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Abstract. This paper proposes a speech emotion recognition method based on 

speech features and speech transcriptions (text). Speech features such as Spec-

trogram and Mel-frequency Cepstral Coefficients (MFCC) help retain emotion-

related low-level characteristics in speech whereas text helps capture semantic 

meaning, both of which help in different aspects of emotion detection. We exper-

imented with several Deep Neural Network (DNN) architectures, which take in 

different combinations of speech features and text as inputs. The proposed net-

work architectures achieve higher accuracies when compared to state-of-the-art 

methods on a benchmark dataset. The combined MFCC-Text Convolutional 

Neural Network (CNN) model proved to be the most accurate in recognizing 

emotions in IEMOCAP data. We achieved an almost 7% increase in overall ac-

curacy as well as an improvement of 5.6% in average class accuracy when com-

pared to existing state-of-the-art methods. 

Keywords: Spectrogram, MFCC, Speech Emotion Recognition, Speech Tran-

scription, CNN 

1 INTRODUCTION 

A majority of natural language processing solutions, such as voice-activated sys-

tems, chatbots, etc. require speech as input. Standard procedure is to first convert this 

speech input to text using Automatic Speech Recognition (ASR) systems and then run 

classification or other learning operations on the ASR text output. Kim et al. [1] trained 

CNNs on top of pre-trained word vectors for sentence-level classification and achieved 

state-of-the-art results on multiple benchmarks. Zhang et al. [2] used character level 

CNNs for text classification and showed comparable results against traditional models 

such as bag-of-words, n-grams and their TF-IDF variants, word-based ConvNets and 

Recurrent Neural Networks (RNN). 

Human-computer interaction can get more interactive and personalized as computers 

improve in predicting the current emotional state of the human speaker, helping them 

in distinguishing different contextual meanings of the same word. ASR resolves varia- 
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tions in a speech from different users using probabilistic acoustic and language models 

[3], which results in speech transcriptions being speaker independent. This might be 

good enough for most applications, but is an undesired result for systems which rely on 

knowing the intended emotion to function correctly. State-of-the-art ASR systems pro-

duce outputs with high accuracy but end up losing a significant amount of information 

that suggests emotion from speech. This gap has resulted in Speech-based Emotion 

Recognition (SER) systems becoming an area of research interest in the last few years. 

Speech is one of the natural ways for humans to express their emotions. Moreover 

speech is easier to obtain and process in real time scenarios, which is why most appli-

cations that depend on emotion recognition work with speech. A typical SER system 

works on extracting features such as spectral features, pitch frequency features, formant 

features and energy related features from speech, following it with a classification task 

to predict various classes of emotion [4] [5]. Bayesian Network model [6] [7], Hidden 

Markov Model (HMM) [8], Support Vector Machines (SVM) [9], Gaussian Mixture 

Model (GMM) [10] and Multi-Classifier Fusion [11] are few of the techniques used in 

traditional classification tasks. 

Since the last decade, Deep Learning techniques have contributed significant break-

throughs in natural language understanding (NLU). Deep Belief Networks (DBN) for 

SER, proposed by Kim et al. [12] and Zheng et al. [13], showed a significant improve-

ment over baseline models [5] [11] that do not employ deep learning, which suggests 

that high-order non-linear relationships are better equipped for emotion recognition. 

Han et al. [14] proposed a DNN-Extreme Learning Machine (ELM), which uses utter-

ance-level features from segment-level probability distributions along with a single hid-

den layer neural net to identify utterance level emotions, although improvement in ac-

curacies were limited. Fayek et al. [15] made use of deep hierarchical architectures, 

data augmentation and regularization with a DNN for SER, whereas Zheng et al. [16] 

used Spectrograms with Deep CNNs.  Vladimir et al. [17] trained DNNs on a sequence 

of acoustic features calculated over small speech intervals along with a probabilistic-

natured CTC loss function, which allowed the consideration of long utterances contain-

ing both emotional and unemotional parts and improved recognition accuracies. Lee et 

al. [4] used a bi-directional LSTM model to train the feature sequences and achieved 

an emotion recognition accuracy of 62.8% on the IEMOCAP [18] dataset, which is a 

significant improvement over DNN-ELM [14]. Satt et al. [19] used deep CNNs in com-

bination with LSTMs to achieve better results on the IEMOCAP dataset. 

