Neigh(S1,S2) ∧ PosS(S1)⇒ PosS(S)

In this paper, we use the keyword “and” to express the conjunction between seg-
ments in a sentence. Let us consider the sentence S: “this clever caper movie has twists
worthy of David Mamet and is enormous fun for thinking audiences” where it has two
segments S1: “this clever caper movie has twists worthy of David mamet” and S2: “is
enormous fun for thinking audiences”. The segment S1 carries a positive sentiment and
also the segment S2 keeps carrying the same sentiment, which means that the sentiment
of the whole sentence will be positive. We found that around 30% of sentences in both
datasets contain a neighborhood keyword. We note that the strategy we followed for this
relation is to consider just sentences containing the keyword “and” where we eliminate
those containing a contrast keyword since we consider that contrast relation is much
stronger than the neighboorhood relation.

In addition to the two previous relations, we can add two more relations: a negation
relation where a sentence contains a negation word such as “cannot”, “never”, “hardly”,
“nothing”, “neither”, etc., in this case, the segment’s sentiment is flipped. The fourth
relation is called the non-contrast relation where a contrast relation does not relate
the segments, so if S1 and S2 are non-contrast segments, and S1 carries a positive
sentiment, then S2 also has a positive sentiment. We leave these two relations for future
work.

3.2 NeuralGLogic: Unifying Deep Networks and Logic Rules

We define the set of PSL and SL rules in the form of functions fr ∈ XY → R+ where
r is the index of a specific logic rule, X is the space of inputs and Y is the space of
outputs. For each rule, we will assign non negative weight Wr ∈ R+ (see Equation
(4) and Equation(5)). The goal of these weights is to specify how an assignment will
be penalized if a rule is not satisfied, thus measuring the importance of each rule [37].
There are two ways to define the weights: learn them or define their values if we are
dealing with prior domain knowledge. We choose the second way since we already
know our logic rules and the applied domain.

To unify the neural models with logic rules, we employ the posterior regularization
(PR) concept of [26]. NeuralGLogic uses the PR framework by adding the logic rules
as a regularization term to the neural networks. On the one hand, our goal is to guide
the model towards desired behavior by using the logic rules considered as constraints
functions. We enforce these logic rules regarding expectation, and we claimed that each
logic rule fr(x, y) is true, which we formulate as an expectation term (the second term
in Eq. (4)). On the other hand, we want that the prediction of both the neural network
and logic rules to be close. We use the KL-divergence to measure this closeness (the first
term in Eq. (4)). To satisfy these constraints, one can solve the following optimization
problem:



min
q∈S

KL(q(Y )||pθ(Y |X))− C
∑
r

Wr Eq[fr(X,Y )] (4)

where S denotes the appropriate distribution space, pθ(Y |X) is the conditional
probability defined by the neural network and C is the regularization parameter. It
should be noted that problem (4) is convex and has a closed-form solution given by
the following (complete proof is given in [1]):

q∗(Y ) ∝ pθ(Y |X) exp {C
∑
r

Wrfr(X,Y )} (5)

We use the distillation objective function (Equation 6) developed by [27] for train-
ing our model. NeuralGLogic can also be seen as a transfer of knowledge from the logic
rules to the CNN:

θ(t+1) = arg min
θ∈Θ

1

m

m∑
i=1

(1− λ)l(yi, σθ(xi)) + λl(s
(t)
i , σθ(xi)) (6)

where l denotes the cross entropy loss function; m is the training size; σθ(x) is the
softmax output of pθ on x, s(t)i is the soft prediction vector of q∗(Y ) on xi at iteration
t and the imitation parameter λ ∈ [0, 1] balances the importance between imitating the
soft predictions s(t)i and predicting the true hard labels yi.

4 Experimental Results and Discussion

We evaluate our model on various sentiment classification and POS tagging benchmarks
for English to demonstrate its effectiveness compared to extensive other state-of-the-
art models. In order to have accurate results, we choose to use four different neural
networks architectures within the same task (sentiment classification) and adding POS
tagging task to show the generalization of the method on another task.

4.1 Sentiment Classification

In the sentiment classification task, we select four previous models based on deep neural
networks in order to validate our framework. For each model, we develop three variant
models using NeuralGLogic: we call the first model “NeuralGLogic-contrast” which
combines a given neural network architecture with PSL rules implementing the contrast
relation. Next, we call the second model “NeuralGLogic-neighb” which combines the
same neural architecture with PSL rules implementing the neighborhood relation. The
third model “NeuralGLogic-NC” uses the contrast and neighborhood relations.

