

1

Refining Concepts by Machine Learning

Marek MENŠÍK1, Marie DUŽÍ1, Adam ALBERT1, Vojtěch PATSCHKA1, Miroslav PAJR2

1VSB-Technical University Ostrava, Department of Computer Science FEI
17. listopadu 15, 708 33 Ostrava, Czech Republic

2Silesian Univerzity in Opava, Institute of Computer Science,
Bezručovo nám. 13, 746 01 Opava, Czech Republic

Abstract. In this paper we deal with machine learning methods and algorithms
applied in learning simple concepts by their refining. The method of refining a
simple concept of an object O consists in discovering a molecular concept that
defines the same object O. Typically, such a molecular concept is a professional
definition of the object, for instance a biological definition according to taxonomy,
or legal definition of roles, acts, etc. Our background theory is Transparent
Intensional Logic (TIL). In TIL concepts are explicated as abstract procedures
encoded by natural language terms. These procedures are defined as six kinds of
TIL constructions. First, we briefly introduce the method of learning with a
supervisor that is applied in our case. Then we describe the algorithm ‘Framework’
together with heuristic methods applied by it. The heuristics is based on a plausible
supply of positive and negative (near-miss) examples by which learner’s hypotheses
are refined and adjusted. Given a positive example, the learner refines the hypothesis
learnt so far, while a near-miss example triggers specialization. Heuristic methods
deal with the way refinement, including its special cases generalization and
specialization, is applied.

Keywords. Machine learning, supervisor, Transparent Intensional Logic, TIL,
refinement, generalization, specialization, hypothesis, heuristics

1. Introduction

The method of supervised machine learning enables the agents in a multi-agent system
to adjust their ontology and increase their knowledge. In [12] the method has been
applied to learning the concept of a property that classifies geometric figures such as
lancet arches. In this paper we deal with natural language processing, which is an
interdisciplinary discipline involving linguistics, logic and computer science. The goal
of this paper is to describe the application of machine learning methods in agents’
learning simple concepts by their refinement. Our background theory is Transparent
Intensional Logic (TIL) with its procedural (as opposed to set-theoretical) semantics. In
TIL we explicate concepts procedurally. They are abstract structured procedures
assigned to natural language terms as their meanings. In this way structured meanings
are formalized in a fine-grained way as so-called TIL constructions so that almost all the
semantically salient features can be successfully dealt with. To this end we use the so-
called Normal Translation Algorithm (NTA) that processes text data and produces TIL

2

constructions as their meanings.1 Having a meaning procedure, we can apply logic to
prove what is entailed by it, compute the object (if any) produced by the procedure, deal
with its structure, etc.

However, there is a problem of understanding simple or atomic concepts that are
expressed by semantically simple terms like ‘cat’, ‘dog’, ‘myopia’, etc. They are basic
‘building blocks’ of molecular concepts, and as such they are formalized just by the
simplest procedure Trivialization of a given object O, ‘0O’ in symbols, that refers to the
object O and makes it available to other molecular procedures to operate on it. In proof-
theoretic semantics the meaning of atomic terms is given by the rules that determine how
to use them in proofs.2 This works well in the language of mathematics and logic.
However, in natural language the ‘meaning as proof’ semantics is much less successful.
For these reasons we decided to apply supervised machine learning methods. The issue
is this. When processing a natural language text, our agents learn structured TIL
procedures encoded by sentences. For instance, the sentence “Tom has myopia”
translates into the TIL procedure wt [0Myopiawt 0Tom]. It can be viewed as an
instruction how in any possible world (w) and time (t) evaluate the truth-conditions of
the sentence, which consists of these steps:

 Take the individual Tom: 0Tom
 Take the property of having Myopia: 0Myopia
 Extensionalize the property with respect to world w and time t of evaluation:

0Myopiawt
 Produce a truth-value by checking whether Tom has this property at the world

w and time t of evaluation: [0Myopiawt 0Tom]

