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Abstract. Language-brain encoding experiments evaluate the ability of

language models to predict brain responses elicited by language stimuli.

The evaluation scenarios for this task have not yet been standardized

which makes it difficult to compare and interpret results. We perform a

series of evaluation experiments with a consistent encoding setup and

compute the results for multiple fMRI datasets. In addition, we test the

sensitivity of the evaluation measures to randomized data and analyze

the effect of voxel selection methods. Our experimental framework is

publicly available to make modelling decisions more transparent and

support reproducibility for future comparisons.

1 Introduction

Representing language in a computationally usable format has been a research goal
since the beginning of computational linguistics. In the last decade, distributional
representations which interpret words, phrases, sentences, and even full stories
as a high-dimensional vector in semantic space have become the most common
standard. These representations are obtained by training language models on
large corpora to optimally encode contextual information.

The quality of language representations is commonly evaluated on a set of
downstream tasks. These tasks are either driven by engineering adequacy (e.g.
the effect of the language representations on the performance of systems such
as machine translation) or by the ability to reproduce human decisions (e.g. the
performance of the representations on semantic similarity or entailment tasks).
Many language researchers, however, are driven by the urge to better understand
the underlying principles of human language processing.

With the increasing availability of brain imaging data, it has become popular
to evaluate computational models by their ability to simulate brain signals related
to human language processing [18, 19, 27]. If we can develop models that encode
linguistic information in a way that is comparable to the activity in human
brains, we will get one step closer to cognitively plausible models of human
language understanding. While experimenting with human brains is evidently
strictly constrained and regulated due to ethical reasons, we can easily query,
adapt, constrain, degrade, and manipulate the computational model and analyze
the effect on its language processing capabilities.
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Although working with brain imaging data is highly promising from a cognitive
perspective, it comes with many practical limitations. Brain datasets are usually
too small for powerful machine learning models, the imaging technology produces
noisy output that needs to be adjusted by statistical correction methods, and
most importantly, only very few datasets are publicly available. Experiments in
previous work are usually performed on a single dataset, so that it is unclear
whether the observed effects are generalizable. In addition, the applied evaluation
procedures have not yet been standardized. Understanding the subtle differences
in the experimental setup to interpret the results can be particularly difficult
because it has not yet become a common practice to publish the experimental
code along with the results.

To the best of our knowledge, this paper provides the first analysis of language–
brain encoding experiments which applies a consistent evaluation scenario across
multiple fMRI datasets. We examine whether different evaluation measures
provide different interpretations of the predictive power of the encoding model.
Our experimental framework is publicly available to make modelling decisions
more transparent and facilitate reproducibility for future comparisons. Due to
its modular architecture, the pipeline can easily be extended to experiment with
other datasets and language models.1

Table 1: 4 fMRI datasets for language–brain encoding. In Words and Stories,
stimuli have been isolated by averaging over the brain responses. The Alice and
Harry datasets contain continuous stimuli.

Name Stimuli Presentation mode Subj. Scans Voxel size Reference

Words 60 words Word + image 9 360 3x3x6 Mitchell et al. [24]

Stories 40 stories Read sentences 30 40 3x3x3 Dehghani et al. [13]

Alice 1 chapter Listen to audio book 27 362 3x3x3 Brennan et al. [10]

Harry 1 chapter Read word by word 8 1351 3x3x3 Wehbe et al. [32]

2 Human-centered Evaluation of Computational Models

As computational language models are trained on human-generated text, their
performance is inherently optimized to simulate human behavior. Although novel
architectural solutions attract notable interest in the research community, the
ultimate benchmark for a model is the ability to approximate human language
processing abilities. Models are supposed to reach a gold standard of human
annotation decisions [29] and the difficulty of a task is often estimated by the
inter-annotator agreement [5] or by error rates of human participants [8]. While
these product-oriented evaluations focus on a final outcome, procedural measures

1 The code is available at anonymized for review, see suplementary material.
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of response times [25] or eye movements [7] are analyzed to provide deeper
insights on sequential phenomena like attention or processing complexity. As
neural network models are inspired by neuronal activities in the human brain, it is
particularly interesting to analyze similarities and differences between distributed
computational representations and low-level brain responses.

