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Abstract. This paper firstly proposes a simple yet efficient generalized
approach to apply differential privacy to text representation (i.e., word
embedding). Based on it, we propose a user-level approach to learn per-
sonalized differentially private word embedding model on user generated
contents (UGC). To our best knowledge, this is the first work of learn-
ing user-level differentially private word embedding model from text for
sharing. The proposed approaches protect the privacy of the individual
from re-identification, especially provide better trade-off of privacy and
data utility on UGC data for sharing. The experimental results show that
the trained embedding models are applicable for the classic text analysis
tasks (e.g., regression). Moreover, the proposed approaches of learning
differentially private embedding models are both framework- and data-
independent, which facilitates the deployment and sharing. The source
code is available at https://github.com/sonvx/dpText.
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1 Introduction

Word embedding, also known as word representation, represents a word as a
vector capturing both syntactic and semantic information, so that the words
with similar meanings should have similar vectors [15]. This representation has
two important advantages: efficient representation due to dimensionality reduc-
tion, and semantic contextual similarity due to a more expressive representa-
tion. Thanks for these advantages, word embedding is widely used to learn text
representation for text analysis tasks. Some commonly used word embedding
models include Word2Vec [18], GloVe [22], and FastText [5] and successfully
applied in a variety of tasks like parsing [2], topic modeling [3], and document
classification [25]. Training word embedding model on big data requires high
performance computing resources. For example, Word2Vec model was learned
on 100 billion words from Google News corpus, and the FastText model of Face-
book was learned from 840 billion words. Thus, once an efficient word embed-
ding model was trained, it is most likely to be widely shared among researchers
and communities. However, since word embedding models preserve pretty much
semantic relations between words, the shared pre-trained models may lead to
privacy breaches especially when they were trained from UGC data such as
tweets and Facebook posts. For instance, user first name (e.g., “John”), last
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name (“Smith”) and disease (e.g., “prostatitis”) may be represented as simi-
lar vectors in word embedding model. Even user real name is absent from the
pre-trained models, other available information such as username, address, city
name, occupation, could be represented with similar vectors, with/without aux-
iliary data, leading to re-identification risk to discover the individual to which
the data belongs to, by using some approaches like author identification [19], age
and gender prediction [9]. Even further, the latent privacy breaches may cause
a follow-up security issue. Figure 1 shows a prank on Facebook to get other
users’ passwords. In case this type of information is learned and embedded in
the embedding model, there exists a possible risk that one can exploit user as a
query to the shared embedding model and get their password. One might argue
that the sensitive information likes user, password should not be leaked out and
should have been removed from the embedding model. However, the purpose of
learning from sensitive data is to learn the model without privacy leakage for
facilitating research on sensitive data. To protect privacy, we statistically guar-
antee the chance to re-identify individuals by using output from the pre-trained
models. Thanks to that, further research on the sensitive data at large scale
can be possible such as “what is the common patterns between users when they
configure their passwords?” (to analyze security risks) or “what diseases are
normally unspeakable but get shared online?” (to analyze user behaviours on
social networks). Similarly, this approach can be applied to user-level medical
text data, which is very sensitive, to make research on medical data possible.
Figure 2 shows our approach to learn data distribution from private UGC data
to facilitate studies on down-stream tasks.

Figure 1: A prank causes user credentials leak in FB data

As discussed above, it is critical to protecting privacy when learning embed-
ding model for UGC data sharing. To address the challenge of revealing infor-
mation about an individual in the training data, Dwork et al. [6, 7] proposed
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differential privacy technique which provides a strong guarantee of privacy, and
soon became a well known standard in privacy preservation. However, differen-
tial privacy is a general mechanism and how to apply to different data type is
a non-trivial problem. Some previous work applying differential privacy on text
data [16, 30, 24] was either dependent on pre-defined sensitive features or appli-
cable on federated framework instead of centralized data. The main difference is
that they applied differential privacy to prevent the text data from personal data
breaches, while this paper applies differential privacy to learn a shareable word
embedding model from text data. Therefore, more challenges on privacy-budget
control and data utility preservation have to be addressed.

