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Abstract. In this paper we deal with machine learning methods and algorithms 
applied in learning simple concepts by their refining. The method of refining a 
simple concept of an object O consists in discovering a molecular concept that 
defines the same object O. Typically, such a molecular concept is a professional 
definition of the object, for instance a biological definition according to taxonomy, 
or legal definition of roles, acts, etc. Our background theory is Transparent 
Intensional Logic (TIL). In TIL concepts are explicated as abstract procedures 
encoded by natural language terms. These procedures are defined as six kinds of 
TIL constructions. First, we briefly introduce the method of learning with a 
supervisor that is applied in our case. Then we describe the algorithm ‘Framework’ 
together with heuristic methods applied by it. The heuristics is based on a plausible 
supply of positive and negative (near-miss) examples by which learner’s hypotheses 
are refined and adjusted. Given a positive example, the learner refines the hypothesis 
learnt so far, while a near-miss example triggers specialization. Heuristic methods 
deal with the way refinement, including its special cases generalization and 
specialization, is applied. 
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1. Introduction 

The method of supervised machine learning enables the agents in a multi-agent system 
to adjust their ontology and increase their knowledge. In [12] the method has been 
applied to learning the concept of a property that classifies geometric figures such as 
lancet arches. In this paper we deal with natural language processing, which is an 
interdisciplinary discipline involving linguistics, logic and computer science. The goal 
of this paper is to describe the application of machine learning methods in agents’ 
learning simple concepts by their refinement. Our background theory is Transparent 
Intensional Logic (TIL) with its procedural (as opposed to set-theoretical) semantics. In 
TIL we explicate concepts procedurally. They are abstract structured procedures 
assigned to natural language terms as their meanings. In this way structured meanings 
are formalized in a fine-grained way as so-called TIL constructions so that almost all the 
semantically salient features can be successfully dealt with. To this end we use the so-
called Normal Translation Algorithm (NTA) that processes text data and produces TIL 
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constructions as their meanings.1 Having a meaning procedure, we can apply logic to 
prove what is entailed by it, compute the object (if any) produced by the procedure, deal 
with its structure, etc.  

However, there is a problem of understanding simple or atomic concepts that are 
expressed by semantically simple terms like ‘cat’, ‘dog’, ‘myopia’, etc. They are basic 
‘building blocks’ of molecular concepts, and as such they are formalized just by the 
simplest procedure Trivialization of a given object O, ‘0O’ in symbols, that refers to the 
object O and makes it available to other molecular procedures to operate on it. In proof-
theoretic semantics the meaning of atomic terms is given by the rules that determine how 
to use them in proofs.2 This works well in the language of mathematics and logic. 
However, in natural language the ‘meaning as proof’ semantics is much less successful. 
For these reasons we decided to apply supervised machine learning methods. The issue 
is this. When processing a natural language text, our agents learn structured TIL 
procedures encoded by sentences. For instance, the sentence “Tom has myopia” 
translates into the TIL procedure wt [0Myopiawt 0Tom]. It can be viewed as an 
instruction how in any possible world (w) and time (t) evaluate the truth-conditions of 
the sentence, which consists of these steps:   

 Take the individual Tom: 0Tom 
 Take the property of having Myopia: 0Myopia 
 Extensionalize the property with respect to world w and time t of evaluation: 

0Myopiawt  
 Produce a truth-value by checking whether Tom has this property at the world 

w and time t of evaluation: [0Myopiawt 0Tom] 

So far so good. We can derive that somebody has myopia, but this piece of 
information does not suffice to derive, for instance, that Tom has problems with impaired 
vision, needs negative dioptre correction, etc. We need to refine the simple concept 
0Myopia to learn in more details what ‘myopia’ means. In other words, we want to define 
the property of having myopia. To this end we try to extract from natural language texts 
the collection of so-called requisites that together define the property. Hence, the 
supervisor looks for sentences like “Myopia (also called near-sightedness) is the most 
common cause of impaired vision in people under age 40”. Based on this piece of 
information the agent makes a hypothesis that among the requisites of myopia there are 
‘near-sightedness’ and ‘impaired vision’. This is a positive example. Furthermore, we 
can read sentences like “Myopia is not caused by nerve trauma; rather, it occurs when 
the eyeball is too long, relative to the focusing power of the cornea and lens of the eye. 
This causes light rays to focus at a point in front of the retina, rather than directly on its 
surface. Near-sightedness also can be caused by the cornea and/or lens being too curved 
for the length of the eyeball. In some cases, myopia is due to a combination of these 
factors.” The supervisor should extract a negative example that myopia is not caused by 
nerve trauma and a collection of positive examples like ‘too long eyeball’, ‘wrong 
focusing’, etc.  

The algorithm of the learning process is based on such positive and negative 
examples. Given a positive example, refinement is applied on the hypotheses so that 
concepts of other requisites or typical properties are inserted. Negative (also ‘near-miss’) 

                                                           
1 For details, see [9], [11]. 
2 See, for instance, [8]. 
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examples serve to the adjustment of the hypothesis (learnt so far) by specialization that 
excludes non-plausible elements. As a special case of refinement, we can also apply 
generalization. This is the case of inserting a more general concept in addition to some 
special constituents of the hypothesis. For instance, the degree of myopia is described in 
terms of the power of the ideal correction, which is measured in dioptres. Now the agent 
can extract information like this. “Low myopia usually describes myopia of -3.00 
dioptres or less (i.e. closer to 0.00), moderate myopia is between -3.00 and -6.00 dioptres, 
and high myopia is the degree -6.00 or more.” By generalization we obtain information 
that myopia is corrected by negative dioptres.   

