
Sentence similarity techniques for short vs
variable length text using Word Embeddings

Shashavali, Vishwjeet, Rahul Kumar, Gaurav Mathur, Nikhil Nihal,
Siddhartha Mukherjee, Suresh Venkanagouda Patil

Samsung R & D Bangalore - India Pvt. Ltd.
shasha.d@samsung.com, v.vishwjeet@samsung.com, rahul.k4@samsung.com,

gaurav.m4@samsung.com, nikhil.nihal@samsung.com, siddhartha.m@samsung.com,
suresh.patil@samsung.com

Abstract. In goal-oriented conversational agents like Chatbots, finding
the similarity between predefined text per action and user input of vari-
able length is a hard NLP problem. Usually, the Conversational agent
developers often tend to provide minimal number of sentences (less than
eight) per intent which makes the classification task difficult. The prob-
lem becomes more complex when length of the representative or prede-
fined text per action is short (less than four words) and the length of
the user input is long. We propose a methodology which derives Sen-
tence Similarity score based on N-gram and Sliding Window approaches
using FastText Word Embeddings which outperforms the current state-
of-the-art sentence similarity techniques. We referred a dataset related to
shopping domain to build Conversational agents. Extensive experiments
on the dataset achieved improvement of 6% in accuracy, 2% in precision
and 80% in recall in Classification task based on the existing sentence
similarity techniques. It also shows that our solution generalizes well on
low corpus and requires no training.

Key words: Sentence Similarity, Word Embeddings, Natural Language
Processing, Sliding Window, N-grams, Text Classification.

1 Introduction

Determination of sentence similarity in natural language processing has a wide
range of applications. In applications like Chatbots, the uses of sentence simi-
larity include estimating the semantic meaning between the user text input and
button text. Hence, such applications need to have a robust algorithm to esti-
mate the sentence similarity which can be used across variety of domains. Well
there are several reasons we want to infer meaning from raw text. One reason
is that the field of NLU aims at building systems that understand what you
say or write to them, trigger actions based on that and convey back meaningful
information. Refer Figure 1 for example.

There are currently many competing schemes for learning sentence embed-
dings [1]. While simple baselines like averaging word embeddings works consis-
tently. A few novel unsupervised and supervised approaches, as well as multitask
learning [2] schemes have emerged and lead to interesting improvements.



Fig. 1. The primary goal of the dialogue systems is to understand the user’s input or
goal by using NLU techniques, the bot must manage to achieve a goal by showing the
appropriate action.

A simple approach [3] using WMD (Word Mover’s Distance), which measures
the dissimilarity between two sentences as the minimum amount of distance that
the embedded words of one sentence need to travel to reach the embedded words
of another sentence. The most recent approach [4] to sentence level semantic
similarity is based on unsupervised learning from conversational data. These ap-
proaches process the sentences in a high dimensional space and doesn’t work on
small sentences so it’s very hard to learn direct sentence embeddings. And the
most recent Sentence Encoder models [5] Transformer encoder and Deep Aver-
aging Network (DAN) have a trade-off of accuracy and computational resource
requirement. And moreover you need to build the deep neural networks (DNN)
or more sophisticated architectures and train the model with large corpus.

Here we propose methods which are based on Cosine similarity calculation
along with Sliding window and weighted n-gram. The proposed approach is fairly
simple in architecture and outperforms the latest universal sentence encoder
technique [5].

2 Related Work

Sentence similarity has many interesting applications. Examples include conver-
sational agent with script strategies [6] and the Internet. The recent work in



the area of natural language processing has contributed valuable solutions to
calculate the semantic similarity between words and sentences. Although much
research has been done on measuring long text similarity, the computation of
sentence similarity is far from perfect [7, 8, 9]. We propose to compute sen-
tence similarity between a very short sentence (1-3 words) and a variable-length
sentence.

Bag of word cosine similarity does not take care of word order in a sentence.
For example, “Do I not look good?” and “I do not look good.” will have 100%
cosine similarity score. For document similarity, weighted n-Gram over cosine
similarity is being suggested in 3.2.2. We took n-Gram weighting formula from
the paper [10].

The use of unsupervised word embedding representation of words as vectors
to preserve semantic information [11]. Word wise sum of vectors or average of the
vectors also produces a vector with the potential to encode meaning. The mean
was used as baseline in [12]. The sum of word embeddings first considered in [11]
for short phrases, it was found to be an effective model for summarization in [13].
The cosine distance, as is commonly used when comparing distances between
embeddings, is invariant between sum and mean of word embeddings. Both sum
and mean of word embeddings are computationally cheap models, particularly
given pretrained word embeddings are available. Deep learning solutions [14]
handles sentence similarity with variable-length but requires a huge chunk of
data to train and is resource heavy to train and maintain.