 Private   Down-stream Tasks 

Private- 
Embedding 

Public or Private
Corpus

Users: Researchers

Private Corpus

dpUGC

Fig. 2: Overview of our safe-to-share embedding model that can be used to fa-
cilitate research on sensitive data with privacy-guarantee.

1.1 Goal of the Paper

The goal of this paper is to develop effective and efficient approaches to apply
differential privacy on text data to learn differentially private word embedding
models. The ultimate purpose is to share the trained word embedding model,
which prevents the highly latent risk of privacy breaches in word embedding
models learning from UGC data and meanwhile maintains reasonable data util-
ity. The main contributions of this paper are:

– We propose a simple yet efficient generalized approach of applying differ-
ential privacy on text data to learn embedding model for UGC data sharing.

– We apply user-level privacy-guarantee on above differentially private word
embedding model to maintain better data utility.

– We conduct extensive experiments to evaluate the effectiveness of our
proposed approach to preserve data utility, especially we test the approaches on
text analysis task (i.e., regression).

The rest of this paper is organized as follows. Subsection 1.2 presents related
work. Section 2 shows some preliminaries of differential privacy and word embed-
ding. Section 3 presents the proposed approaches to learn differentially private
word embedding. Experiments settings and evaluation results are discussed in
Section 4 and 5. Section 6 concludes the paper followed by future work.

1.2 Previous Work

Anonymization [4] and sanitization [28] have been widely used in privacy pro-
tection. Differential Privacy later emerged as the key privacy guarantee by
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providing rigorous, statistical guarantees against any inference from an adver-
sary [6]. Differential privacy has been applied in many research on different types
of data including images [10, 1, 21, 29], network [20], text [16, 30, 24], and general
neural network architectures [23]. There is a family of algorithms called Private
Aggregation of Teacher Ensembles (PATE), which becomes popular and con-
tributes to research on differential privacy for machine learning. The advantage
of PATE is to achieve private learning by coordinating the activity and shar-
ing weights between different learning models [21]. Two limitations of PATE
include: 1) it lacks flexibility and modularity when integrating to other frame-
works, and 2) PATE was only trained on image data, which is not applicable
to text data. Due to the different representation formats, differential privacy on
text data reserves more difficulties. To apply differential privacy on text data,
[16, 30, 24] transformed the problem of differential privacy on text to language
modeling problem, which aims to protect privacy for next word suggestion task
on user devices. They are different from what we are addressing in this paper
since their federated models require both clients and servers. Whereas our dif-
ferentially private word embedding model is learned from centralized data, and
further used for sensitive data sharing.

2 Preliminaries

2.1 Differential Privacy

To address the challenge of revealing information about an individual in the
training data, differential privacy [6, 7, 13, 14] essentially hides any individ-
ual by ensuring that the resulting model is nearly indistinguishable from the
one without that individual. Differential privacy provides a strong guarantee of
privacy even when the adversary has arbitrary external knowledge. The basic
idea is to add enough noise to the outcome (e.g., the model resulting from train-
ing) to hide the contribution of any single individual to that outcome. Let D
be a collection of data records, and one record corresponds to an individual. A
mechanism M : D → Rd is a randomized function mapping database D to a
probability distribution over some range. M is said to be differentially private
if adding or removing a single data record in D only affects the probability of
any outcome within a small multiplicative factor. The formal definition of (ε, δ)
differential privacy is:

Definition 1. [(ε-δ)-differential privacy] A randomized mechanismM is (ε,
δ)-differential privacy where ε ≥ 0, δ ≥ 0, if for all data records in D and D′

differing on at most one record, and ∀S ⊆ Range(M):

Pr [M(D) ∈ S] ≤ eε × Pr [M(D′) ∈ S] + δ

The values of (ε, δ) here are called privacy-budget. They control the level
of the privacy, i.e., smaller values of (ε, δ) guarantee better privacy but lower
data utility.