The rest of the paper is organized as follows. In Section 2 we summarize foundations 
of TIL to describe logical machinery that we need in the rest of the paper. Section 3 
introduces the principles of supervised machine learning. In Section 4 we deal with 
heuristic methods that are used to adjust and enrich agents’ knowledge base. In Section 
5, an example of using the algorithm of machine learning together with TIL formalization 
is adduced. Finally, concluding remarks can be found in Section 6. 

2. Foundations of Transparent Intensional Logic (TIL) 

Since the TIL logical system has been introduced in numerous papers and two books, 
see, for instance [1], [2], [3], [4], [5], [6], [7], [16], here we just briefly summarise the 
main principles of a TIL fragment that we need for the purposes of this paper.  

TIL is a partial, typed hyperintensional lambda calculus with procedural as opposed 
to set-theoretical denotational semantics. The terms of the TIL language denote abstract 
procedures that produce set-theoretical mappings (functions-in-extension) or lower-
order procedures. These procedures are rigorously defined as TIL constructions. Being 
procedural objects, constructions can be executed in order to operate on input objects (of 
a lower-order type) and produce the object (if any) they are typed to produce, while non-
procedural objects, i.e. non-constructions, cannot be executed. There are two atomic 
constructions that present input objects to be operated on. They are Trivialization and 
Variables. The operational sense of Trivialization is similar to that of constants in formal 
languages. The Trivialization presents an object X without the mediation of any other 
procedures. Using the terminology of programming languages, the Trivialization of X, 
‘0X’ in symbols, is just a pointer that refers to X. Variables produce objects dependently 
on valuations; they v-construct. We adopt an objectual variant of the Tarskian conception 
of variables. To each type countably many variables are assigned that range over this 
particular type. Objects of each type can be arranged into infinitely many sequences. The 
valuation v selects one such sequence of objects of the respective type, and the first 
variable v-constructs the first object of the sequence, the second variable v-constructs the 
second object of the sequence, and so on. Thus, the execution of a Trivialization or a 
variable never fails to produce an object. However, the execution of some of the 
molecular constructions can fail to present an object of the type they are typed to produce. 
When this happens, we say that the constructions are v-improper.   

There are two dual molecular constructions which correspond to -abstraction and 
application in -calculi, namely Closure and Composition. (-)Closure, [x1…xn X], 
transforms into the very procedure of producing a function by abstracting over the values 
of the variables x1, …, xn. The Closure [λx1…xm Y] is not v-improper for any valuation v, 
as it always v-constructs a function. Composition, [X X1…Xn], is the very procedure of 
applying a function produced by the procedure X to the tuple-argument (if any) produced 
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by the procedures X1, …, Xn. While Closure never fails to produce a function, 
Composition is v-improper if one or more of its constituents X, X1, …, Xn are v-improper. 
This happens when a partial function f is applied to an argument a such that the function 
f is not defined at a. Another cause of improperness can be type-theoretical incoherence 
of the Composition. For instance, the proposition that the number 5 is a student does not 
have a truth-value at any world w and time t of evaluation, because the property of being 
a student is the property of individuals rather than numbers. Hence the application of the 
(extensionalized) property of being a student to the number 5 in a particular world w and 
time t of evaluation, in symbols [[[0Student w]t] 

05], or [0Studentwt 
05] for short, is v-

improper for every valuation v of the variables w (ranging over possible worlds) and t 
(ranging over times). 
 
Definition (constructions) 

(i) Variables x, y, … are constructions that construct objects (elements of their 
respective ranges) dependently on a valuation v; they v-construct. 

(ii) Where X is an object whatsoever (even a construction), 0X is the construction 
Trivialization that constructs X without any change of X. 

(iii) Let X, Y1, …, Yn be arbitrary constructions. Then Composition [X Y1…Yn] is the 
following construction. For any v, the Composition [X Y1…Yn] is v-improper if at 
least one of the constructions X, Y1, …, Yn is v-improper by failing to v-construct 
anything, or if X does not v-construct a function that is defined at the n-tuple of 
objects v-constructed by Y1,…,Yn. If X does v-construct such a function, then [X 
Y1…Yn] v-constructs the value of this function at the n-tuple.  

(iv) (-) Closure [λx1…xm Y] is the following construction. Let x1, x2, …, xm be pair-
wise distinct variables and Y a construction. Then [λx1…xm Y] v-constructs the 
function f that takes any members B1, …, Bm of the respective ranges of the 
variables x1, …, xm into the object (if any) that is v(B1/x1,…,Bm/xm)-constructed by 
Y, where v(B1/x1,…,Bm/xm) is like v except for assigning B1 to x1, …, Bm to xm. 

(v) Where X is an object whatsoever, 1X is the construction Single Execution that v-
constructs what X v-constructs. Thus, if X is a v-improper construction or not a 
construction as all, 1X is v-improper. 

(vi) Where X is an object whatsoever, 2X is the construction Double Execution. If X is 
not itself a construction, or if X does not v-construct a construction, or if X v-
constructs a v-improper construction, then 2X is v-improper. Otherwise 2X v-
constructs what is v-constructed by the construction v-constructed by X.   

Nothing is a construction, unless it so follows from (i) through (vi).    
 