3 Model Architecture

The proposed methodologies use Word Embeddings and Cosine similarity for
word representation and calculate similarity score respectively.

3.1 Word Embedding and Cosine stacks

Word embeddings. Word embeddings computed using diverse methods are
basic building blocks for Natural Language Processing (NLP) and Information
Retrieval (IR). They capture the similarities between words [15] and as our ap-
proach is naturally dependent on a word embedding we’ve chosen FastText [10]
over other embeddings because first, it takes in to account subword information
i.e., each word w is represented as a bag of character n-gram. That means that
even for previously unseen words (e.g. due to typos), the model can make an
educated guess towards its meaning, thus allowing to learn reliable represen-
tation for rare words. Inherently, this also allows you to capture meaning for
suffixes/prefixes. Second, and most importantly, we notice that the proposed
approach provides very good word vectors even when using very small training
datasets.

Cosine similarity. The cosine similarity between two vectors (or two sen-
tences on the Vector Space) is a measure that calculates the cosine of the angle
between them. This metric is a measurement of orientation and not magnitude;



it can be seen as a comparison between sentences on a normalized space because
we’re not taking into the consideration only the magnitude of each word count
(tf-idf) of each document, but the angle between the sentences. In order to ob-
tain the equation for cosine similarity we simply rearrange the equation of dot
product between two vectors.

→
a
· →

b
=
∥∥∥→

a

∥∥∥∥∥∥∥→b
∥∥∥∥ cosΘ

cosΘ =
→
a
· →

b∥∥∥→
a

∥∥∥∥∥∥∥→b
∥∥∥∥

(1)

3.2 Approaches

We detail two different methods which are as follows:

3.2.1 Sliding window with average weighted word vectors. In lan-
guage, the meaning of the sentence is reflected by the words in the sentence.
Previously established methods to estimate the semantic similarity between sen-
tences, use the weighted average of word embedding to represent the sentence
and cosine similarity to find the sentence similarity. But as we are comparing
the short and long sentences similarity, doing the weighted average on long sen-
tence doesn’t help, moreover it reduces the weightage of main action verb in the
overall representation which finally affects the sentence similarity. To overcome
this we use sliding window approach on long sentence, so that main action verb
weightage will be same in both inputs.

After applying sliding window on S2 we get a list of substrings S2’. We iterate
through the S2’, for vector representation of every window take the weighted
average of word embedding and find the cosine similarity for every window with
S1. The final similarity score for S1 and S2 is taken as the maximum score
obtained from the window comparisons. In Chatbot application False Positive
must be very less for better user experience. To further reduce false positives,
we tried weighted N-Gram approach.

3.2.2 Weighted n-gram vectors. N-grams are consecutive string of N words
for example trigrams are all possible three word long substrings of a given sen-
tence. To compare two sentences the sentences are tokenized into unigram, bi-
gram and trigram.

For every unigram of sentence S1 find similarity with every unigram of sen-
tence S2 and select the maximum score as match score for that unigram. All the
selected unigram scores are averaged over to get a final unigram score.



Fig. 2. Sliding window approach.

score1 =
1

N1

N1N2∑
n=1,n′1=1

max
n

(similarity(S1Un, S2Un′ ))

N1 = number of unigrams in S1

N2 = number of unigrams in S2

Similarly, for every bigram of S1 find similarity with every bigram of S2 and
select maximum score as match for that bigram. All the selected bigram scores
are averaged over to get a final bigram score.

score2 =
1

N1

N1N2∑
n=1,n′1=1

max
n

(similarity(S1Bn, S2Bn′ ))

N1 = number of bigrams in S1

N2 = number of bigrams in S2

The final similarity score of the sentences is taken as the weighted sum of
the final similarity scores of unigrams, bigrams and trigrams.



Fig. 3. Weighted n-gram approach.

sentence similarity =

G∑
g=1

wg ∗ scoreg

Where wg =
g∑G
g=1 g

As discussed in section 3.1, we used cosine similarity on averaged word em-
bedding to calculate similarity between n-grams.

4 Results

Here, we describe the data set which is a conversational data found in Chabot
builder based NLP engine environment. We then compare the 3.1 and 3.2 sec-
tions with latest Google’s Universal Sentence encoder based sentence similarity
approach.

4.1 Dataset

Although a few related studies have been published, there are currently no suit-
able benchmarks datasets (or even standard text sets) for the evaluation of



similarity between long and short sentences. Dataset has been generated for the
evaluation of long and short sentence similarity scenarios which is very specific to
conversational agents. Here, the dataset has been structured in to two columns,
first the long sentence which imitates user input and the second have short text
which is typically resembles the button text in the chat conversation.