For the hyperparameters, we use λ(t) = 1−0.85t for the imitation parameter and we
set the regularization parameter to C = 300. All the previous values are selected based



on the performance of the model on Stanford Sentiment Treebank (SST2) [38] dev
set. We evaluate our models on five benchmarks namely Stanford Sentiment Treebank
(SST1) - an extension of MR, SST2 [38], Subjectivity dataset (Subj) (Pang and Lee,
2004), and Movie Review (MR) [39]. For this dataset, we used 10-fold cross-validation.

Figure 2: The CNN architecture developed by [15]

In the first architecture, we use the neural network developed by [15], which uses
convolutional neural networks with pretrained word embedding. Figure 2 shows the
architecture of this model. We use the CNN non-static version proposed by the author,
and we follow the same hyperparameters. Table 2 depicts the experimental results. They
represent the performance of NeuralGLogic applied to the three types of PSL relations
in the sentiment classification task: the contrast relation, the neighborhood relation and a
combination of the two relations. On both datasets, the second model using the contrast
relation performs better than the model using neighborhood relation. While we do not
have a complete explanation to these results, we believe that it is caused by the fact
that the presence of a contrast keyword can have a significant effect on the sentence
polarity while for the neighborhood keyword “and” that we used can sometimes have
a neutral effect on the polarity sentence. As we expect, the “NeuralGLogic-NC” model
combining the two relations give us the best performance. We compare the result of
our models with other previous competitive systems. Table 1 presents the experiments.
“NeuralGLogic-NC” outperformed the MVCNN model respectively by +0.5 points and
the CNN-rule-q model by +0.6 points in accuracy.

In our second experiments, we consider the model developed by [40]. They use
convolutional neural networks, and the goal is to make the system more adapt for two
transformations: transformable convolution and transformable pooling, which allowed
them to handle more complex features. Another advantage of this model is its ability
to be integrated by other models in order to generate new transformable networks. In
their paper, they developed two models namely, Transformable Dynamic convolutional
neural network (TF-DCNN) and Transformable Multichannel CNN (TF-MCCNN). The
results showed that TF-MCCNN obtained better results than TF-DCNN on Stanford



Model SST2 MR
NeuralGLogic-neighb 89.1 81.8
NeuralGLogic-contrast 89.5 82.1
NeuralGLogic-NC 89.9 82.4
CNN [15] 87.2 81.3
CNN-rule-q [1] 89.3 81.7

Table 1: Classification accuracy (%) on two benchmarks: SST2 and MR of our system
using [15] system as the baseline. Comparison of our system against [1] system with a
single logic rule.

Model SST1 SST2 Subj TREC
NeuralGLogic-neighb 49.4 89.2 94.1 93.7
NeuralGLogic-contrast 49 89.4 94.2 93.6
NeuralGLogic-NC 49.2 89.8 94.2 93.8
TF-MCNN 49.1 88.5 94.2 93.5

Table 2: Classification accuracy (%) of our NeuralGLogic-based system using TF-
MCNN as baseline on four benchmarks: SST1, SST2, Subj and TREC.

Sentiment Treebank (SST2) [38]. In our experiments, we used the SST2 dataset and the
TF-MCCNN as our baseline model.

The results in Table 2 shows that adding the two types of logic rules to the base-
line model (TF-MCNN) improved the performances. NeuralGLogic − neighb per-
formed better than thanNeuralGLogic−contrastmodel on SST1 dataset while on the
other three datasets (SST2, Subj and TREC) NeuralGLogic− contrast outperformed
NeuralGLogic− neighb. By combining the two logic rules (NeuralGLogic−NC,
we were able to improve the performances on the three datasets (SST2, Subj, and
TREC), while on SST1 dataset the NeuralGLogic − neighb still performed better.
The main reason why we were not able to improve the performances because mainly
theNeuralGLogic−contrastmodel did not boost the results over the baseline model
(TF-MCNN).