Electroencephalography (EEG) measures can be used to study specific seman-
tic or syntactic phenomena [15, 18, 31] and compare the processing complexity
of computational models to brain responses, for example, with respect to the
N400 and P600 effects [14]. Signals with higher spatial resolution like magnetoen-
cephalography (MEG) and functional magnetic resonance imaging (fMRI) are
often used for experiments which are known as brain decoding and brain encoding.
In the decoding setup, a computational model learns to identify differences in
the signal and to discriminate between the responses for abstract and concrete
words [4], for different syntactic classes [9, 22], for levels of syntactic complexity
[10], and many other linguistic categories. Mitchell et al. [24] have shown that it
is not only possible to distinguish between semantic categories, but that a model
can even learn to distinguish which word a participant is reading. The reverse
direction of predicting the brain response that would most likely be observed
for a novel linguistic stimulus is commonly called encoding. The encoding task
requires a strong computational representation of the stimulus that reflects the
shared properties of different stimuli and the relations between stimuli. For the
remainder of this paper, we will focus on the language–brain encoding task and
on fMRI datasets.

Many word representations have been tested on the Mitchell et al. [24] data
including information from lexical resources, distributional, and multimodal
representations [1, 4, 11, 34]. It has also been proposed to directly feed the brain
signal into the language model as an additional source of information [6, 16].
Recently, new approaches for encoding and decoding of datasets using longer
linguistic stimuli such as sentences [27] and even full stories [10, 13, 19, 32]
are emerging. In some experiments, it has been shown that contextualized
representations obtained from recurrent neural networks [19, 33] seem to represent
the continuous stimuli slightly better than models that represent sentences as
a conglomerate of context-independent word representations [13, 27]. However,
these results are hard to generalize because they have been tested only on a single
dataset. Gauthier and Ivanova [17] raise doubts about the informativeness of
encoding results because differences between models are not reflected. Our robust
evaluation experiments can serve as a comparative testbed for future analyses.

3 Datasets

We use four fMRI datasets that have been collected by different researchers
(see Table 1). All datasets use English language stimuli and the participants are
native speakers. Standard fMRI preprocessing methods such as motion correction,
slice timing correction and co-registration to an MNI template had already been
applied.
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3.1 Isolated stimuli

We use two datasets that work with isolated stimuli. The stimuli are not related
and can be presented in varying order to the participants. Each stimulus is
represented with only a single brain activation vector by averaging over several
scans obtained during the presentation of the stimulus.

Words For the Words dataset, 9 participants were shown a word paired with a
line drawing of the object denoted by the word and were instructed to think about
the properties of the object [24]. Six scans were taken during the presentation of
each word. The scans were temporally detrended and smoothed. The activation
values were normalized by computing the percent signal change relative to the
fixation condition. Scans and stimuli were aligned with an offset of 4 seconds
to account for the haemodynamic delay. The brain activation for each word is
calculated by taking the mean over the six scans.

Stories For the Stories dataset, 30 participants were reading 40 short personal
stories that had been collected from weblogs [13]. The stories consisted of 11
sentences on average and were presented in three consecutive batches on a
screen. The dataset also contains data for Farsi and Chinese stories, but for
the sake of comparison, we focus on the English subset here. The scans were
preprocessed with detrending, temporal smoothing and spatial smoothing. The
activation values were normalized by calculating z-scores with respect to the
fixation condition. The authors then discretized the continuous story stimulus by
calculating the mean over all story scans. We exclude subject 30 from the data
because the voxel values are all zero.

3.2 Continuous stimuli

Humans process language incrementally and in context. In order to simulate
a more naturalistic language setting, recent approaches to brain encoding use
continuous stimuli and analyze the fMRI scans as a sequence of responses.

Harry For the Harry dataset by Wehbe et al. [32], 8 participants read chapter
9 of Harry Potter and the Sorcerer’s stone [30]. The story was split into four
blocks and presented word by word on a screen. Each word was displayed for 0.5
seconds and an fMRI scan was taken every 2 seconds. We follow their protocol
and apply detrending and temporal smoothing, but do not smooth spatially
because it did not have an effect on the results in pilot experiments.

