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Abstract. Character-level feature representation has recently focused
on enriching sub-word information by stacking deep neural models. Ide-
ally, applying several character-level representations can help capture
different aspects of sub-word information, but this has often failed in the
past, mainly because of the nature of the models traditionally used. In
this paper, we explore the application of different character-level model-
ing techniques, presenting a joint training method that separately learns
two LSTM-based character representations for a POS tagger. We start
by investigating two previously reported techniques, then propose two
extended methods: (1) a multi-head attentive character-level represen-
tation for capturing several aspects of sub-word information, and (2) an
optimal structure for training two different character-level embeddings
based on multi-task learning. We evaluate our results on the CoNLL 2018
shared task, showing that our method leads to meaningful improvements
for many languages in tagging.

1 Introduction

Natural language processing (NLP) has for long focused on English and a few
other languages that were economically (or, more rarely, strategically) profitable.
The gradual development of the Web, as well as of social media, has revealed
the need to deal with more languages which, in turn, offer new technological
challenges. It is, for example, clear that languages exhibit a large diversity of
morphological complexity and NLP tools must tackle this diversity in order to
obtain acceptable performance beyond English (e.g., on agglutinative or polysyn-
thetic languages).

In this context, character-level word representation is an essential component
of NLP tools because of their ability to capture potentially complex morphologi-
cal information [1, 2]. Let’s remind the reader that, traditionally, a character-level
word representation learned using Long Short-Term Memory (LSTM) units takes
a sequence of characters as input and returns an encoded vector [3]. Recently,
studies on character models have focused on enriching feature representations
by stacking more neural layers [4], applying an attention mechanism [5], and
appending a Multi-Layer Perceptron (MLP) to the output of recurrent networks



[6]. Those approaches have obtained the best performance for part-of-speech
(POS) tagging and dependency parsing in the CoNLL 2017 [7] and 2018 [8]
shared task. However, despite their benefits, most of these systems also have
clear shortcomings, like their (lack of) representation of unknown words. More-
over, the application of several character models, capable of capturing different
lexical characteristics, has not been fully explored so far. This is because most
of the time when two character models such as CNN and RNN-based charac-
ter representations are learnt separately, they generally capture almost identical
features and thus do not have a real positive influence on the results.

Here we propose a new approach that aims at offering a more accurate repre-
sentation. This is done through two complementary devices: i) a sub-word anal-
ysis, geared to recognize morpheme-like information and ii) a contextual model
taking into consideration the sentential framing of a word, which is especially
useful for the analysis of unknown words. In order to do this, we need to com-
bine two different character embeddings. One is a context insensitive word-based
character representation [4], and the other is a context sensitive sentence-based
character representation [9, 10]. We apply joint training to induce two charac-
ter embeddings focusing on different aspects of sub-word information. Our new
technique has the advantage of capturing not only locally optimized character
features but also globally optimized features, regardless of language types. We
evaluate our system on the CoNLL 2018 shared task data [8], finding statistically-
significant improvements compared to the top-performing POS taggers for 10
corpora from 8 languages.

The paper is structured as follows: section 2 describes the two different char-
acter embeddings and section 3 describes how they are combined. The exper-
iment and the results are discussed in section 4, leading to the conclusion in
section 5. Our tagger and trained models are available in public repositories1.

2 Two LSTM-based Character Models

In this section, we describe two self-attentive character models. Given an input
sentence s of length n with characters s=(ch1, . , chn), our system creates a
sequence of sentence-based character vectors chs1:n, initially encoded as random
vectors. Since a sentence s is composed of m words such that s=(w1, . , wm),
and each word wi can be decomposed as a sequence of characters wi=(chi1, . ,
chk), the system also creates a set of sequences of word-based character vectors
ch1:m1:k . Note that two character embedding, such as chs1:n and ch1:m1:k , do not refer
to the same vector since the system is initialized randomly. A character can thus
be represented by two different embeddings.

2.1 Word-based Character Model

State-of-the-art word-based character vectors have been obtained by running a
BiLSTM [6] or GRU [11] over the k characters chi1:k of a word wi:

1 https://github.com/jujbob/Utagger
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Here, f
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j is the forward-pass hidden layer of the BiLSTM for character

j of a word, b
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j the backward pass, and h
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j the concatenation of the two.