In recent years researchers have been looking into the use of multimodal features for 

emotion recognition. Tzirakis et al. [20] proposed an SER system that uses auditory 

and visual modalities to capture emotional content from various styles of speaking. Za-

deh et al. [21] proposed a Tensor Fusion Network, which learns intra-modality and 

inter-modality dynamics end-to-end, ideal for the volatile nature of language online. 

Ranganathan et al. [22] experimented with Convolutional Deep Belief Networks 

(CDBN), which learn salient multimodal features of expressions, to achieve good ac-

curacies. 

In this work, we propose a robust technique of emotion classification using speech 

features and transcriptions. The objective is to capture emotional characteristics using 

speech features, along with semantic information from text, and use a deep learning 
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based emotion classifier to improve emotion detection accuracies. We present different 

deep network architectures to classify emotion using speech features and text. The main 

contributions of the current work are: 

- Proposed a CNN model for emotion classification using Speech features 

(MFCC, Spectrogram) 

- Proposed a CNN model for emotion classification using both speech features 
(MFCC, Spectrogram) and transcriptions 

2 PROPOSED METHODS 

In this paper, we consider speech transcriptions along with its corresponding speech 

features – Spectrogram and MFCC, which together provide a deep neural network both 

semantic relationships and the necessary low-level features required to distinguish 

among different emotions accurately. Experiments have been performed on speech 

transcriptions and speech features independently as well as together in an attempt to 

achieve accuracies greater than existing state-of-the-art methods. Different combina-

tions of inputs have been used in different DNN architectures, the details of which have 

been discussed in the following section. 

2.1 CNN Model based on Text (Model 1) 

Speech transcriptions are widely used in various sentiment analysis applications [1] [2]. 

In emotion detection, it is important for a model to understand the context of the utter-

ance correctly to be able to predict its intent accurately. Let us take the word “good” 

for example. Used on its own it is hard to know the context in which this word has been 

used. Although the word “good” implies something positive, it could have possibly 

been part of a larger conversation and could have been used in a sarcastic way. The 

following is an example utterance from the IEMOCAP data, “It’ll be good. Wow! 

That’s great.” Here we can clearly see, without any ambiguity, the context in which the 

word “good” is used. DNNs are good at learning such contextual information and aid 

in considering the bigger picture rather than focusing on individual terms. The CNN 

model described in this section takes speech transcriptions, in the form of word embed-

dings, as input to detect emotion. CNNs can directly be applied to word embeddings 

without prior information on their semantic contexts. This strongly suggests that lan-

guage can be interpreted as a signal no different from other signals. 

Word embedding describes feature learning and language modelling techniques 

where words and phrases from a given vocabulary are mapped to vectors or real num-

bers. As word embeddings are trained to predict the surrounding words in the sentence, 

these vectors can be viewed as representing the contexts in which words are distributed 

and can thus be considered an ideal representation for DNNs. Fig. 1 shows the word 

embedding plot for three classes of emotions (Happiness, Sadness, and Anger) in two 

dimensions. The plot clearly shows words either synonymous with each other or used 
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in similar contexts, such as felicity, cheerful and like are grouped together. Word em-

beddings close to each other could have the same emotion associated with it and a DNN 

can pick up on these contextual patterns during training.  

 

 

Fig. 1. t-SNE visualization of word embedding vectors 

Fig. 2 represents the architecture of the text-based CNN model used in our experiments. 

Transcription sequences (embedded vectors), which is the input to this model, are con-

volved with kernels of different sizes. The maximum number of words in any given 

utterance is set to 128, which covers almost the entirety of the IEMOCAP dataset. One 

feature from each of the different convolutional layers is picked by the max-pool layer. 

These features are fed to a single FC layer. Finally, a softmax layer is used to perform 

classification. We experimented with batch-normalization, a technique which helps 

prevent the model from over-fitting and also from being too sensitive to the initial 

weight, and also varied dropout rates from 0.25 to 0.75. An improvement in conver-

gence rate is also observed with the use of batch-normalization.  

 

 

Fig. 2. Text-based CNN model 

Word embeddings, from Google Word2Vec [23], of size 300 are used in this experi-

ment. Filter widths are kept consistent with the length of the word embedding, but the 

heights vary between 12, 8, 6 and 3. This is done in an attempt to take advantage of 

filters of different sizes. These filters are applied in parallel, and the coefficients are 

tuned as a part of the training process. 
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2.2 CNN Model based on Speech Features 

Recent research into speech processing has shown the successful application of deep 
learning methods and concepts such as CNNs and Long Short Term Memory (LSTM) 
cells on speech features. CNNs have been shown, by extensive research, to be very 
useful in extracting information from raw signals in various applications such as speech 
recognition, image recognition, etc. In our work, we use Spectrograms and MFCCs, as 
they are commonly used to represent speech features, along with CNNs for emotion 
detection. 