Alice For the Alice dataset by Brennan et al. [10], 27 participants were listening
to an audio recording of the first chapter of Alice in Wonderland [12]. The
published data contains the preprocessed signal averaged for 6 regions of interests
defined using functional and anatomical criteria. The raw signal is not available.
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4 Encoding Model

The fMRI data is obtained by measuring the so-called blood-oxygenation level
dependent (BOLD) response. This signal indicates the level of oxygen in the
blood (approximated by its magnetic susceptibility) and an increased BOLD
response in an area of the brain is interpreted as increased neuronal activity
in this region. In order to analyze the response, the brain is fragmented into
stacked voxels which are cubes of constant size (e.g. 3x3x3 mm). The response
thus consists of a three-dimensional matrix with activation values for each voxel.
This matrix is flattened into a one-dimensional vector v. In the brain encoding
approach, the goal is to predict v given the stimulus s that was presented when
measuring the response.

Mapping model A multiple linear ridge regression model is usually applied as
encoding model to learn the response pattern vn∈Rm for stimulus sn∈Rd on
a training set V ∈Rm×n of responses to n other stimuli.2 It requires a strong
computational representation of the stimulus that reflects the relations between
stimuli. The predictive power of this mapping model is evaluated on a set of held-
out stimuli S∈Rd×n. The mapping model learns a separate regression equation
for every voxel vi which is fitted by learning a weight wd for each dimension sd
of the stimulus representations and the weights are regularized by the L2 norm.
The cost function f for learning the weight vector w for a voxel vector vi is:

f(vi) =
N∑

n=1
(vin

−
D∑

d=1
wd · sdn

)2 + λ

D∑
d=1

wd
2

4.1 Language model

The linguistic stimuli are represented using vectors obtained from a language
model. Previous work has compared the performance of different language models
for brain encoding tasks showing that contextual models like long short-term
memory networks perform better than standard word-based representations [19].
For a more robust comparison, we keep the language model constant for all
datasets. We choose the Elmo language model because it produces contextualized
representations on the sentence level and performs very well on semantic tasks
[28]. Elmo is based on a bi-directional long short-term memory network and it
uses character-based representations of the input which makes it perform very
well on out-of-vocabulary words. This is an important property for modeling
fictional texts. We use a pre-trained pytorch version of Elmo available on github.3

For Words, we use the representations from the token layer. For all other
datasets, we obtain contextualized representations from the first layer. We re-
strict the representation to the forward language model to simulate incremental
2 Whether a linear model is a plausible choice is debatable, but it has been most

commonly used in previous work.
3 https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.

md

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
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processing and obtain a 512-dimensional vector. We take the representation of
the last token of each sentence and average over all sentences for each story
in Stories. For the continuous stimuli, we feed the language model the whole
chapter and extract the representation of the last token of the sequence which
had been presented between the previous and the current scan.

Haemodynamic delay The fMRI signal measures a brain response to a stimulus
with a delay of up to ten seconds [23]. This delay needs to be considered when
aligning stimuli with responses. Similarly to Mitchell et al. [24], we align scans
to stimuli with a fixed offset of 4 seconds. The haemodynamic response decays
slowly over a duration of several seconds. For continuous stimuli, this means
that the response to previous stimuli will have an influence on the current signal.
Wehbe et al. [32] use a feature-based representation and learn different weights for
stimuli occurring at previous time steps. In this approach, the number of features
increases linearly with the number of time steps considered. In contextual language
models, a representation is build up incrementally using recurrent connections.
The representation of a word thus implicitly contains information from the
previous context. As Elmo processes language sentence by sentence, our context
window comprises the current sentence up to the current word, but the number
of dimensions remains constant.

4.2 Voxel selection

The number of voxels in a brain varies with respect to the voxel size and the
shape of the subject’s brain. In the datasets used here, the number of voxels
ranges from 20,000 to more than 40,000. The activity measured in many of these
voxels is most likely not related to language processing, but might change due to
physical processes like the noise perception in the scanner. In these cases, learning
a mapping model from the stimulus representation to the voxel activation will not
succeed because the stimulus has no influence on the variance of the voxel signal.
Whole-brain evaluations of mapping models thus only have limited informative
value. In previous work, different voxel selection models have been applied to
analyze only a subset of interesting voxels. Wehbe et al. [32] and Brennan et al.
[10] reduced the voxels by using previous knowledge about regions of interests.
Restricting the brain response to voxels that fall within a pre-selected set of
regions of interests can be considered as a theory-driven analysis.