With constructions of constructions, constructions of functions, functions, and 
functional values in our stratified ontology, we need to keep track of the traffic between 
multiple logical strata. The ramified type hierarchy does just that. The type of first-order 
objects includes all objects that are not constructions. Therefore, it includes not only the 
standard objects of individuals, truth-values, sets, etc., but also functions defined on 
possible worlds (i.e., the intensions germane to possible-world semantics). The type of 
second-order objects includes constructions of first-order objects and functions that have 
such construction in their domain or range. The type of third-order objects includes 
constructions of first- and second-order objects and functions that have such construction 
in their domain or range. And so on, ad infinitum.  
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Definition (types of order n). Let B be a base, where a base is a collection of pair-wise 
disjoint, non-empty sets. Then: 

T1 (types of order 1).  
i) Every member of B is an elementary type of order 1 over B. 
ii) Let α, β1, ..., βm (m > 0) be types of order 1 over B. Then the collection (α β1 ... 

βm) of all m-ary partial mappings from β1  ...  βm into α is a functional type of 
order 1 over B. 

iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii). 
Cn (constructions of order n)  

i) Let x be a variable ranging over a type of order n. Then x is a construction of 
order n over B. 

ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are constructions of 
order n over B.  

iii) Let X, X1, ..., Xm (m > 0) be constructions of order n over B. Then [X X1... Xm] is 
a construction of order n over B. 

iv) Let x1, ..., xm, X (m > 0) be constructions of order n over B. Then [x1...xm X] is 
a construction of order n over B. 

v) Nothing is a construction of order n over B unless it so follows from Cn (i)-(iv).   
Tn+1 (types of order n + 1)   

Let n be the collection of all constructions of order n over B. Then 
i) n and every type of order n are types of order n + 1.  
ii) If m > 0 and , 1, ..., m are types of order n + 1 over B, then ( 1 ... m) (see 

T1 ii)) is a type of order n + 1 over B. 
iii) Nothing is a type of order n + 1 over B unless it so follows from (i) and (ii).    

Remark. For the purposes of the analysis of our sample example of agents’ learning the 
concept of myopia intensional fragment of TIL based on the simple types of order 1 
suffices. Yet when the agents learn new concepts, they enrich their ontology by new 
constructions that are just displayed rather than executed. To this end, the full ramified 
hierarchy is needed. For details see, e.g., [4], [7].   

For the purposes of natural-language analysis, we are usually assuming the 
following base of elementary types: 

ο: the set of truth-values {T, F}; 
ι:  the set of individuals (the universe of discourse); 
τ:  the set of real numbers (doubling as discrete times); 
ω:  the set of logically possible worlds (the logical space).  

We model sets and relations by their characteristic functions. Thus, for instance, () 
is the type of a set of individuals, while () is the type of a relation-in-extension 
between individuals. Empirical expressions denote empirical conditions that may or may 
not be satisfied at the world/time pair selected as points of evaluation. We model these 
empirical conditions as possible-world-semantic intensions. Intensions are entities of 
type (): mappings from possible worlds to an arbitrary type . The type  is frequently 
the type of the chronology of -objects, i.e., a mapping of type (). Thus -intensions 
are frequently functions of type (()), abbreviated as ‘’. Extensional entities are 
entities of a type  where   () for any type .  



 
 
 

 
 
 

6

Hence, empirical expressions denote (non-trivial, i.e. non-constant) intensions. 
Where variable w ranges over  and t over , the following logical form essentially 
characterizes the logical syntax of empirical language:  

wt […w….t…] 

Examples of frequently used intensions are:  

 propositions of type  denoted by sentences like “John is a student”;  
 properties of individuals of type () denoted by nouns and adjectives, e.g. 

‘student’, ‘red’, ‘tall’, ‘myopia’, ‘near-sighted’;  
 binary relations-in-intension between individuals of type (), e.g. being 

‘composed of’, ‘seeing’; 
 individual offices (or roles) of type  that are denoted by definite descriptions like 

‘the tallest mountain’, ‘Miss World 2019’, ‘the President of Zanzibar’.  

Logical objects like truth-functions and are extensional:  (conjunction),  
(disjunction) and  (implication) are of type (), and  (negation) of type ().  

The quantifiers ,  are type-theoretically polymorphic total functions of type 
(()), for an arbitrary type , defined as follows. The universal quantifier  is a 
function that associates a class A of -elements with T if A contains all elements of the 
type , otherwise with F. The existential quantifier  is a function that associates a class 
A of -elements with T if A is a non-empty class, otherwise with F.  

Notational conventions. Below all type indications will be provided outside the 
formulae in order not to clutter the notation. Moreover, the outermost brackets of 
Closures will be omitted whenever no confusion arises. Furthermore, ‘X/’ means that 
an object X is (a member) of type . ‘X v ’ means that X is typed to v-construct an 
object of type , regardless of whether X in fact constructs anything. We write ‘X  ’ 
if what is v-constructed does not depend on a valuation v. Throughout, it holds that the 
variables w v  and t v . If C v  then the frequently used Composition [[C w] 
t], which is the intensional descent (a.k.a. extensionalization) of the -intension v-
constructed by C, will be encoded as ‘Cwt’. When applying quantifiers, we use a simpler 
notation ‘x B’, ‘x B’ instead of the full notation ‘[0 x B]’, ‘[0x B]’, x  ,  
B  , to make the quantified constructions easier to read. When applying truth-
functions we use infix notation without Trivialization. For instance, instead of the 
Composition ‘[0 A B]’ we write simply ‘[A  B]’.  

For illustration, here is an example of the analysis of a simple sentence “John is near-
sighted”. First, type-theoretical analysis, i.e. assigning types to the objects that receive 
mention in the sentence: John/; Nearsighted/(); the whole sentence denotes a 
proposition of type . Now we compose constructions of these objects to construct the 
denoted proposition. To predicate the property of being near-sighted of John, the 
property must be extensionalized first: [[0Nearsighted w] t], or 0Nearsightedwt v (), 
for short. The Composition [0Nearsightedwt 

0John] v ; and finally, the whole empirical 
sentence denotes a proposition of type , hence it encodes as its meaning the Closure  

wt [0Nearsightedwt 
0John]  . 