CNN Model with Spectrogram input (Model 2A) 

 

A spectrogram is a representation of speech over time and frequency. 2D convolu-

tion filters help capture 2D feature maps in any given input. Such rich features cannot 

be extracted and applied when speech is converted to text and or phonemes. Spectro-

grams, which contain extra information not available in just text, gives us further capa-

bilities in our attempts to improve emotion recognition. 

The following model uses Mel-frequency Spectrogram as input to a 2D CNN. Spectro-

grams are generated when Short Term Fourier Transform (STFT) is applied on win-

dowed audio or speech signal. The audio is sampled at 22050Hz. Windowing is then 

carried out on each audio frame using a “hann” window of length 2048. Fast Fourier 

Transform (FFT) windows of length 2048 are then applied on the said windowed audio 

samples with an STFT hop-length equal to 512. The obtained Spectrogram magnitudes 

are then mapped to the Mel-scale to get Mel-spectrograms. 128 Spectrogram coeffi-

cients per window are used in this model. The Mel-frequency scale puts emphasis on 

the lower end of the frequency spectrum over the higher ones, thus imitating the per-

ceptual hearing capabilities of humans. We used the "librosa" python package, 

along with the above mentioned parameters, to compute the Mel-spectrograms. A sam-

ple Spectrogram corresponding to audio “I cannot... you are not here by choice. Nobody 

would ride this bus by choice.” is shown below in Fig. 3. 

 

Fig. 3. Spectrogram of a sample audio file 

In our CNN model, we take Spectrogram input with a maximum image width of 256 

(number of windows). Since our dataset has audios of varying lengths, we trim long 

duration audio files to a fixed duration (6 seconds), which covers 75 percentile of all 

audio data samples of the dataset. This decision was made under the assumption that 
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the frequency variations that characterize the emotionality of the speech data will be 

present throughout the dialogue and hence will not be lost by this reduction in length. 

Fig. 4 details the 2D CNN architecture used to detect emotion using Spectrograms. 

A set of 4 parallel 2D convolutions are applied on the Spectrogram to extract its fea-

tures. The input shape of the Spectrogram image is 128 x 256 (number of Mels x num-

ber of windows). 200 2D-kernels are used for each of the parallel convolution steps. 

Figuring out the optimal kernel size is a difficult and time taking task, which may de-

pend on several factors all which cannot be clearly defined. To prevent choosing one 

single kernel size that could possibly be sub-optimal we decided to use kernels of dif-

ferent sizes, each of which is fixed for a single parallel path, to take advantage of the 

different patterns picked up by each kernel. The sizes of each of the kernels in their 

respective parallel CNN paths are 12 x 16, 18 x 24, 24 x 32, and 30 x 40. The features 

generated in the said convolution layers are then fed to their respective max-pool layers, 

which extracts 4 features from each filter as the pool size is exactly half along the width 

and height of the convolution output. The extracted features are fed to the Fully Con-

nected (FC) layer. This model makes use of two FC layers of sizes 400 and 200. Batch 

normalization is applied to both the FC layers. We experimented with dropout rates 

varying between 25% and 75% for the first FC layer but excluded it completely from 

the second FC layer. The activation function used in the convolutional layers and the 

first FC layer is the Rectified Linear Unit (ReLU). The output of the last FC layer is 

then fed to a Softmax layer, which classifies the input speech signal among 4 different 

emotion classes. “Adadelta” is the optimization technique used during training. 

 

 

Fig. 4. Spectrogram/MFCC based CNN model 

We experimented with another variant of this model (refer Model 2B). The architecture 

of this model is quite similar to Model 2A but is augmented with four additional parallel 

convolution layers. Spectrograms, which have been down-sampled by 2 in both time 
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and frequency, are taken as the input. The convolutional filters in this model are kept 

as is in Model 2A. This experiment was conducted in an attempt to extract even higher 

level features as compared to the ones in Model 2A. The performance of this model is 

discussed in Table 1. 