Information-driven voxel selection In contrast to the theory-driven region of
interest analysis, Kriegeskorte et al. [20] propose a more information-driven
approach. So-called searchlight analyses move a sphere through the brain to
select voxels (comparable to sliding a context window over text) and analyze
the predictive power of the voxel signal within the sphere. Dehghani et al. [13]
and Wehbe et al. [32] use this searchlight approach for the decoding task. In
brain encoding, the predictive direction is reversed. The ability to predict voxel
activation based on the stimulus is carefully interpreted as an indicator that
processing the stimulus influences the activity in this particular voxel. For Words,
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Mitchell et al. [24] analyze all six brain responses for the same stimulus and
select 500 voxels that exhibit a consistent variation in activity across all stimuli.
Jain and Huth [19] calculate the model performance for a single voxel as the
Pearson correlation between real and predicted responses on the test set and
analyze voxels with a correlation above a threshold. Gauthier and Ivanova [17]
recommend to evaluate voxels based on explained variance. We select the 500
most predictive voxels on the training set for Words by four selection methods:
stability, Pearson correlation, explained variance, and random.

Table 2: The effect of voxel selection on the pairwise accuracy on Words.
Accuracy and stable voxels are calculated as described in [24].

Metric None Stable by EV by R Random

Cosine .57 .65 .67 .56 .57

Euclidean .57 .66 .67 .56 .57

Pearson .58 .67 .68 .57 .58

Results of voxel selection Table 2 shows the results for different voxel selection
methods. It can be seen that voxel selection by explained variance performs on
par with the selection of stable voxels. We had speculated that simply reducing
the number of voxels might already lead to improvements because similarity
measures tend to perform better in lower-dimensional spaces [2], but a random
selection of voxels has no effect. For the remainder of the paper, we report results
on the 500 voxels that obtained the highest explained variance results on the
training set unless indicated otherwise because the option of selecting stable
voxels is not available for the other datasets.

5 Evaluation experiments

The voxel selection results show that a small experimental parameter can have
a strong effect. We thus perform three experiments using different evaluation
procedures: pairwise accuracy, voxel-wise evaluation, and representational simi-
larity analysis. We repeat each experiment with a language model that assigns a
random (but fixed) vector to each word to analyze the sensitivity of the evaluation
metric. Random story representations are obtained by averaging over words.

5.1 Pairwise evaluation

As the fMRI datasets are very small for machine learning purposes, Mitchell et al.
[24] introduced an evaluation procedure that maximizes the training data. Given
a set of n samples, a mapping model is trained on n−2 samples and tested on
the two remaining samples. Mitchell et al. [24] call this procedure leave-two-out
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cross-validation, but it differs from standard cross-validation setups because
each sample occurs n times in the test set leading to

(
n
2
)

different models. The
performance is evaluated by calculating the pairwise accuracy over all models.

A pair of two test samples (s1, s2) is considered to be classified correctly if
the model prediction p1 is more similar to the true target s1 than to s2, and p2 is
more similar to s2. This general idea of pairwise accuracy has been implemented
in different ways. The applied similarity metrics f are cosine similarity [24],
euclidean similarity [32], and Pearson correlation [11, 27]. The prediction for a
pair can be considered to be correct by comparing the summed similarity of the
correct alignments with the false alignments [11, 13, 24]. Wehbe et al. [32] and
Wehbe et al. [33] calculate the accuracy by comparing the predictions only for
the first sample. A stricter interpretation of the pairwise accuracy would only
consider the prediction to be correct, if both samples are correctly matched to
their prediction. We refer to the different interpretations as sum match (1), single
match (2), and strict match (3):

f(s1, p1) + f(s2, p2) > f(s1, p2) + f(s2, p1) (1)
f(s1, p1) > f(s1, p2) (2)
f(s1, p1) > f(s1, p2) ∧ f(s2, p2) > f(s2, p1) (3)

Experimental setup We calculate the pairwise accuracy for all four datasets,
for the two similarity metrics cosine and euclidean and for the three match
definitions sum, single, and strict. The leave-two-out evaluation only works well
for isolated stimuli as in Words and Stories. For the continuous stimuli, we
perform standard cross-validation. The Harry data can be split into four folds
according to the experimental blocks and for the Alice data we determined 6
folds. The predictions for each fold are then paired with a randomly selected
sample. We set a distance constraint between the two samples of at least 20
timesteps to avoid overlapping response patterns. For each sample, we average
the result over 1000 random pairs as in Wehbe et al. [32].