Privacy-budget: There are typically two types of privacy-budget: (1) global
privacy-budget [17], and (2) personalized privacy-budget [8]. The main difference
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is that, the global budget is counted to all users while the personalized budget
is counted based on different users. Therefore, personalized privacy-budget is a
better way to control data utilities and privacy due to the fine-grained privacy
budget.

As introduced above, D and D′ are adjacent datasets differing on at most
one record, McMahan et al. [16] introduced a user-level differential privacy,
where D and D′ are adjacent datasets differing on at most one user’s all records.
This definition will be used to form our Personalized DP-Embedding algorithm
in Section 3.

2.2 Word Embedding

Word embedding is one of the most popular representations of document vocab-
ulary. Simply speaking, they are vector representations of particular words. It is
capable of capturing the context of a word in a document, semantic similarity,
and relation with other words. Word2Vec[18] developed by Google, is one of the
most popular technique to learn word embeddings using a shallow neural net-
work. Specifically, they propose a neural network architecture (i.e., the skip-gram
model) that consists of an input layer, a projection layer, and an output layer to
predict nearby words. Given a sequence of words w1, . . . , wT in a corpus, each
word vector is trained to maximize the following log probability of neighboring
words:

1

T
ΣT
t=1Σj∈nb(t) log p(wj |wt)

where nb(t) is the set of neighbouring words of word wt and p(wj |wt) is the
normalized exponential probability (i.e., hierarchical softmax) of the associated
word vectors wj and wt.

3 Methodologies: Differentially Private Word Embedding

This section describes our proposed approaches toward differentially private
word embedding on text data. We start by introducing a generalized approach
to learn differentially private word embedding (Subsection 3.1). After that, we
reformulate the word embedding learning problem to user-level for personalized
differentially private embedding (Subsection 3.2).

3.1 Differentially Private (DP-) Embedding

Differently from most of the previous studies, which apply differential privacy
to image data, we implement algorithms for learning differentially private word
embedding on text data. Compared with image data (represented by pixel po-
sitions, sizes of geometric forms, shapes etc.), text data captures more semantic
and ambiguity, which makes it harder to preserve both privacy-guarantee and
data utilities. Before introducing our approach, we formulate the problem of
learning word embedding on text data as follows.
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Word embedding learning: Given a document corpus D = {d1, . . . , dn},
each document d ∈ D contains a sequence of words {w1, ..., w|m|} from a fixed
dictionary V . We use distributed representation and map every word in V to a
k-dimensional vector. The goal is to learn an embedding function f that outputs
a fixed length k embedding for every w ∈ V . k is called embedding size and
typically from 50 to 300 dimensions.

As explained in Section 2.1, the basic idea of differential privacy is to inject
noise to a model in order to make more difficulty of predictableness, thus more
difficult for hackers to predict the actual inputs. However, direct injection of noise
to a trained embedding model will deteriorate the model’s quality. Technically,
it would be better to insert noise during the learning process as we can optimize
both the performance of the model and its privacy by treating the noise as a
constraint. In the case of word2vec model, we can learn a differentially private
embedding matrix W by using a differential privacy optimizer such as DP-SGD
(differentially private stochastic gradient descent) [1]. In particular, we apply
noise to “gradient” during the training. As shown in Algorithm 1-a, at each
training step, a single training lot L is used (line 3). Each training lot might
have several minibatch B. But to make it simple, we consider L = B in this
case. A lot L is a random set of training samples in D with a predefined lot size
|L|. Afterward, we compute gradients (line 4-5) which then will be added with
noise (line 6-7) and applied to the standard gradient descent method (line 8-9).
At line 10, a privacy accountant is used to accumulate privacy spending during
the training process to ensure privacy guarantee. In the following, we will give
more details regarding loss function and privacy accountant.

Loss function: cross entropy loss is used as our loss function, which mea-
sures the probabilistic distance between the predicted probabilities p and the
true binary labels y. In our case, using one-hot encoding, the true label yi is 1
only when wi is the output word; yi is 0 otherwise. The loss function Lθ of the
model with parameter config θ aims to minimize the cross entropy between the
prediction and the ground truth, as lower cross entropy indicates high similarity
between two distributions.