Table 1. Sample test dataset.

User Input Button Text

Scrap my order
Junk my order Cancel Order
Drop my order
Display recently viewed items
Open items I just viewed Show recent items
Show my last seem items

4.2 Sentence Similarity

A testing instance is a pair of button text and its user input, the similarity
between each user input and button text is calculated. Based on similarity score
each comparison is categorized as positive or negative. Comparison between
button text and its user input is deemed positive if the similarity score is above
threshold (0.9). Similarly, the comparison between button text and other user
input is deemed positive if the similarity score is below the threshold (0.9). We
used the performance metric precision, F1 Score and recall for evaluating our
solution.

Table 2. Results with our approaches vs Universal Sentence Encoder.

Metrics/Approaches
Google Universal
Sentence Encoder

Sliding Window with Average
Weighted Vectors

Weighted N-gram
Vectors

Recall 0.078944153 0.259318293 0.94086506
Precision 0.902234637 0.650769231 0.922677565
F1 Score 0.145184852 0.370857443 0.931682561
Accuracy 0.925640274 0.929853372 0.988025415

Our model performed better compared to Google’s sentence similarity in
terms of F1 and Recall.



5 Conclusion

In this work, we proposed the sliding window with average weighted word vec-
tors and Weighted n-gram vectors for developing the input semantics vector.
Proposed method replaces the sentence embedding approach with simple word
embedding based sentence representation.

For sentence similarity of long vs short sentence, our approaches do not need
large dataset for training. The recent conversational agent platforms provides
ML solutions as a service and developers provides dynamic data for training,
the platform needs to manage multiple developers data at a time. And, it’s very
complex and costly task to train model every time. We referred a dataset1 be-
cause the problem doesn’t have any suitable benchmarks. On Sentence Similarity
tasks, we achieved much improved results than latest Google’s solution and also
it outperformed many previously reported ensembles.

We are excited about the future use of our approaches and plan to apply
for text classification tasks.We plan to improve the word representation using
dependency parsing and constituency parsing information. And, we are also,
planning to apply other vector Similarity method than cosine.

1 https://github.com/shashavali-d/SentenceSimilarity



Bibliography

[1] Rücklé, A., Eger, S., Peyrard, M., Gurevych, I.: Concatenated p-mean
word embeddings as universal cross-lingual sentence representations. CoRR
abs/1803.01400 (2018)

[2] Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Learning general pur-
pose distributed sentence representations via large scale multi-task learning.
In: International Conference on Learning Representations. (2018)

[3] Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embed-
dings to document distances. In: Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume 37.
ICML’15, JMLR.org (2015) 957–966

[4] Yang, Y., Yuan, S., Cer, D., Kong, S., Constant, N., Pilar, P., Ge, H., Sung,
Y., Strope, B., Kurzweil, R.: Learning semantic textual similarity from
conversations. CoRR abs/1804.07754 (2018)

[5] Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R.S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y., Strope, B., Kurzweil,
R.: Universal sentence encoder. CoRR abs/1803.11175 (2018)

[6] Allen, J.: Natural Language Understanding. Benjamin-Cummings Publish-
ing Co., Inc., Redwood City, CA, USA (1988)

[7] Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic
analysis. Discourse Processes 25 (1998) 259–284

[8] Hatzivassiloglou, V., Wiebe, J.M.: Effects of adjective orientation and grad-
ability on sentence subjectivity. In: Proceedings of the 18th Conference
on Computational Linguistics - Volume 1. COLING ’00, Stroudsburg, PA,
USA, Association for Computational Linguistics (2000) 299–305

[9] Landauer, T.K., Laham, D., Rehder, B., Schreiner, M.E.: How well can
passage meaning be derived without using word order ? a comparison of
latent semantic analysis and humans. (1997)

[10] Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors
with subword information. CoRR abs/1607.04606 (2016)

[11] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed
representations of words and phrases and their compositionality. CoRR
abs/1310.4546 (2013)

[12] Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word
representation. In: Empirical Methods in Natural Language Processing
(EMNLP). (2014) 1532–1543

[13] Le, Q.V., Mikolov, T.: Distributed representations of sentences and docu-
ments. CoRR abs/1405.4053 (2014)

[14] Ramaprabha, J., Das, S., Mukerjee, P.: Survey on sentence similarity eval-
uation using deep learning. Journal of Physics: Conference Series 1000
(2018) 012070

[15] Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic
language model. J. Mach. Learn. Res. 3 (2003) 1137–1155