Results The results in Table 3 are averaged over all subjects. It can be seen
that the differences between the three similarity metrics and the sum and the
single match are very small. The strict match is consistently more rigorous than
the other match types. This indicates that both predictions would often be
matched to the same stimulus when ignoring the pairwise exclusivity constraint.
We conclude that the other two match types tend to slightly overestimate the
discriminability of the stimulus. We also note that the difference to the random
language model is more pronounced for the strict match for Words and Stories.
For these two datasets, the results vary strongly across subjects. Subjects 1,3
and 4 in Words yield high accuracy results (0.87, 0.87, 0.76 for the cosine sum
match) whereas the prediction for subject 6 is below chance level. We provide
violin plots in Figure 1 for a better impression of the variance across subjects in
Stories. Although the results are worse than for Words, the accuracy is quite
high for some subjects (0.80, 0.78, 0.7). The results obtained the isolated are
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Table 3: Pairwise accuracy results measured with cosine similarity, Euclidean
similarity, and Pearson correlation and different match definitions averaged over
all subjects. The results for the random language model are indicated in brackets.

Encoding Model (Random LM)

Match Words Stories Alice Harry

Cosine

Sum .67 (.54) .57 (.53) .54 (.53) .50 (.49)

Single .60 (.53) .53 (.53) .53 (.51) .49 (.49)

Strict .26 (.13) .14 (.02) .28 (.27) .25 (.24)

Euclidean

Sum .67 (.53) .56 (.53) .53 (.53) .50 (.49)

Single .59 (.50) .51 (.50) .52 (.51) .50 (.49)

Strict .24 (.08) .11 (.02) .17 (.11) .12 (.07)

Pearson’s R

Sum .68 (.53) .56 (.54) .53 (.53) .50 (.50)

Single .61 (.53) .52 (.52) .52 (.52) .50 (.49)

Strict .26 (.10) .11 (.02) .27 (.27) .25 (.24)

Fig. 1: Violin plot for the pairwise accuracy results for all subjects in Stories
for each evaluation metric.
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comparable to those reported previously by Mitchell et al. [24] and Dehghani
et al. [13]. For the continuous stimuli, the encoding model is not able to learn a
robust signal. Wehbe et al. [32] reported better results for the Harry data, but
they performed the decoding task. Brennan et al. [10] did not report encoding or
decoding results, but focused on correlating the fMRI signal with computational
models for surprisal.

5.2 Voxel-wise evaluation

The pair-wise distance measures are an abstraction over all voxels. A model that
mostly predicts constant values and only varies a few indicative voxels could
perform well. As the mapping model independently predicts each voxel, we can
take a closer look at the predictability of each voxel. This procedure accounts
for the assumption that not every voxel in our brain will be influenced by the
stimulus. In previous work, prediction results have often been reported only over
significant voxels.

Table 4: Voxel-wise results for cross-validation when taking the average over
voxels. The results are averaged over all folds and all subjects. The results for
the random language model are given in brackets.

Average

Voxels Dataset EV R2 r2simple

Whole brain

Words -.21 (-.09) -.41 (-.35) .01 (.01)

Stories -.05 ( .00) -.26 (-.20) .02 (.01)

Harry -.34 (-.05) -.27 (-.05) .00 (.00)

Top 500 on train

Words -.14 (-.08) -.33 (-.26) .07 (.11)

Stories -.07 ( .00) -.27 (-.19) .04 (.02)

Harry -.43 ( .01) -.44 (-.07) .00 (.00)

Top 500 on test

Words .42 ( .21) .34 ( .05) .51 (.37)

Stories .41 ( .11) .34 ( .08) .68 (.67)

Harry -.12 ( .01) -.12 ( .01) .02 (.02)

Experimental setup The explained variance (EV ) and the coefficient of determi-
nation (R2) are the most common metrics for evaluating linear regression. They
measure the proportion of the variance in the dependent variable that is pre-
dictable by the model. The two metrics are closely related, but explained variance
also accounts for the mean error. We use the implementation of these scores in the
python library scikit-learn [26]. Jain and Huth [19] calculate a different r2 value:
they multiply the Pearson correlation between the predictions and the observed
activations for voxel vi with the absolute correlation (r2(vi) = rvi×|rvi |). We refer
to this measure as r2simple. They report the sum over all voxels averaged over
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Table 5: Voxel-wise results for cross-validation when taking the sum over voxels.
The results are averaged over all folds and all subjects. The results for the random
language model are given in brackets.