Lθ = −
V∑
i=1

yi log p(wi|wI) = − log p(wO|wI) (1)

In the skip-gram model, the embedding matrix W and output matrix W ′

are a collection of input vectors and context vectors, respectively. Given one
word wi, its embedding vector wi is one row of W . Correspondingly, its context
(output) vector w′

i is a column of the output matrix W ′. The final output layer
applies softmax to compute the probability of predicting the output word wO
given wI , and therefore:

p(wO|wI) =
exp(w′

O
>
wI)∑V

i=1 exp(w′
O
>
wI)

Apply above to Equation (1), we have new loss function:



dpUGC: Learn Differentially Private Representation for UGCs 7

Lθ = − log
exp(w′

O
>
wI)∑V

i=1 exp(w′
i
>
wI)

= −w′
O
>
wI + log

V∑
i=1

exp(w′
i
>
wI)

In above loss function, the complexity of computing O log p(wO|wI) is pro-
portional to V , which is often large (105 to 107 terms). In what follows, we
will reduce the training cost by using Negative Sampling (NEG) [18], which
was employed to train Google word2vec model. NEG focuses on learning high-
quality word embedding rather than modeling the word distribution in natural
language. NEG loss approximates the binary classifier’s output with sigmoid
functions. Given an input word wI , the correct output word is known as w. In
the meantime, we sample M other words from the noise sample distribution Q,
denoted as w̃1, w̃2, . . . , w̃M ∼ Q. We label the decision of the binary classifier
as d, which can only take a binary value (d = 1 for positive samples, d = 0 for
negative samples). Thus, the final NEG loss function looks like:

Lθ = −[log p(d = 1|w,wI) +

M∑
i=1

Ew̃i∼Q log p(d = 0|w̃i, wI)] (2)

Differentially private word embedding model training: we employ
DP-SGD [1] to train the model using back-propagation. At each step of the dif-
ferentially private SGD (see Algorithm 1-a), we compute the gradient Oθf(θ, xi)
for a random minibatch B (we consider L = B in this case). Then we clip the
2-norm of each gradient belonging to the minibatch and compute their average.
In the final step, noise is added in order to protect privacy before taking a gra-
dient descent step using this ”noisy” gradient. For dataset D, mechanism M
(explained in Section 2.1) is then given by:

M(D) = Σi∈BÕ(f(xi)) +N (0, C2σ2I)

where Õ(f(xi)) denotes the gradients clipped with a constant C > 0. The
clipping is important since it helps to control gradient exploding and vanishing
problem [11].

Privacy-accountant: privacy-accountant keeps track of the privacy spend-
ings through the whole training procedure. It is an important part of differen-
tially private SGD. We applied an “accountant” procedure that computes the
privacy spendings at each access to the training data and the accountant accu-
mulates the cost at each step.

Thoughts: our experimental studies proved that the proposed approach
above is an efficient way to learn differentially private word embedding to guar-
antee privacy. In this approach, the privacy-budget (ε, δ) is either a hyperparam-
eter (i.e., must set before training) or must be accumulated after each training
epoch. The privacy budget, therefore, is dependent on the number of training
epochs, as it introduces noise into “gradients” of parameters in every training
step [23]. It is observed that when there is a small privacy budget, only a small
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number of epochs can be used to train the model [1]. While when the number
of training epochs needs to be large to guarantee the model accuracy, the above
approach may potentially sacrifice a portion of model utility. This observation
motivates us to further improve the proposed approach above.

One intuitive solution is to inject noise differently to each part of the training
data (e.g., add more noise into features which are less relevant to the model
output, and vice-versa [23]). However, in reality, it is not always easy to reason
what words in UGC are more significant/sensitive than others. For instance,
political opinion in Asia countries is a sensitive topic and even forbidden by law
in some countries (e.g., China). Conversely, they are less sensitive in the USA.
Based on the above observations and thoughts, we propose Personalised DP-
Embedding to control privacy-budget based on user privacy concerns.