Previous studies have shown that the last encoded character f
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k represents a

summary of all the information in an input character sequence [4]. An additional
method involves applying the self attention-based linear transformation [5] over
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Here w(wc) is a linear transformation parameter. The self-attention weight

a
(wc)
i intuitively corresponds to the most informative characters of word wi for

the task being learned. Passing the encoded character vector H
(wc)
i of each word

through its attention weights a
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i , we obtain the character-level word-vector as

c
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i . Dozat [6] suggest the concatenation of the last encoded vector f
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attentive vector a
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i so as to capture both the summary and sub-word

information in one go for tagging. However, as Lin [12] suggest, self-attention
based representations tend to focus on a specific component of the sequence. To
alleviate this, we propose multi-head attentive character-level word embeddings,
which reflect various character-level features of a word by applying multiple

attention weights as a matrix A
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By applying an attention parameter matrix W (wc), rather than a vector
w(wc), and a non-linear function with a weight parameter D(wc), the atten-
tion weight can reflect several aspects of sub-word information. For example, a
successfully trained attention weight W (wc) could recognize two different mor-
phemes: “de” and “ed” from the word “delexicalized”. The effectiveness of the
multi-attentive model will be discussed in Section 4.

2 Here, we use lowercase italics for vectors and uppercase italics for matrices. So a set of
hidden state H

(wc)
i is a matrix stacked on m characters. In this paper, all the letters

w and W denote parameters that the system has to learn. Also, semicolons denote
concatenation of two vectors, and ConcatRow denote concatenation of matrix by
rows.



2.2 Sentence-based Character Model

The model we have just described is effective at capturing sub-word information,
but cannot capture contextual information beyond word boundaries. The overall
context can be modeled by encoding the full character sequence from a sentence.
Alberti [9] utilized the sentence-based character representation in dependency
parsing and achieved state of the art results for morphologically rich languages.
In tagging, Bohnet [10] showed that a sentence-based character model that pro-
cess all characters of a sentence at once is better at keeping context information
for unseen data than a token-based one for tagging. For example this model
obtained the best results during the 2017 CoNLL shared task. In a similar way,
Che [13], who developed the best performing system for the CoNLL 2018 shared
task, used sentence-based contextual embeddings with character convolutions
and an additional token-based character embedding for dependency parsing.

By extending previous approaches, we create self-attentive sentence-based
word embedding, composed of three parts:

1. Encoding. A single encoding is generated from the entire character sequence
of a sentence using a BiLSTM:

h
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s
n))j

2. Slicing. The output of a BiLSTM is sliced from the start index sidx(wi) to

the end index eidx(wi) of each word. A matrix H
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i is produced by stacking

the encoded character vectors of a word:
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3. Attention. H
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i is transformed into a multi-attentive representation c
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as with the word-based model in (1):
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Our approach is distinct from that of Bohnet [10], which proposes the concatena-

tion of only the first and last BiLSTM outputs as c
(sc)
i =MLP ([h

(sc)
sidx(wi)

;h
(sc)
eidx(wi)

]).

In contrast, we adopt the multi-head attention model proposed in the previous

section with H
(sc)
i , since we believe the multi-attentive model is more accurate

to capture the context.

3 Joint Training for a Tagger

Joint Many-Task learning (JMT) enriches context-sensitive feature representa-
tions by learning different tasks with shared parameters [14]. This approach can
also be applied by training several classifiers for the same task. For example,



meta-Tagger [10] separately trains word-based and character-based POS taggers
without parameter sharing and then joins the two models via another meta-
BiLSTM and MLP, which is used as the final classifier.

Following Bohnet [10], we train two character-level taggers and then com-
bine them through a meta-BiLSTM tagger. However, we utilize each sentence
and word-based character embedding rather than only one ultimate embedding
which takes advantage of both the meta-BiLSTM model and JMT by using
two character-level models. Separate taggers trained on an individual objective
function, each tagger struggles to identify the best features within the limited
sentence and word-based character features. We propose applying JMT to gen-
erate a shared word embedding between the two character models.

3.1 Two Taggers from Character Models

Our system builds two POS taggers using the two different word embeddings

generated from the sentence (c
(sc)
i ) and the word (c

(wc)
i ), as described in Section

2. To enrich word-level contextual information, for each character models, the

system concatenates a shared word embedding w
(e)
i initialized by a pre-trained

word embedding [15] and an ELMo embedding e
(el)
i [16] in case that we have, and

then passes it through another BiLSTM layer, whose output is g
(sc)
i and g

(wc)
i

for sentence-based and word-based representations respectively. So, for sentence-
based embeddings, we apply a two-layer MLP classifier with a weight parameter
Q(sc) including a bias term b(sc) to classify the best candidate POS:

p
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Performing the same operation for the word-based embeddings as well, we

predict two POS tags y
(sc)
i and y

(wc)
i .