Sum

Voxels Data EV R2 r2simple

Whole

Words -4,303.86 (-1,996.81) -8,443.10 ( -5,620.26) 250.37( 184.33)

Stories -10,232.30 ( -47.56) -54,643.66 (-42,297.88) 4,878.07 (2,792.88)

Harry -10,700.14 (-1,451.43) -10,813.87 ( -1,464.57) -6.29 ( -3.10)

500 train

Words -68.82 (-39.84) -164.67 (-129.35) 33.34 ( -0.38)

Stories 0.00 ( -0.55) -134.31 ( -96.88) 21.36 ( 9.43)

Harry -215.45 (-37.28) -218.14 ( -37.63) 0.11 ( -0.09)

500 test

Words 209.98 (104.76) 253.98 ( 25.66) 171.56 (187.20)

Stories 204.90 ( 56.30) 339.33 ( 39.52) 171.08 (334.99)

Harry -58.66 ( 7.40) -59.70 ( 7.23) 10.41 ( 9.86)

all subjects. We calculate the voxel-wise results for all three metrics and combine
them by averaging or summing over all voxels. We compare the results for the
whole brain with a selection of the 500 best-performing voxels on the training
and on the testing set respectively. Selection on the test set is not recommended,
but added to compare previous work.

Results Tables 4 and Tables 5 show the results for the voxel-wise evaluation
averaged over all subjects . The metrics are presented averaged over all voxels
in Table 4 and summed in Table 4. It can be seen that the models are highly
overfitted, so that we get much better results when voxels are directly selected
on the test results than when they are pre-selected on the training data. In this
setting, all metrics indicate that the encoding model is stronger than the random
language model for Words and Stories. For the other settings, the explained
variance and the R2 are always negative. A value of zero for explained variance is
obtained for a model that constantly predicts the mean. It is almost impossible
to identify which one of two very negative models performs less bad based on
this value alone. The averaged results vary less because we are averaging over all
voxels, over all folds and over all subjects. Both, the inter-subject variance and the
variance in voxel predictability are very high, so that positive and negative results
cancel each other out. The r2simple metric almost always returns a positive score.
This might be a more satisfying result when evaluating the encoding quality;
however, the metric also returns high positive scores for the random language
model in some cases. Sum metrics depend on the number of voxels over which
they are calculated. For the whole brain analysis, averaged sum metrics are
thus not interpretable in absolute terms because the number of voxels in the
brain varies between subjects. For a better impression of the variance, we again
provide violin plots for Stories in Figure 2 for the whole brain analysis and
in Figure 3 for selected voxels. We see that the results for the r2simple metric
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are consistently better, but the extreme change on the x-axis indicates that sum
scores should be interpreted with caution.

Model-driven voxel selection We additionally determine the voxels with the
highest explained variance on the test set when training on 80% of the data. We
set a threshold (0.3 for Stories and Words, 0 for Alice) and plot predictive
voxels for the subjects for which we obtained highest accuracy in the pairwise
comparison in Figure 4. The results are rather inconclusive. There is almost
no overlap in the voxels and they are spread over several brain regions. This
indicates that model-driven voxel information should only be interpreted on
larger datasets.

Fig. 2: Violin plots of the voxel-wise results (summed over all voxels) for all
subjects in Stories for 500 voxels selected on the train and the test data.