In TIL we reject individual essentialism; instead, we adhere to intensional 
essentialism. It means that each -intension P is necessarily related to a collection of 
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requisites of P, its essence, that together define the intension P. For instance, requisites 
of the property of being a horse are the property of being a mammal of the family 
Equidae, species Equus Caballus, the property of having blood circuit, being a living 
creature, and many others. Necessarily, if some individual a happens to be a horse then 
a is a mammal of the family Equidae, etc. 

The requisite relations Req are a family of relations-in-extension between two 
intensions, hence of the polymorphous type (), where possibly  = . Infinitely 
many combinations of Req are possible, but the following is the relevant one that we 
need for our purpose:3  

Req /(()()): an individual property is a requisite of another such property. 
 
Thus, we define: 

Definition (requisite relation between -properties) Let X, Y be constructions of 
properties, X, Y/n  (); x  , True/(): the property of propositions of being 
true in a given world and time of evaluation. Then 

[0Req Y X] = wt [x [[0Truewt wt [Xwt x]]  [0Truewt wt [Ywt x]]]].   

Gloss definiendum as, “Y is a requisite of X”, and definiens as, “Necessarily, at every 
w, t,  whatever x instantiates X at w, t also instantiates Y at w, t.”   

Remark. Here we have to apply the property of propositions True to handle 
partiality. This is due to the fact that there is a stronger relation between properties, 
namely that of pre-requisite. If Y is a pre-requisite of X, then if an individual x does not 
instantiate Y it is neither true nor false that x instantiates X. The proposition wt [Xwt x] 
has a truth-value gap. For instance, the property of having stopped smoking has a pre-
requisite of being an ex-smoker. If somebody never smoked they could not stop smoking, 
of course. Then, however, the Composition [0Truewt wt [Xwt x]] is simply false and 
since it is an antecedent of the above implication, the implication is true, as it should be.    

 
Since the topic of this paper is learning and refining concepts, we need to define the 

notion of concept. In TIL concepts are explicated as closed constructions in their normal 
form. Referring for details to [7, §2.2], we briefly recapitulate. Concepts are meanings 
of semantically complete terms that do not contain indexicals or other pragmatically 
incomplete terms. In case of the latter we furnish a pragmatically incomplete expression 
with an open construction containing free variables. An open construction cannot be 
executed unless valuation of its free variables is supplied, usually by the situation of 
utterance. For instance, the meaning of the sentence “He is smart” is the open 
construction wtSmartwt he], he  , that cannot be evaluated until an individual is 
assigned to the free variable he as its valuation.4 Hence, we don’t treat this open 

                                                           
3 For details see [7, §4.1] 
4 If such a sentence occurs in a broader discourse, its meaning can be completed by 

anaphoric references as well. For instance, in “John is a student, he is smart” the 
meanings are not pragmatically incomplete, because the individual John is substituted 
for the anaphoric variable he. For details on resolving anaphoric references in TIL, see 
[6] 
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construction as a concept. Since concepts should be at least in principle executable in 
any state of affairs, we explicate them as closed constructions.  

However, our TIL constructions are a bit too fine-grained from the procedural point 
of view. Some closed constructions differ so slightly that they are virtually identical. In 
a natural language we cannot even render their distinctness, which is caused by the role 
of -bound variables that lack a counterpart in natural languages. These considerations 
motivated definition of the relation of procedural isomorphism on TIL constructions.5 
Procedurally isomorphic constructions form an equivalence class at which we can vote 
for a representative. To this end a normalization procedure has been defined that results 
in the unique normal form C of a construction that is a representative of the class of 
procedurally isomorphic constructions. Hence, we adopt this definition: 

Definition (concept) A concept is a closed construction in its normal form.  

For the sake of simplicity, in what follows we deal with concepts simply as with 
closed constructions, ignoring the above technicalities, because we believe that this 
simplification is harmless for our purposes.  

The last notion we need to define is that of refinement of a concept. Basically, by 
refining a simple concept 0O of an object O we mean replacing 0O by an equivalent 
molecular concept D that produces the same object O. We also say that the molecular 
construction D is an ontological definition of the object O.  

Here is an example. The Trivialization 0Prime is in fact the least informative 
procedure for producing the set of prime numbers. Using particular definitions of the set 
of primes, we can refine the simple concept 0Prime in many ways, including:6  

x [0Card y [0Divide y x] = 02], 

x [[x  01]  y [[0Divide y x]  [[y = 01]  [y = x]]]], 

x [[x > 01]  y [[y > 01]  [y < x]  [0Divide y x]]. 

The involved types are: , the type of natural numbers; Card/(()): the cardinality of 
a set of natural numbers; Divide/(): the relation of x being divisible by y; the other 
types are obvious.  

Thus, we define.    

Definition (refinement of a construction) Let C1, C2, C3 be constructions. Let 0X be a 
simple concept of an object X and let 0X occur as a constituent of C1. If C2 differs from 
C1 only by containing in lieu of 0X an ontological definition of X, then C2 is a refinement 
of C1. If C3 is a refinement of C2 and C2 is a refinement of C1, then C3 is a refinement of 
C1.     

Corollary. If C2 is a refinement of C1, then C1, C2 are equivalent but not procedurally 
isomorphic.  