So far so good. We can derive that somebody has myopia, but this piece of
information does not suffice to derive, for instance, that Tom has problems with impaired
vision, needs negative dioptre correction, etc. We need to refine the simple concept
0Myopia to learn in more details what ‘myopia’ means. In other words, we want to define
the property of having myopia. To this end we try to extract from natural language texts
the collection of so-called requisites that together define the property. Hence, the
supervisor looks for sentences like “Myopia (also called near-sightedness) is the most
common cause of impaired vision in people under age 40”. Based on this piece of
information the agent makes a hypothesis that among the requisites of myopia there are
‘near-sightedness’ and ‘impaired vision’. This is a positive example. Furthermore, we
can read sentences like “Myopia is not caused by nerve trauma; rather, it occurs when
the eyeball is too long, relative to the focusing power of the cornea and lens of the eye.
This causes light rays to focus at a point in front of the retina, rather than directly on its
surface. Near-sightedness also can be caused by the cornea and/or lens being too curved
for the length of the eyeball. In some cases, myopia is due to a combination of these
factors.” The supervisor should extract a negative example that myopia is not caused by
nerve trauma and a collection of positive examples like ‘too long eyeball’, ‘wrong
focusing’, etc.

The algorithm of the learning process is based on such positive and negative
examples. Given a positive example, refinement is applied on the hypotheses so that
concepts of other requisites or typical properties are inserted. Negative (also ‘near-miss’)

1 For details, see [9], [11].
2 See, for instance, [8].

3

examples serve to the adjustment of the hypothesis (learnt so far) by specialization that
excludes non-plausible elements. As a special case of refinement, we can also apply
generalization. This is the case of inserting a more general concept in addition to some
special constituents of the hypothesis. For instance, the degree of myopia is described in
terms of the power of the ideal correction, which is measured in dioptres. Now the agent
can extract information like this. “Low myopia usually describes myopia of -3.00
dioptres or less (i.e. closer to 0.00), moderate myopia is between -3.00 and -6.00 dioptres,
and high myopia is the degree -6.00 or more.” By generalization we obtain information
that myopia is corrected by negative dioptres.

The rest of the paper is organized as follows. In Section 2 we summarize foundations
of TIL to describe logical machinery that we need in the rest of the paper. Section 3
introduces the principles of supervised machine learning. In Section 4 we deal with
heuristic methods that are used to adjust and enrich agents’ knowledge base. In Section
5, an example of using the algorithm of machine learning together with TIL formalization
is adduced. Finally, concluding remarks can be found in Section 6.

2. Foundations of Transparent Intensional Logic (TIL)

Since the TIL logical system has been introduced in numerous papers and two books,
see, for instance [1], [2], [3], [4], [5], [6], [7], [16], here we just briefly summarise the
main principles of a TIL fragment that we need for the purposes of this paper.

TIL is a partial, typed hyperintensional lambda calculus with procedural as opposed
to set-theoretical denotational semantics. The terms of the TIL language denote abstract
procedures that produce set-theoretical mappings (functions-in-extension) or lower-
order procedures. These procedures are rigorously defined as TIL constructions. Being
procedural objects, constructions can be executed in order to operate on input objects (of
a lower-order type) and produce the object (if any) they are typed to produce, while non-
procedural objects, i.e. non-constructions, cannot be executed. There are two atomic
constructions that present input objects to be operated on. They are Trivialization and
Variables. The operational sense of Trivialization is similar to that of constants in formal
languages. The Trivialization presents an object X without the mediation of any other
procedures. Using the terminology of programming languages, the Trivialization of X,
‘0X’ in symbols, is just a pointer that refers to X. Variables produce objects dependently
on valuations; they v-construct. We adopt an objectual variant of the Tarskian conception
of variables. To each type countably many variables are assigned that range over this
particular type. Objects of each type can be arranged into infinitely many sequences. The
valuation v selects one such sequence of objects of the respective type, and the first
variable v-constructs the first object of the sequence, the second variable v-constructs the
second object of the sequence, and so on. Thus, the execution of a Trivialization or a
variable never fails to produce an object. However, the execution of some of the
molecular constructions can fail to present an object of the type they are typed to produce.
When this happens, we say that the constructions are v-improper.