3.2 Personalised DP-Embedding

To achieve differential privacy in learning word embedding, we need user-level
privacy [16]. Thus, we reformulate the problem of word embedding to accommo-
date user-level privacy, given the fact that in UGC, the mapping from user to
data is known.

User-level word embedding learning: Given a collection of user-level
data {D1, . . . , Du, . . . , Dk} where each user-level data Du contains a number
of documents about user u. Without loss of generality, we define that a data
collection D contains a set of n document {d1, d2, . . . , dn} and Du ⊆ D (1 ≤
u ≤ k). Each document d contains a sequence of m words {w1, . . . , wm} from a
fixed dictionary V . The different part from the original formalization (in Section
3.1) is that, each user-level data Du has its own privacy-budget (ε, δ)u. We do
not have to set a predefined budget before learning or redistribute noise based
on features as shown in [23]. Alternatively, we learn and protect people privacy
based on their needs [26]. During the training process, if privacy-budget (ε, δ)u
of user u is used up, the user-level data Du will no-longer be used (see Algorithm
1-b). In the algorithm (line 3), we firstly have to get a list of valid user-level data
D (by checking list of valid user U). Then L samples are drawn with probability
L/K (line 4). At line 5, we get list of users ULt

where the sampled examples
were taken. After this, we compute gradient (line 6-7), add noise (line 8-9), and
go descent (line 10-11). At line 12, we compute the current privacy spending
using privacy-accountant API of [1]. From line 13 to line 17, we update privacy
spending for all users ULt

, who get involved in the training step t, by the mean of
privacy spending at that training step t. Then we exclude any user that got out
of privacy-budget from U . One of the challenges in this approach is to obtain user
privacy concerns. Based on a previous work [27, 26], we found that the privacy-
budget can be predicted using a strong correlation between user personality and
their privacy concerns. Thus, we employed the model [26] to decide privacy-
budget of user-level data. Though the model was tested on a derived data, it is
sufficient to predict privacy concern degree for cold-start users (i.e., having no
user-defined privacy concern degree).

Personalized privacy-accountant: Based on the privacy accountant of
the DP-Embedding algorithm, we implement a personalized privacy-accountant
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Require: Examples {x1, . . . , xN}, loss function L(θ), embed dimension k
Ensure: return optimized θ to calculate W (k) - a learned DP-Embedding.

// Algorithm 1-a: DP-Embedding
1: Initialize θ0 randomly
2: for all round t = 0, 1, 2, . . . , T do
3: Take a random sample Lt with sampling probability Lt/N
4: Compute gradient
5: For each i ∈ Lt, compute gt(xi)← Oθ0L(θt, xi) // L is from (2)
6: Add noise
7: g̃t ← 1

L
(Σig̃t(xi) +N (0, σ2C2I)

8: Descent
9: θt+1 ← θt − ηtg̃t

10: M.accum priv spending(z)
11: end for
12:

Require: Examples {x1, . . . , xN}, loss function L(θ), embed dimension k
Ensure: return optimized θ to calculate W (k) - a learned DP-Embedding.

// Algorithm 1-b: Personalized DP-Embedding
1: Initialize θ0 randomly
2: for all round t = 0, 1, 2, . . . , T do
3: K ← (get list of samples from valid users U)
4: Take a random sample Lt ∈ K with sampling probability Lt/K.
5: ULt ← the set of users where the sample Lt come from.
6: Compute gradient
7: For each i ∈ Lt, compute gt(xi)← Oθ0L(θt, xi) // L is from (2)
8: Add noise
9: g̃t ← 1

L
(Σig̃t(xi) +N (0, σ2C2I)

10: Descent
11: θt+1 ← θt − ηtg̃t
12: (εt, δt) =M.get priv spending(z)
13: Update privacy spending for each user
14: for all user u ∈ ULt do
15: (ε, δ)u ← (ε, δ)u + (εt,δt)

L

16: If user u gets out of privacy-budget: U ← U \ {u}
17: end for
18: end for

Alg. 1: Algorithms of DP-Embedding and Personalized DP-Embedding. M is
the privacy account API of Abadi et al. [1].

for the Personalized DP-Embedding algorithm to control privacy-budget of user-
level data. Privacy-accountant can be used to 1) predict privacy-budget of all
users if the information is not available (mentioned above), and 2) keep track of
privacy-budget of each user to decide whether or not to use their data.