For instance, the simple concept of primes is not procedurally isomorphic with the above 
refinements, of course, which are molecular concepts with much richer structure than 
just 0Prime. As a result, the term ‘prime’ is not synonymous with its equivalents like ‘the 

                                                           
5 For details, see [4]. 
6 For the sake of simplicity, here we again use infix notation without Trivialization 

for application of the binary relations >, < and the identity = between numbers. 



 
 
 

 
 
 

9

set of naturals with just two factors’, ‘the set of naturals distinct from 1 that are divisible 
just by the number 1 and themselves’, because the meanings of synonymous terms are 
procedurally isomorphic. Rather, ‘prime’ is only equivalent to these definitions.    

So much for our formalism and background theory.  

3. Supervised Machine Learning 

Supervised machine learning is a method of predicting functional dependencies between 
input values and the output value. The supervisor provides an agent/learner with a set of 
training data. These data describe an object by a set of attribute values such that there is 
a functional dependency between these values.  

For instance, a house can be characterized by its size, locality, date of building, 
architecture style, etc., and its price. Obviously, the price of a house depends on its size, 
locality, date of building and architecture style. Hence, the price is called an output 
attribute and the other attributes are input attributes. The goal of learning is to discover 
this functional dependency on the grounds of training data examples so that the agent 
can predict the value of the output attribute given the values of input attributes of a new 
instance.    

 More generally, where x1,…,xn are values of input attributes and y an output 
attribute value, there is a function f such that y = f(x1,…,xn). The goal of the learning 
process is to discover a function h that approximates the function f as close as possible. 
The function h is called a hypothesis. The learner creates hypotheses on the grounds of 
training data (input-output values) provided by the supervisor. Correctness of the 
hypothesis is verified by using a set of test examples given their input attributes. The 
hypothesis is plausible if the learner predicts the values of the output attribute with a 
maximum accuracy.7  

Since we decided to apply this method to learning concepts, we have to adjust the 
method a bit. First, instead of input/output attributes, we deal with concepts, that is closed 
constructions. The role of input ‘attributes’ is played by the constituents of a hypothetic 
molecular concept and instead of the output attribute we deal with the simple atomic 
concept that the learner aims to refine. The hypothetic function is that of a requisite. 
Training data are natural-language texts. The supervisor extracts from the text data 
positive and negative examples. For instance, let the ‘output’ concept to be learned be 
that of a cat, i.e. 0Cat. The role of positive examples is played by particular descriptions 
of the property of being a cat like “Cat is a predatory mammal that has been 
domesticated”. The learner establishes a hypothesis that the property  

wt x [[[0Predatory 0Mammal]wt x]  [0Domesticatedwt x]] 

belongs to the essence of the property Cat. Negative examples delineate the hypothesis 
from other similar objects. As a negative example for cat can serve the sentence “Dog is 
a domesticated predatory mammal that barks”. This triggers a specialization of the 
hypothetic concept to the construction  

wt x [[[0Predatory 0Mammal]wt x]  [0Domesticatedwt x]  [[0Barkwt x]]] 

                                                           
7 For details, see [13], [15]. 
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Hence, given a positive example, the learner refines the hypothetic molecular 
concept by adding other concepts to the essence, while a negative example triggers 
specialization of the hypotheses. The hypothetic concept can be also generalized. For 
instance, the learner can obtain as another positive example describing the property Cat 
the sentence “Cat is a wild feline predatory mammal”. Since the properties Wild and 
Domesticated are inconsistent, the agent consults his/her ontology for a more general 
concept. If there is none, the ‘union’ of the properties, Wild or Domesticated, is included. 
As a result, the learner obtains this hypothesis. 

 
wt x [[[0Feline [0Predatory 0Mammal]]wt x]   

[[0Domesticatedwt x]  [0Wildwt x]]   
[[0Barkwt x]]]  

 
Remark. Both Feline and Predatory are property modifiers of type (()()), i.e. 
functions that given an input property return another property as an output. Since these 
two modifiers are intersective, the rules of left- and right-subsectivity are applicable 
here.8 In other words, predatory mammal is a predator and is a mammal, similarly for 
feline. If our agent has these pieces of information in their knowledge base, the above 
Composition [[0Feline [0Predatory 0Mammal]]wt x] can be further refined to [[0Feline’wt 

x]  [0Predatory’wt x]  [0Mammalwt x]], where Feline’ and Predatory’ are properties of 
individuals, i.e. objects of type ().  

Both generalization, specialization and conjunctive extension are methods of 
refining a hypothetic concept, the methods that we are going to describe in the next 
section.  

3.1. Refining hypothesis space 

In our method we try to find the description of all plausible hypotheses that are consistent 
with the training data and are derivable from the provided examples.9 To this end we 
assume that there is no noise in the training data [13]. In other words, the examples 
provided to the learner are adequate for the prediction of the refined concept. Obviously, 
a learner can usually examine just a small finite training set of examples instead of a 
possibly infinite set of sample concepts. Hence, inductive learning is applied to obtain a 
hypothetic concept.10 In the process of inductive learning, the relation ‘more general’ 
defined on the set of hypotheses is used. This relation is defined as follows. Let ℎଵ,  ℎଶ 
be hypothetic concepts defined on an input domain X. Then h1 is more general then ℎଶ, 
in symbols ‘h2  h1’, iff  

∀𝑥 ∈ 𝑋 [(ℎଶ(𝑥) = 1) ⊃ (ℎଵ(𝑥) = 1)]. 

Note. By (hi(x) = 1) we mean that an object x falls under the concept hi in a given state 
of affairs. Hence, this simplified notation can be read as “all objects x that fall under the 
concept h2 fall also under the more general concept h1”.    