CNN Model with MFCC input (Model 3) 

Mel Frequency Cepstrum (MFC), refer Fig. 5, is a representation of the Short-Term 

Power Spectrum of sound. It is based on a linear cosine transform of a log power spec-

trum on a non-linear Mel-scale of frequency. As MFCC is a popular speech feature 

widely used in various speech processing applications, we decided to use the same in 

our experiments on emotion detection. 

 

Fig. 5. MFCC of the audio file being referred to in Fig. 3 

The hyper-parameters and the python package (librosa) used for MFCC genera-

tion are similar to the ones described for Spectrogram generation. The only difference 

is that 40 MFCCs per window are generated compared to the earlier mentioned 128 

Spectrogram coefficients per window. 

This model also consists of 4 sets of parallel convolutional layers, followed by max-

pooling layers and 2 more FC layers, similar to the one described in the previous sec-

tion. As the input size is different to that of Model 2A and 2B we experimented with 

kernels of different sizes and eventually chose the set of 4 x 6, 6 x 8, 8 x 10 and 10 x 

12 kernels for this model. 

2.3 Combined CNN Model based on both Text and Speech Features 

We experimented with 3 different combined models in an attempt to bring together 

different strengths offered by each of Spectrogram, MFCC and speech transcriptions. 

Since inputs are different and thus of different dimensions, we use separate CNN chan-

nels, as represented in Fig. 6, for each. The models are: 

─ Spectrogram and MFCC model (Model 4A) 

─ Spectrogram and text model (Model 4B) 

─ MFCC and text model (Model 4C) 
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Fig. 6. Representative CNN architecture  

In Model 4A the Spectrogram channel consists of 4 parallel 2D-CNN layers with ker-

nels of different sizes. Like the Spectrogram channel the MFCC channel also consists 

of 4 parallel 2D-CNN layers. Outputs from both the channels are fed to one FC layer 

each. The outputs of both the FC layers, after normalization, are concatenated and fed 

to the 2nd FC layer. The final step is to feed the outputs of the last FC layer to a softmax 

layer. Architectures of Model 4B and 4C are similar to that of Model 4A. Both the 

models have a text channel that takes word embeddings as input but alternate between 

Spectrogram and MFCC as the speech feature. 

3 DATASET 

We used the University of Southern California’s Interactive Emotional Motion Capture 

(USC-IEMOCAP) database in this work. The IEMOCAP corpus comprises of five ses-

sions where each session includes the conversation between two people, in both 

scripted and improvised topics and their corresponding labeled speech text (both pho-

neme and word level). Each session is acted upon and voiced by both male and female 

voices to remove any gender bias. The audio-visual data thus collected is then divided 

into small utterances of length varying between 3-15 seconds, which are then labelled 

by evaluators. Each utterance is evaluated by 3-4 assessors. The assessors had the op-

tion of labelling every utterance among 10 different emotion classes (neutral, happi-

ness, sadness, anger, surprise, fear, disgust frustration, excited, other). In our experi-

ments, we have considered only 4 of them (anger, excitement (happiness), neutral and 

sadness) so as to remain consistent with earlier research. We chose utterances where at 

least 2 experts were in agreement with their decision and only used improvised data, 

again being consistent with prior research, as the scripted text shows a strong correla-

tion with labeled emotions and can lead to lingual content learning, which can be an 

undesired side effect. The final experimental dataset extracted from the original 

IEMOCAP data comprised of 4 classes named Neutral (48.8% of the total dataset), 
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Happiness (12.3%), Sadness (26.9%) and Anger (12%). As there is data imbalance be-

tween different emotional classes, we present our results on overall accuracy, average 

class accuracy and also show the confusion matrix (refer to Table 2). 

4 EVALUATION AND DISCUSSION 

4.1 Emotion classification on standard dataset 

In congruence with previous research efforts, we show the effectiveness of the proposed 

methods for emotion detection with our benchmark results on IEMOCAP dataset. We 

have used stratified K-fold for splitting training and test data. Some recent results on 

emotion classification are presented in Table 1, along with our 5-fold cross-validation 

experimental results. Both overall and class accuracies are presented for better compar-

ison, where overall accuracy is measured based on total counts irrespective of classes, 

and class accuracy is the mean of accuracies achieved in each class. 