The third model employed in our experiments is multi-group norm constraint CNN
(MGNC-CNN) [41]. The model is based on CNN architecture and uses multiple sets of
word embeddings for the sentiment classification task. The main idea behind MGNC-
CNN is extracting features from all the pretrained word embeddings, which could be
with different dimensionality, independently and concatenate them into one single fea-
ture vector. In the experiments, we use Stanford Sentiment Treebank (SST2) [38] to
evaluate our framework. Table 2 depicts the experiments, where it is clear that the
NeuralGLogic−NC outperformed all the models on the three datasets (SST2, Subj,
and TREC) while NeuralGLogic− neighb performed better on SST1 dataset.

In the last experiments, we consider the model developed by [42]. They also use a
CNN-based architecture. The model has a 3D CNN structure featured by spatial pyra-
mid pooling (SPP) brought from the object detection in computer vision. By combin-



Model SST1 SST2 Subj TREC
NeuralGLogic-neighb 49.27 88.87 94.77 95.87
NeuralGLogic-contrast 48.83 89.03 94.92 95.59
NeuralGLogic-NC 49.21 89.31 95.05 95.93
MGNC-CNN 48.65 88.35 94.11 95.52

Table 3: Results of our system using MGNC-CNN as baseline.

Model SST1 SST2 Subj TREC
NeuralGLogic-neighb 51.6 89.9 94.8 95.8
NeuralGLogic-contrast 51.1 90 95.1 96.1
NeuralGLogic-NC 51.5 90.3 95.3 96.2
3D-SPP CNN 50.8 89.5 94.5 95.8

Table 4: Classification accuracy (%) of our system using 3D-SPP CNN model as base-
line on four benchmarks: SST1, SST2, Subj and TREC.

ing 3D convolutions and SPP, their model was able to capture more complex inner-
structure in sentences. Moreover, SPP allows the model to handle the sentence length
variety issue by splitting sentences into various length portions for pooling opera-
tion. In the experimental settings, we validated our models based on [42] system us-
ing Stanford Sentiment Treebank (SST2). Table 2 shows the experimental results. We
can see that we get similar performances compared to the two previous models where
NeuralGLogic−neighb performed better on SST1 dataset, andNeuralGLogic−NC
outperformed all the models on the three datasets (SST2, Subj, and TREC).

4.2 POS tagging

The WSJ dataset contains 45 different POS tags. We follow the same standard split
where we took section 0-18 as training data, section 19-21 as development data and
lastly section 22–24 as test data. For the neural network hyperparameters, we fol-
lowed [9]. Based on the results obtained on the dev set, we set λ(t) = 1− 0.85t for the
imitation parameter and C = 300 for the regularization parameter.

We use the end-to-end neural network developed by [9] as our base network for the
POS tagging task. For the experiments, we use the Wall Street Journal (WSJ) portion of
the Penn Treebank (PTB). We developed three different models: “DeepSLV” model use
the logic rule based on the number of verbs in a sentence, “DeepSLN” model exploit
the logic rule based on the number of nouns, and finally “DeepSLVN” use both of the
logic rules.

The results confirm our intuition since “DeepSLVN” outperformed the two previous
models based on just one logic rule. We show the experimental results in the first three
rows of Table 5. Moreover, we evaluate our models against the previous best models,
and we summarize the experiments in Table 5 where we were able to outperform the
two best models. From the previous results, we observe an essential remark which is the



Model Accuracy
DeepSLV 97.59
DeepSLN 97.61
DeepSLVN 97.69
[43] 97.50
[9] 97.55

Table 5: POS tagging accuracy of our system on test data from WSJ proportion of PTB
together with a comparison to the best previous systems.

ability of our two models (DeepSLV and DeepSLN ) to outperform the baseline [9]
by adding one logic rule, which confirms the importance of combining logic rules with
deep neural networks for other NLP tasks such POS tagging.

5 Conclusion and Future Work

In this paper, we showed that the uninterpretability problem faced by deep neural net-
works could be reduced by adding logic rules in the form of SL and PSL rules. We
demonstrate that adding more logic rules is useful because it helped the overall frame-
work to improve the performance. The experiments confirm these results on the senti-
ment classification task. Moreover, we apply this framework to a new NLP task namely
POS tagging where we were able to improve the performance of our system.

In the future work, we will explore the negation relation, which we believe it will
be very useful for all sentences containing a negation word such as “cannot”, “never”,
“hardly”, “nothing”, “neither”, etc., in this case, the segment’s sentiment is flipped.
Furthermore, we will also explore the non-contrast relations and combine them in one
framework. Moreover, we will apply our framework to other languages (French and
German) for more generalization.
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