Remarks: The advantage of this Personalized DP-Embedding algorithm
is that the user privacy-concerns will not be violated since they are defined by
either user or algorithm (in case of cold-start users). Traditionally, the differ-
ential privacy based algorithm was learned based on a predefined (ε, δ)-budget
to protect user data. In this way, the user level of privacy concerns was not
considered and satisfied. Therefore, the proposed personalized DP-Embedding
approach addresses this problem to fulfill the user needs of privacy.
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4 Experimental Settings

4.1 Evaluation criteria

We test our learned word embedding models on two criteria: 1) word similar-
ity: it is a standard measurement for evaluating word embedding models [15].
The purpose is to detect the changes in semantic space. More similarity means
less change in semantic space, which proves better word embedding model. One
simple example is calculating similarity between the query word (woman) and
the predicted word queen given an embedding model (trained on king and
man); 2)data utilities: the main purpose of developing DP-Embedding is to
preserve privacy when sharing the model for other scholars, and especially pre-
serve data utility to facilitate their research. Therefore, we evaluate the data
utility of our learned embedding models by applying them to a downstream task
- regression (more in Section 5.2).

4.2 Datasets

Two datasets are used for experimental evaluation: Text8 ∗ dataset and myPer-
sonality.org (myPer) dataset. Text8 dataset is commonly used to evaluate the
quality of embedding models trained in different manners (e.g., normal embed-
ding versus differentially private embedding). myPer dataset was used for data
utility evaluation because of two reasons. Firstly, myPer dataset contains both
a public set with 250 users and a private set with more than 153K users. Since
early 2018, the private part of the myPersonality data is no longer available for
scholars to apply, therefore, it increases the need for sharing information from
the private data with privacy-guarantee than ever. Secondly, it fulfills the sce-
nario this paper addresses, where the sensitive data has to be shared somehow
for research benefits, and the urgency to guarantee privacy for data sharing.
Lastly, myPer dataset was widely used†[12] and we can conduct an evaluation
by comparing the performance with previous works. Table 1 summaries some
statistics of the two datasets.

Table 1: A simple statistics of the myPersonality dataset and Text8 corpus.
Dataset #users #documents #words

myPer (private) 153,727 22,043,394 416,862,367

myPer (public) 250 9,917 144,616

Tex8 corpus - - 17,005,207

4.3 Experiment design

Two sets of experiments are designed to prove the effectiveness of the proposed
DP-Embedding models regarding semantic space and regression task. Changes

∗http://mattmahoney.net/dc/textdata.html
†https://goo.gl/M8iQ6m
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in Semantic Space is detected to prove the effectiveness of preserving semantic
relations of our DP Embedding in comparison with a standard embedding. We
firstly train a standard implementation of Word2Vec embedding (we refer it as
Gold model) on Text8 corpus. Secondly, we used our proposed approach to train
the following two different word embedding models (1) DP-Embedding using
the DP-Embedding and (2) None-DP Embedding model (without privacy guar-
antee) on Text8 corpus. Regarding evaluation, we issue the same set of queries
to the DP-Embedding and None-DP Embedding and compare them with the
returned top words from Gold model. The None-DP Embedding model is needed
since we need to have a comparable learning pattern to compare to the DP Em-
bedding, i.e., having a clipping gradient function. Regarding evaluation metric,
we used MAP (mean-average-precision) to calculate word similarity (more de-
tails in Section 5.1). MAP is widely used in information retrieval to evaluate
results based on the top K returned results. Given a list of queries Q and their
correct answers, MAP metric calculates the mean of the average precision scores

for each query, MAP =
ΣQ

q=1AvgP (q)

Q . Here we apply two different types of MAP
called MAP -Word and MAP -Char. The MAP -Word evaluates the top simi-
lar words at word level, and the MAP -Char evaluates at character level. The
difference between them is that, at word-level, MAP -Word will only capture ex-
act words in the top results. However, during the training process, some similar
words are at the top too but the MAP -Word cannot capture this information
(e.g., “there” and “that”). Inversely, the MAP -Char can capture very nicely
this information at character level (see table 2 for example of MAP -Word and
MAP -Char).