5.3 Representational Similarity Analysis

The previous methods indicate that the continuous stimuli cannot be well encoded.
In order to be able to attribute this flaw more directly to the language model, we
perform representational similarity analysis [21] to compare the relations between
brain activation vectors to the relations between stimulus representations without
the intermediate mapping model. The approach assumes that similar brain
activation patterns are caused by strongly related stimuli. The quality of the
computational representation of the stimuli can then be assessed by its ability to
model these relations [3, 11, 34]. As commonly performed in previous work, we
measure the relations between vectors by the cosine distance and compare brain
scans and representations by Spearman correlation and Pearson correlation.
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Fig. 3: Violin plots of the voxel-wise results (summed over all voxels) for all
subjects in Stories for all voxels. Note the extreme change in the scale of the
y-axis compared to Figure 2 due to the number of voxels.

Results At first glance, the results in Table 6 seem to confirm the impression that
the encoding model performs better for the isolated stimuli. However, the same
results can be obtained with the random language model. The random model can
to a certain extent capture word identity (recall that the same random vector
is assigned to different occurrences of the same word), so it might capture a
relevant signal for the story stimuli, but this does not explain the results for the
Words dataset with 60 different words. It can be seen that generally the more
conservative rank-based Spearman correlation is much lower than the Pearson
correlation. For the current setup, the representational similarity analysis results
are unsatisfactory. However, the methodology largely reduces the number of
parameters and facilitates the comparison of different computational models. We
thus think that it could be a promising analysis method for future experiments.

6 Discussion

The setup of encoding experiments requires many modelling decisions for the
stimulus representation, the stimulus–response alignment, the mapping model and
its learning parameters, the noise reduction techniques for the brain responses,
the voxel selection etc. Experimenting with a single dataset bears the danger of
overfitting the experimental setup. We have seen that different evaluation metrics
can interpret the predictive power of an encoding model very differently. Encoding
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Fig. 4: Predictive voxels for Words in blue, Stories in red and Harry in yellow.

Table 6: Results for representational similarity analysis calculated for the whole
brain using Pearson correlation and Spearman correlation. The results for the
random language model are indicated in brackets.

Metric Words Stories Alice Harry

Spearman 0.09 (0.05) 0.08 (0.09) 0.03 (0.01) 0.00 (0.01)

Pearson 0.41 (0.44) 0.19 (0.22) 0.06 (0.02) 0.06 (0.03)

results should thus always be compared to a reasonable baseline and hypotheses
should be tested over several datasets. In this comparison, we intentionally
restricted the experimental setup by choosing the same language model for all
datasets. At this point, it remains unclear, whether the close to random results in
many settings result from an unfortunate choice of the language model or from a
noisy signal. Our experimental pipeline is modular and provides a useful testbed
for future experiments with alternative stimuli representations.

More sophisticated context models might increase the number of dimensions.
From a machine learning perspective, most encoding experiments are problematic
because the number of features is often higher than the number of samples. In
addition, similarity metrics are known to sometimes behave unexpectedly when
applied on high-dimensional data [2]. One could apply dimensionality reduction
on the language representations, but these methods change the structure of the
representation and make it difficult to derive cognitive insights for the original
model. For future data collections, it would be important to obtain more data
points from fewer subjects to facilitate more powerful pattern analyses.

FMRI encoding is an intriguing, but also very challenging task because of
the noisy signal. Within the current state of the art, even a tiny signal that
is significantly different from chance, can be seen as a success. The pairwise
estimation measures can present the results in a more pronounced way. However,
as our analysis with the strict match have shown, the other match definitions
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tend to give an overly optimistic impression of the discriminability of the stimuli.
A similar problem occurs, when summing the r2simple value only over predictive
voxels. We are convinced that in the long run, the field benefits from a more
conservative estimate of the predictive power of the developed models.

7 Conclusions

We have performed a robust comparison for language–brain encoding experiments
and receive very diverse results for different evaluation metrics. It is our hope that
our experimental framework can pave the way for future experiments to gradually
determine the optimal encoding parameters. We plan to extend our experiments
to the datasets by Pereira et al. [27] and to other languages. We can already
provide a set of practical recommendations for evaluation: 1. For the pairwise
evaluation, it is helpful to additionally report the strict match to put the results
in perspective. 2. Averaging over subjects is not very informative, violin plots can
give a better impression of the variance. 3. For sum metrics, it is important to
clearly specify the number of voxels that are taken into consideration. 4. Voxel
selection methods should be transparently described and only performed on the
training set because they have a strong effect on the results.
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