3.2 Joint POS Tagger

To create joint representations that learn to combine the two taggers’ states, we

transform the two tagging results as a weighted POS label embedding h
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i as

follows:
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Here U is the number of possible POS tags, P (y
(sc)
i = j|p(sc)i ) denotes the

probability that the j-th POS tag is assigned to a word wi, and pos(j) is a
randomly initialized POS vector. As Hashimoto [14] suggest, this approach is
similar to encoding the k-best POS features. We generate a joint embedding

h
(pos)
i by concatenating two k-best POS features [l

(sc)
i ; l

(wc)
i ]. With the classifier

we proposed in (2) taking the joint vector h
(pos)
i as an input, the system predicts

another POS tag y
(pos)
i from two k-best POS features. Note that the system only

uses tokenized sentences as input, and the k-best POS are predicted at training
time.

3.3 Training Three Taggers Simultaneously

Where meta-Tagger [10] trains three taggers using separate optimizations, we
trained our taggers simultaneously using a single Adam-optimizer, with a summed
cross entropy loss for each tagger. This approach has the advantage of passing
error propagation directly to the shared word embedding w(e).

4 Experiments and Results

In this section, we present our experimental settings and the results of our model
on the data set of the CoNLL 2018 shared task (ST). We compare our results
with the official records for this task.3

4.1 Data Sets

We evaluate our model on the Universal Dependency 2.2 [17] corpora provided
with the ST, following the guideline that the development set is used only for
parameter tuning with the provided evaluation metric. In order to compare with
the official results, we use permitted pre-trained word embeddings for Japanese
and Chinese4 and other languages [15], and ELMo embeddings trained by Lim
[18]. We tested on 10 test treebanks from 8 languages which use different char-
acter systems.

As our input test data, we use the word segmentation result of the best
performing model for each treebank in order to compare with them directly.
Note that when [19] is used for preprocessing, this largely affects the results
since tokenization has a direct and massive impact on tagging performance. The
segmentation results of the winner have been officially provided by the ST5

organizers. Among our dataset, five treebanks have no training data available,
but for these cases at least one large training treebank in a different domain
is available. This offers an excellent opportunity to explore the ability of our
joint character model to deal with unseen data. Also, note that ELMo has been

3 http://universaldependencies.org/conll18/results-upos.html
4 http://hdl.handle.net/11234/1-1989
5 http://hdl.handle.net/11234/1-2885



Table 1. universal part-of-speech (UPOS) tagging results compared with the win-
ner (winn) of each treebank for the ST. Columns denotes the size of training corpus
Size, and our joint (join), joint with ELMo (joinE), concatenated (conc) and ELMo
only (elmo) models. The symbols ∗ and + represents the winner used ELMo and an
ensemble. For ko gsd, the ko kaist training corpus is also used.

Corpus Size winn joinE elmo join conc

zh gsd 3997 91.94∗ 93.29 92.47 91.97 91.81

ja gsd 7164 92.97∗ 93.12 93.01 92.99 92.83

en ewt 12543 95.94∗+ 95.99 95.81 95.65 95.39

fr gsd 14554 96.97 97.18 97.04 97.04 96.85

ko gsd 27410 96.33∗ 96.58 96.15 96.21 96.17

en pud 0 96.21∗+ 96.08 96.17 95.90 95.78
ja mod 0 54.60 54.70 54.61 54.67 54.55
cs pud 0 97.17 - - 97.21 96.81
sv pud 0 94.28+ - - 94.29 94.09
fi pud 0 97.65+ - - 97.67 97.50

trained by a sentence-based character model based on external resources. In the
end, this gives us the opportunity to investigate three different character models
effectively.

4.2 Experimental Setup

We applied the same hyperparameter settings as Smith [20] for BiLSTM di-
mensions, the MLP, the optimizer including β, and learning rate. We set 300
dimensions for the parameters W and D in (1) and Q in (2). The same dimen-
sionality is applied to the sentence-based character model and the word-based
model. In training, we run over the entire training data as an epoch with a
batch size of 32 randomly chosen sentences. We save the model with the best
performance on the dev set within 300 epochs.

4.3 Results

Table 1 shows the results on the test sets of each treebank, comparing with
the best performance winn as reported for the original ST. The join column
represents our model jointly trained by the two different character-level repre-
sentations described in Section 3.2, and the joinE column is the join model
enhanced with ELMo embeddings as described in Section 3.1.

Overall, our joinE model achieves state-of-the-art results compared with the
official results of the ST winners, except in the case of en pud, where the best
performing model applied both ELMo and an ensemble of different models [18].
Even without the application of ELMo, our join model shows comparable results
with models which did use ELMo embeddings (marked ∗) [13] and an ensemble
(marked +) [18].