Regression task: This experiment is used to prove that our differen-
tially private models can preserve good data utility when they are shared for
other scholars to use in a downstream application (e.g., regression). Here the
regression task is to predict the extrovert personality score of people from the
myPer(public) dataset. Given 250 users and the ground truth of extrovert scores,
we divided the data to 80% for training and the other 20% for testing. As we
mentioned in Section 4.2, there are two parts in myPer dataset (i.e., public
and private). We first set up a experiment - E(public), where trained the pub-
lic available word embedding model (Word2Vec) from Google and a character
embedding model ‡ for feature representation. Meanwhile, we set up another
experiment - E(private), where we trained our DP-Embedding and None-DP
Embedding on myPer(private). Based on the hypothesis that a regression task R
on features extracted from both public and private dataset will perform better
than that only on public dataset (i.e., RE(Private)+E(Public) ≥ RE(public).), we
compare the regression performance based on model from E(public) with that
from both E(public) and E(private). To prove above hypothesis by evaluation,
we implemented the following regression methods:

– Baseline-SVR: it is a regression baseline using Support Vector Machine-
Regression (SVR) method, where only E(public) is used for feature extraction.

‡https://github.com/minimaxir/char-embeddings/
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Query Gold model DP-Embedding (top 4) MAP (W,C) Topic

three four:two:five:seven zero:one:feeder:nine (0, 3.814) Numbers

eight seven:nine:six:four cornerback:four:stockholders:zero (0.5, 0.1347) Numbers

they we:there:you:he morgan:century:contentious:ferroelectric (0, 0.4237) Pronouns

(a) Top 4 on DP-Embedding model

Query Gold model Non-DP Embedding (top 4) MAP (W, C) Topic

three four:two:five:seven one:in:UNK:zero (0, 0.1288) Numbers

eight seven:nine:six:four integrator:transfection:four:one (0.33, 0.3561) Numbers

they we:there:you:he that:monorail:it:lesbian (0, 0.2341) Pronouns

(b) Top 4 on Non-DP Embedding model

Table 2: Top similar words of DP-Embedding (a), and Non-DP Embedding (b)
models given three queries “three”, “eight”, and “they” at 100K learning step.
The second column shows the best results from the Gold model. MAP(W,C)
denotes (MAP-Word,MAP-Char).

Table 3: Regression performance on public embedding with and without privacy
guarantee in comparison with not using public embedding. Evaluation score is
RMSE. † marks good checkpoints to publish the DP-Embedding model, and LS
stands for Learning Step.

LS
SVR LR

Privacy-Budget (0.125, δ)
Baseline-SVR DP-SVR NoneDP-SVR Baseline-LR DP-LR NoneDP-LR

20 2.6563 1.7881 3.5942 1.2903 1.2616 1.2642 0.0184 †
200 2.6563 2.4983 2.0198 1.2903 1.2589 1.2717 0.0189

500 2.6563 2.7795 3.6231 1.2903 1.2514 1.2909 0.0197 †
1K 2.6563 3.2146 2.0206 1.2903 1.2611 1.262 0.0211

5K 2.6563 6.1596 2.7472 1.2903 1.2577 1.2642 0.0372

10K 2.6563 1.6396 3.9155 1.2903 1.2768 1.2574 0.0755

50K 2.6563 2.9438 2.5769 1.2903 1.2574 1.2556 0.5929

90K 2.6563 2.4033 2.5175 1.2903 1.2585 1.258 0.7681

100K 2.6563 2.6043 2.0215 1.2903 1.2548 1.262 0.7926

– Baseline-LR: it is a regression baseline using linear regression (LR), where
only E(public) is used for feature extraction.