                                                           
8 For details and analysis of other kinds of modifiers, see [5]. 
9 Hypothesis is consistent with the training data, i.e. the set S of examples, if the 

value predicted by the hypothesis is the value of output attribute of all examples 
belonging to S. 

10 For details on and definition of inductive learning see, e.g., [13, §2.2.2, p. 23].  
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The subset of hypotheses obtained by inductive learning which is consistent with the 
training set of examples is called version-space.  

3.2. Algorithm framework 

All machine learning algorithms, no matter into which family they belong, can be 
characterized by common categories which form a framework [10]. The algorithms are 
characterized by task goals, training data, data representation, and a set of operators 
which manipulate with data representation. In our machine learning algorithm, the 
framework can be briefly described as follows. 

Objective Goal. As mentioned above, the goal of an agent is to discover the best 
refinement of the learned simple concept of an object O, i.e. a molecular closed 
construction that produces the same object. Moreover, this molecular concept should 
specify as much as possible of the requisites of the object O so that it also excludes other 
similar concepts.  

Training data. An agent works with positive and negative examples that are 
sentences extracted by a supervisor from a textual base. Positive examples contain 
concepts of requisites specifying the learned simple concept, while negative examples 
specify properties that do not belong to the essence of the intension provided by the 
concept.  

Data Representation. The agents must have an internal formal representation of data 
obtained by examples. Plausible hypotheses are then formulated in terms of this 
representation. Our formalism is that of Transparent Intensional Logic so that the 
sentences are analysed in terms of TIL constructions.  

Knowledge Modifying Module. The learning algorithm is biased in favour of a 
preferred hypothesis. By using proper preferences, we reduce the hypothesis space. In 
version-space learning the bias is called a restriction bias, because the bias is obtained 
by restricting the allowable hypotheses. The agent uses a set of operations to modify the 
hypothesis during a heuristic search in the hypothesis space. The three main operations 
to modify a hypothetic concept are generalization, specialization and refinement. There 
are two possibilities how to obtain a proper hypothesis. The first one is based on using 
merely positive examples. In this case we need to be sure that the examples cover well 
the positive cases; in other words, we need examples containing all and only requisites 
of the learned concept. The second way that we vote for is using both positive and 
negative examples. By applying specialization based on negative examples we exclude 
too general hypotheses.  

4. Inductive heuristics 

For our purpose we voted for an adjusted version of Patrick Winston algorithm [17] of 
supervised machine learning. This algorithm applies the principles of generalization and 
specialization to obtain a plausible hypothesis, i.e. the functional dependency between 
input and output attributes. In our case the main principle is the method of refining the 
output simple concept. Hence, instead of a functional dependency between input and 
output attributes, we are looking for molecular concepts refining the output simple 
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concept the constituents of which are related to the output concept by the requisite 
relation. Winston algorithm assumes that examples differ from the model just in one 
attribute while in our case we develop the molecular concept by adding new constituents 
contained in example sentences describing or rather refining the output concept. Hence 
our algorithm does not compare a model with examples; rather, it compares the 
hypothetic concept with information in sample sentences.  

As stated above, our main method is refinement of a concept, i.e. a hypothetic 
construction. Based on positive examples we extend the collection of requisites by 
adding missing concepts in a conjunctive way. As a special case, generalization can be 
applied. Based on agents’ ontologies, generalization usually concerns replacing one or 
more constituents of the hypothetic concept by a more general one.   

Specialization is triggered by negative examples. As a result, negation of a property 
that does not belong to the essence of the hypothetic concept is inserted. Specialization 
serves to distinguish the output concept from similar ones. For instance, a wooden horse 
can serve as a negative example to the concept of horse, because a wooden horse is not 
a horse; rather, it is a toy horse though it may look like a genuine living horse.      

Heuristic methods of the original Winston algorithm work with examples that cover 
all the attributes of a learned object. Based on positive examples the hypothesis is 
modified in such a way that the values of attributes are adjusted, or in case of a negative 
example an unwanted attribute marked as Must-not-be is inserted. In our application the 
sentences that mention the learned concept contain as constituents some but not all the 
requisites of this concept, and we build up a new molecular concept by adding new 
information extracted from positive or negative examples. Hence, we had to implement 
a new heuristic Concept-introduction for adding concepts of new requisites into a 
hypothetic concept. Negative examples trigger the method Forbid-link that inserts a 
concept of negated property into the hypothesis. Generalization is realized by modules 
that introduce a concept of a more general property; to this end we also adjusted the 
original heuristic Close-interval so that it is possible to generalize values of numeric 
concepts by the union of interval values from an example and model.11       

Here is a brief specification of the algorithm.  

Refinement. 
1. Compare the model hypothesis (to be refined) and the positive example to find a 

significant difference  
2. If there is a significant difference, then  

a) if the positive example contains as its constituent a concept that the model 
does not have, use the Concept-introduction  

b) else ignore example 

Specialization. 
1. Compare the model hypothesis (to be refined) and the near-miss example to find a 

significant difference  
2. If there is a significant difference, then  

                                                           
11 For the sake of simplicity, we did not change the original names of particular 

modules though we do not work with ‘links’ between objects and attribute values any 
more. The heuristics Require-link and Drop-link from the original algorithm have not 
been used in our adjusted version.   
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c) if the near-miss example has a constituent of the concept that the model does 
not have, use the Forbid-link  

d) else ignore example 

Generalization. 
1. Compare the model hypothesis (to be refined) and the positive example to 

determine a difference 
2. For each difference do 

a) if a concept in the model points at a value that differs from the value in the 
example, then  
i) if the properties in which the model and example differ have the most 

specific general property, use the Climb-tree  
ii) else use Union-set  

b) if the model and example differ at an attribute numerical value or interval, use 
the Close-interval  

c) else ignore example. 