In Table 1, the last five treebanks have no training data, but there exist
large treebanks in different domains for these languages. Here, we can explore
the degree to which our joint character model is helpful for handling unseen data.
We tested those five treebanks with models trained on other corpora (en ewt,
ja gsd, cs pdt, sv talbanken+sv lines, and fi tdt), in line with other approaches
to the ST [18, 20]. We can see that our results are comparable for handling
cross-domain data.
Impact of the joint learning. To investigate whether our joint model is better
than a general concatenation approach, we tested a disjoint model conc where a
word embedding is defined simply as a concatenation of embeddings for different
levels of representation:

h
(pos)
i = [c

(sc)
i ; c

(wc)
i ;w

(e)
i ]

It should be noted that the shared word embedding w(e) of our joint learning
leads to consistent improvements not only for the joint model but also for the
two character-level models. When we use the shared word embedding only for
the sentence-based or word-based character models, the performance decreases
by an average of 0.05-0.20 absolute points over the three taggers. We can see
almost identical experimental results in multi-task learning for training a tagger
and parser simultaneously with or without shared embeddings [14].

Impact of ELMo. Although the best performing system [20] for universal
part-of-speech (UPOS) tagging in ST outperformed the macro-average score over
all the treebanks, with a 0.72 gap over the second-ranked team, some teams who
have used ELMo got the best score on many languages. It is thus necessary to
extend the evaluation by using the same ELMo embedding, as applied in ST6.
To investigate the performance of previously proposed taggers with ELMo, we
evaluated elmo model which trained based on concatenation of ELMo and word
embedding as:

h
(pos)
i = [e

(el)
i ;w

(e)
i ]

In Table 2, elmo model generally shows better performances than our join
model but not for joinE. We found a marginal gap between elmo and joinE in
tagging Chinese and Korean than English and French. As reported by [21], we
assume that languages have a bigger character set size gain much more influences
by character embeddings not only trained on the limited training data but also
external data.

While testing ELMo for our joinE model, we found the concatenation of
ELMo embedding for both sentence and word models simultaneously lead to per-
formance degradation because the dimension of ELMo is relatively huge (1,024).
To avoid the problem, We did not use ELMo embedding for encoding our word-

based character-level embedding c
(wc)
i proposed in Section 3.1. There is some

indication that in the less-resourced conditions, ELMo is more influential than

6 https://github.com/jujbob/multilingual-models



Table 2. eu bdt tagging results by the number of rows n of the word and sentence-
based character embedding. Here, word and sent denote models which trained taggers
only word and sentence-based character representations (as described in (1))

# of head n=1 n=2 n=3 n=5

word 96.04 96.17 96.19 96.12

sent 96.24 96.26 96.21 96.17

join 96.39 96.40 96.43 96.35

the dynamically trained character embeddings. This is because ELMo is trained
on corpus resources external to the task; in contrast, our character models are
trained only on the limited training data, and so struggle to learn deep contexts
(see the size and performance gaps between join and joinE on zh gsd).
Impact of the self-attentive approach. Table 2 demonstrates the effective-
ness of the multi-head attention component of the word and sentence-based
character models (as described in (1)). Here, n represents the number of rows
allocated to the matrix Ai, with additional columns providing traction for the
model to focus on different semantic components of the word being modeled.

We see at least marginal improvements when expanding from a single-head
n=1 to double-head n=2 for all models, and then to triple-head n=3 for the
word and join models. Here, the model applied n=1 is the identical single
head model widely used proposed by [6]. We observe a negative impact when
expanding beyond 5 rows for all models. This is because, as Lin [12] and Vaswani

[22] show, each additional attentive-score a
(wc)
i tends to be focused on the same

part of a sequence, even though it requires an n-times higher dimensional space.

5 Conclusion

In this paper we have presented a tagging model involving two different character-
level components, the first one was based on word boundaries, whereas the sec-
ond was able to take into account contextual information at the sentence level.
By training two individual taggers based on two different character models, we
have produced a tagger taking into account not only locally optimized character
information but also globally optimized information, regardless of the language
types. We have detailed our three main innovations: (1 ) Multi-attentive char-
acter model, which leads the system to capture several aspects of sub-word
information. (2 ) Joint POS representations to combine the two taggers’ states
as a feature for final tagger and (3 ) Contextual representation to capture con-
text information from external resources. This method is effective, improving on
previously reported results. For future work, we plan to integrate our enhanced
morphological tagger with our dependency parser.
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