– DP-(SVM and LR): it is similar to the above methods except both E(private)
and E(public) are used for feature extraction. E(private) here is trained us-
ing DP-Embedding.

– NoneDP-(SVM and LR): it is similar to the above methods except we
used E(private) and E(public) for feature extraction. E(private) here is trained
without differential privacy.

5 Evaluation Results

5.1 Evaluation #1: Changes in Semantic Space

Figure 3 and Table 2 show the evaluation on DP-Embedding and Non-DP
Embedding regarding semantic space change. Given 11 word samples as input
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queries, we obtain the top 100 returned words for them from both models, and
compare them with the results from gold model by calculating MAP score (K
= 100, Q = 11).

As shown in Figure 3, there is significant difference between DP-Embedding
and Non-DP Embedding when comparing to the Gold model. In Figure 3-(a), it
clearly shows that DP-Embedding performs slightly lower performance compared
to None-DP Embedding. This is understandable due to the injected noise into
the model for differential privacy. However, one interesting fact we can observe
in Figure 3-(a) is that even the performance at word-level (using the MAP -
Word metric) is lower, at character-level (using the MAP -Char metric), DP-
Embedding performs better than None-DP Embedding. This observation gives
a hint that the reasonable noise we inject into the model actually helps the model
to improve at character level. Intuitively, injecting noise is similar to modifying
characters of words. It is worth to notice that, up to date, this observation is
very new and has not reported in any work before. Thus, further verification is
worthwhile in future.

Table 2 presents an example with top 4 results from both models given
three queries (“three”, “eight”, and “they”). Two types of MAP scores (MAP -
Word and MAP -Char) are calculated. As shown in the third column, some
irrelevant concepts (e.g., “feeder”, or “stockholders”) are being mixed up at the
top in DP-Embedding, while for the None-DP Embedding (the fifth column), the
relevant concepts (i.e., “four”, “one”, “it”) are climbing up to the top. Though
relevant concepts are always expected to get closer over each training step for
word embedding model, the added noise to the DP-Embedding model over a
learning step can create the distance between sensitive concepts further. In this
way, privacy is guaranteed for word embedding model. However, too much noise
might destroy the model quality, thus we will evaluate data utility.

5.2 Evaluation #2: Regression task

As explained in Section 4.3, we address the regression problem in this experiment
by using DP-Embedding model and None-DP Embedding model respectively.
RMSE (root mean square error) is used to evaluate the regression task. Lower
RMSE proves better regression performance. Table 3 shows that the usage of
DP-Embedding gets better or slightly different results than the None-DP Embed-
ding. This clearly shows that, with (ε, δ) privacy guarantee at some settings, such
as (0.125,0.0184)-DP and (0.125,0.0197)-DP, we achieve the optimized trade-off
of privacy-guarantee and data utilities.

6 Conclusions

In this work, we proposed algorithms for learning differentially private text rep-
resentation (i.e., word embeddings) for user generated contents (UGC) sharing.
We empirically evaluated the algorithms on a realistic UGC dataset and demon-
strated that the proposed embedding model benefits from sensitive data while
maintaining user-privacy. The differentially private word embedding allows in-
formation from sensitive data to be shared independently. Differently from the
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Fig. 3: Semantic space changes when learning embedding model with and without
differential privacy compared to the Gold model. Learning step is number of
minibatch steps

previous works on differential privacy, which simply preserve privacy against
adversaries on sensitive data, we trained word embedding model on potentially
sensitive user generated contents, and our trained model is applied for data shar-
ing with privacy-guarantee. As the very first work on publicly shared embedding
models, this work highlights the new direction of publicly shared embedding
models on sensitive text data. Much future work remains. For example, one
promising direction would be exploring strategies to detect what are exactly
sensitive contents to certain users (e.g., building a knowledge base) to apply our
proposed personalized-privacy guarantee.
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