5. Example of learning the concept of myopia 

As a sample example we now introduce the process of learning refinements of the simple 
concept of myopia, i.e. 0Myopia, by extracting information from natural language 
sentences describing the property of having myopia.   
 
As always, first types. 
 
Myopia / (𝜊𝜄)ఛఠ 
Sharp, Blur, Disorder, Eye_nerve, Eye_lenses / (𝜊𝜄)ఛఠ  
Eye_focus, Damaged, Inflexible / ((𝜊𝜄)ఛఠ(𝜊𝜄)ఛఠ) 
Close, Distant, Looking_at / (𝜊𝜄𝜄)ఛఠ 
x, y  𝜄 
Req / (𝜊(𝜊𝜄)ఛఠ(𝜊𝜄)ఛఠ) 
 / ൫𝜊(𝜊𝜄)൯  
 
Positive examples: 
 

1. In myopia, close objects look sharp. 
 

൥ 𝑅𝑒𝑞଴  ൥𝜆𝑤𝜆𝑡𝜆𝑥 ቈ∃𝜆𝑦 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡௪௧  𝑥 𝑦଴ ൧ ∧ ൣ 𝐶𝑙𝑜𝑠𝑒௪௧  𝑥 𝑦଴ ൧ቃ

⊃ ൣ 𝑆ℎ𝑎𝑟𝑝௪௧ 𝑦଴ ൧൨቉൩ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ൩ 
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2. In myopia, distant objects appear blurred. 
 

൥ 𝑅𝑒𝑞଴  ൥𝜆𝑤𝜆𝑡𝜆𝑥 ቈ∃𝜆𝑦 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡௪௧  𝑥 𝑦଴ ൧ ∧ ൣ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡௪௧  𝑥 𝑦଴ ൧ቃ

⊃ ൣ 𝐵𝑙𝑢𝑟௪௧  𝑦଴ ൧൨቉൩ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ൩ 

 
3. It is an eye focusing disorder. 

 
ൣ 𝑅𝑒𝑞 ଴ ൣ 𝐸𝑦𝑒_𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟଴଴ ൧ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ൧ 

 
Negative examples. 
 

1. Cause of myopia is not damaged eye-nerve. 
 

ൣ 𝑅𝑒𝑞 ଴ ൣ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐸𝑦𝑒_𝑛𝑒𝑟𝑣𝑒଴଴ ൧ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ൧ 
 

2. Cause of myopia is not inflexible eye lenses. 
 

ൣ 𝑅𝑒𝑞 ଴ ൣ 𝐼𝑛𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝐸𝑦𝑒_𝑙𝑒𝑛𝑠𝑒଴଴ 𝑠൧ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ൧ 

 
Simulation of the algorithm execution. 

The execution of our algorithm begins with a first chosen positive example. The 
construction encoded by this sentence becomes an initial model.  

 
”In myopia, close objects look sharp.” 

 

൥ 𝑅𝑒𝑞଴  ൥𝜆𝑤𝜆𝑡𝜆𝑥 ቈ∃𝜆𝑦 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡௪௧  𝑥 𝑦଴ ൧ ∧ ൣ 𝐶𝑙𝑜𝑠𝑒௪௧  𝑥 𝑦଴ ൧ቃ

⊃ ൣ 𝑆ℎ𝑎𝑟𝑝௪௧ 𝑦଴ ൧൨቉൩ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ൩ 

The second positive example  

“In myopia distant objects appear blur.” 

refines the model by Concept-introduction. As a result, we have a hypothetic model “In 
myopia, close objects look sharp and distant objects look blur”.   
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቎ 𝑅𝑒𝑞଴  ቎𝜆𝑤𝜆𝑡𝜆𝑥 ൥ቈ∃𝜆𝑦 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡௪௧  𝑥 𝑦଴ ൧ ∧ ൣ 𝐶𝑙𝑜𝑠𝑒௪௧ 𝑥 𝑦଴ ൧ቃ ⊃ ൣ 𝑆ℎ𝑎𝑟𝑝௪௧ 𝑦଴ ൧൨቉

∧ ቈ∃𝜆𝑦 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡௪௧  𝑥 𝑦଴ ൧ ∧ ൣ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡௪௧  𝑥 𝑦଴ ൧ቃ

⊃ ൣ 𝐵𝑙𝑢𝑟௪௧ 𝑦଴ ൧൨቉൩቏ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ቏ 

 
The last positive example  
 

“It is an eye focusing disorder.” 
 
also refines the model by Concept-introduction: 
 

቎ 𝑅𝑒𝑞଴  ቎𝜆𝑤𝜆𝑡𝜆𝑥 ൥ቈ∃λy ൤ቂൣ Looking_at୵୲ x y଴ ൧ ∧ ൣ Close୵୲ x y଴ ൧ቃ ⊃ ൣ Sharp୵୲ y଴ ൧൨቉

∧ ቈ∃𝜆𝑧 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡௪௧  𝑥 𝑧଴ ൧ ∧ ൣ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡௪௧𝑥 𝑧଴ ൧ቃ

⊃ ൣ 𝐵𝑙𝑢𝑟௪௧ 𝑧଴ ൧൨቉ ∧ ቂൣ 𝐸𝑦𝑒ି𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟଴଴ ൧
௪௧

 𝑥ቃ൩቏ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ቏ 

The first negative example “The cause of myopia is not a damaged eye nerve” triggers 
specialization of the hypothesis. As a result, we apply the negated property that is added 
into the essence of myopia: 
 