Table 1. Comparison of accuracies 

Methods Input   Overall 

Accuracy 

    Class 

Accuracy 

Lee [4] Spectrogram 62.8 63.9 

Satt [19] Spectrogram 68.8 59.4 

Model 1 Text 64.4 47.9 

Model 2A Spectrogram 71.2 61.9 

Model 2B Spectrogram  71.3 61.6 

Model 3   MFCC 71.6 59.9 

Model 4A Spectrogram & MFCC 73.6 62.9 

Model 4B Text & Spectrogram 75.1 69.5 

Model 4C Text & MFCC 76.1 69.5 

 

A text-only based CNN model fails to capture all the low-level features of speech 
signals and thus does not achieve a very high emotion detection accuracy. As mentioned 
above the combined MFCC and Spectrogram based CNN model achieves an overall 
emotion detection accuracy improvement close to 4% over existing state-of-the-art 
methods. The combined Text-MFCC model performs even better and beats the bench-
mark class accuracy by 5.5% and the overall accuracy by close to 7%. As mentioned 
earlier, the IEMOCAP data is not well balanced with respect to the amount of data 
amongst various classes of emotion. In Table 2 we present the confusion matrix, which 
shows misclassifications between each pair of emotion classes in Model 4C. From this 
table, we can observe that Neutral and Sadness classes have a high detection rate 
whereas Happiness and Anger classes suffer more misclassifications. This bias in clas-
sification accuracy could possibly be attributed to language experts more easily being 
able to identify sadness and neutral emotions in speech, whereas the task of labelling 
the other emotions could have been more subjective. 
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The published state-of-the-art emotion detection accuracy on data from the 
IEMOCAP corpus, to the best of our knowledge, is given in [19] and is based on the 
same evaluation setup used by us; it reports 68.8% and 59.4% for overall and class 
accuracies respectively. Jin et al. [5] and Tripathi et al. [24] report overall accuracies 
of 69.2% and 71.04% respectively, but the parameters on which data was selected is 
different to that of ours. 

Table 2. Confusion Matrix in Percentage on the Model 4C 

Class Labels Prediction 

Neutral Happiness Sadness Anger 

Neutral 81.30 4.74 11.68 2.45 

Happiness 37.44 49.24 10.76 2.54 

Sadness 13.94 1.08 84.06 0.89 

Anger 30.43 3.84 2.29 63.41 

4.2 Discussion 

The text-only model provides important semantic relationships necessary to detect the 

intended emotion in an utterance. But it doesn't beat the state-of-the-art results, possibly 

due to the fact that converting speech to text results in the loss of very important low-

level features which would have otherwise been vital for emotion detection. Speech 

features based models seem to perform better in our experiments as they contain infor-

mation over both time and frequency, which when convolved with 2D kernels captures 

2D feature maps much richer in information. The Spectrogram model referred to in 

Model 2A gives an overall accuracy of 71.2%, whereas its further complex variant re-

ferred to in Model 2B gives an emotion detection accuracy of 71.3%. The MFCC based 

model also gives a comparable result to the previously described models, coming in 

with an accuracy of 71.6%, an almost 2.5% improvement over existing state-of-the-art 

results. A sharp rise in accuracy can be seen when the CNN models get multiple inputs, 

the reason possibly being that different types of inputs offer specific features, all of 

which are needed to improve emotion detection. Model 4A, which takes in both Spec-

trogram and MFCC, gives an accuracy of 73.6%. Model 4B and 4C, which work with 

Text-Spectrogram and Text-MFCC respectively, provide an overall accuracy of 75.1% 

and 76.1%, the latter being a 7% improvement over benchmark results. 

5 CONCLUSIONS 

In this paper, we have proposed multiple CNN based architectures to work with speech 

features and transcriptions. Speech features based 2D CNN model provides better ac-

curacy relative to state-of-the-art results, which further improves when combined with 

text. The combined Spectrogram-MFCC model results in an overall emotion detection 

accuracy of 73.1%, an almost 4% improvement to the existing state-of-the-art methods. 

Better results are observed when speech features are used along with speech transcrip-

tions. The combined Spectrogram-Text model gives a class accuracy of 69.5% and an 
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overall accuracy of 75.1% whereas the combined MFCC-Text model also gives a class 

accuracy of 69.5% but an overall accuracy of 76.1%, a 5.6% and an almost 7% im-

provement over current benchmarks respectively. The proposed models can be used for 

emotion-related applications such as conversational chatbots, social robots, etc. where 

identifying emotion and sentiment hidden in speech may play a role in the better con-

versation. 
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