቎ 𝑅𝑒𝑞଴  ቎𝜆𝑤𝜆𝑡𝜆𝑥 ൥ቈ∃𝜆𝑦 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔ି𝑎𝑡௪௧  𝑥 𝑦଴ ൧ ∧ ൣ 𝐶𝑙𝑜𝑠𝑒௪௧  𝑥 𝑦଴ ൧ቃ ⊃ ൣ 𝑆ℎ𝑎𝑟𝑝௪௧ 𝑦଴ ൧൨቉

∧ ቈ∃𝜆𝑧 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔ି𝑎𝑡௪௧  𝑥 𝑧଴ ൧ ∧ ൣ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡௪௧  𝑥 𝑧଴ ൧ቃ

⊃ ൣ 𝐵𝑙𝑢𝑟௪௧  𝑧଴ ൧൨቉ ∧ ቂൣ 𝐸𝑦𝑒ି𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟଴଴ ൧
௪௧

 𝑥ቃ

∧  ቂ ¬଴ ൣ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐸𝑦𝑒_𝑁𝑒𝑟𝑣𝑒଴଴ ൧
௪௧

𝑥ቃ൩቏ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ቏ 

 
The second negative example “Myopia is not caused by inflexible eye lenses” also 
specializes the concept. The resulting molecular concept defining the property of myopia 
is this:  
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቎ 𝑅𝑒𝑞଴  ቎𝜆𝑤𝜆𝑡𝜆𝑥 ൥ቈ∃𝜆𝑦 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔ି𝑎𝑡௪௧  𝑥 𝑦଴ ൧ ∧ ൣ 𝐶𝑙𝑜𝑠𝑒௪௧𝑥 𝑦଴ ൧ቃ ⊃ ൣ 𝑆ℎ𝑎𝑟𝑝௪௧ 𝑦଴ ൧൨቉

∧ ቈ∃𝜆𝑧 ൤ቂൣ 𝐿𝑜𝑜𝑘𝑖𝑛𝑔ି𝑎𝑡௪௧  𝑥 𝑧଴ ൧ ∧ ൣ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡௪௧ 𝑧 𝑦଴ ൧ቃ

⊃ ൣ 𝐵𝑙𝑢𝑟௪௧ 𝑧଴ ൧൨቉ ∧ ቂൣ 𝐸𝑦𝑒ି𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟଴଴ ൧
௪௧

 𝑥ቃ

∧  ቂ ¬଴ ൣ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐸𝑦𝑒ି𝑁𝑒𝑟𝑣𝑒଴଴ ൧
௪௧

𝑥ቃ  

∧  ൣ ¬଴ ൣ 𝐼𝑛𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝐸𝑦𝑒_𝑙𝑒𝑛𝑠𝑒𝑠଴଴ ൧ 𝑥൧൩቏ 𝑀𝑦𝑜𝑝𝑖𝑎଴ ቏ 

In this example we did not deal with generalization. It might concern calling the 
Close-interval module or dealing with subsective modifiers of the property of being 
shortsighted. For instance, in Wikipedia we can read: 

The degree of myopia is described in terms of the power of the ideal correction, 
which is measured in dioptres:  

 Low myopia usually describes myopia of −3.00 dioptres or less (i.e. closer to 0.00).  
 Moderate myopia usually describes myopia between −3.00 and −6.00 dioptres.  
 High myopia usually describes myopia of −6.00 or more.  
 
By the analysis of these sentences we would insert into the definition of myopia other 
three concepts defining myopia, namely low, moderate and high myopia. By applying 
generalization, we obtain still another definition, namely that myopia is measured in 
negative dioptres.  

6.  Conclusion 

In this paper we introduced the basic principles of supervised machine learning, namely 
the method of refining hypothesis by means of positive and negative examples. The 
process of refinement of a given hypothesis triggered by positive and near-miss examples 
together with heuristic functions that modify the hypothesis has been described and 
illustrated by examples. We applied an adjusted version of Patrick Winston’s data driven 
algorithm for machine learning. The area under scrutiny has been agents’ learning simple 
concepts by their refining. In other words, our agents learn new concepts by discovering 
compound definitions of the objects specified just by a simple concept of Trivialization. 
The method itself has been illustrated by the example of agent’s learning the concept of 
myopia. Our data have been formalized by means of the TIL tools, namely constructions 
and types produced by the NLA algorithm [11].   

The proposed machine learning method heavily relies on the role of a supervisor. 
For a success in learning it is important that the supervisor extracts from a given text 
those sentences that mention the concept in a way plausible for learning. Moreover, there 
should not by any noise in these input data, and the supervisor should properly classify 
these sentences into positive and negative examples. Hence, we assume that the role of 
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a supervisor is played by an experienced linguist. As a future research, we intend to 
extend the functionalities of the algorithm so that it will cover also the extraction of 
sample sentences where the output learned concept receives mention. Though there is no 
substitute for a supervisor in a supervised machine learning method, its role can be at 
least partly played by an algorithm so that the manual work of a linguist is reduced to a 
minimum. Our next goal is to improve the method so that the agents would learn 
synonymous terms referring to the same concept as well and distinguish them from 
merely equivalent ones. This is important for dealing with hyperintensional attitudes of 
knowing, believing, designing, calculating, solvind, etc. properly. These attitudinal verbs 
are part and parcel of our everyday vernacular so that their proper analysis and logic 
should not be missing from any automatized multiagent system. And since these 
attitudinal verbs establish hyperintensional contexts where the substitution of merely 
equivalent terms fails, the agents need to know the synonyms of the learned concepts as 
well.   
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