There are two dual molecular constructions which correspond to -abstraction and
application in -calculi, namely Closure and Composition. (-)Closure, [x1…xn X],
transforms into the very procedure of producing a function by abstracting over the values
of the variables x1, …, xn. The Closure [λx1…xm Y] is not v-improper for any valuation v,
as it always v-constructs a function. Composition, [X X1…Xn], is the very procedure of
applying a function produced by the procedure X to the tuple-argument (if any) produced

4

by the procedures X1, …, Xn. While Closure never fails to produce a function,
Composition is v-improper if one or more of its constituents X, X1, …, Xn are v-improper.
This happens when a partial function f is applied to an argument a such that the function
f is not defined at a. Another cause of improperness can be type-theoretical incoherence
of the Composition. For instance, the proposition that the number 5 is a student does not
have a truth-value at any world w and time t of evaluation, because the property of being
a student is the property of individuals rather than numbers. Hence the application of the
(extensionalized) property of being a student to the number 5 in a particular world w and
time t of evaluation, in symbols [[[0Student w]t]

05], or [0Studentwt
05] for short, is v-

improper for every valuation v of the variables w (ranging over possible worlds) and t
(ranging over times).

Definition (constructions)

(i) Variables x, y, … are constructions that construct objects (elements of their
respective ranges) dependently on a valuation v; they v-construct.

(ii) Where X is an object whatsoever (even a construction), 0X is the construction
Trivialization that constructs X without any change of X.

(iii) Let X, Y1, …, Yn be arbitrary constructions. Then Composition [X Y1…Yn] is the
following construction. For any v, the Composition [X Y1…Yn] is v-improper if at
least one of the constructions X, Y1, …, Yn is v-improper by failing to v-construct
anything, or if X does not v-construct a function that is defined at the n-tuple of
objects v-constructed by Y1,…,Yn. If X does v-construct such a function, then [X
Y1…Yn] v-constructs the value of this function at the n-tuple.

(iv) (-) Closure [λx1…xm Y] is the following construction. Let x1, x2, …, xm be pair-
wise distinct variables and Y a construction. Then [λx1…xm Y] v-constructs the
function f that takes any members B1, …, Bm of the respective ranges of the
variables x1, …, xm into the object (if any) that is v(B1/x1,…,Bm/xm)-constructed by
Y, where v(B1/x1,…,Bm/xm) is like v except for assigning B1 to x1, …, Bm to xm.

(v) Where X is an object whatsoever, 1X is the construction Single Execution that v-
constructs what X v-constructs. Thus, if X is a v-improper construction or not a
construction as all, 1X is v-improper.

(vi) Where X is an object whatsoever, 2X is the construction Double Execution. If X is
not itself a construction, or if X does not v-construct a construction, or if X v-
constructs a v-improper construction, then 2X is v-improper. Otherwise 2X v-
constructs what is v-constructed by the construction v-constructed by X.

Nothing is a construction, unless it so follows from (i) through (vi).

With constructions of constructions, constructions of functions, functions, and
functional values in our stratified ontology, we need to keep track of the traffic between
multiple logical strata. The ramified type hierarchy does just that. The type of first-order
objects includes all objects that are not constructions. Therefore, it includes not only the
standard objects of individuals, truth-values, sets, etc., but also functions defined on
possible worlds (i.e., the intensions germane to possible-world semantics). The type of
second-order objects includes constructions of first-order objects and functions that have
such construction in their domain or range. The type of third-order objects includes
constructions of first- and second-order objects and functions that have such construction
in their domain or range. And so on, ad infinitum.

5

Definition (types of order n). Let B be a base, where a base is a collection of pair-wise
disjoint, non-empty sets. Then:

T1 (types of order 1).
i) Every member of B is an elementary type of order 1 over B.
ii) Let α, β1, ..., βm (m > 0) be types of order 1 over B. Then the collection (α β1 ...

βm) of all m-ary partial mappings from β1 ... βm into α is a functional type of
order 1 over B.

iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii).
Cn (constructions of order n)

i) Let x be a variable ranging over a type of order n. Then x is a construction of
order n over B.

ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are constructions of
order n over B.

iii) Let X, X1, ..., Xm (m > 0) be constructions of order n over B. Then [X X1... Xm] is
a construction of order n over B.

iv) Let x1, ..., xm, X (m > 0) be constructions of order n over B. Then [x1...xm X] is
a construction of order n over B.

v) Nothing is a construction of order n over B unless it so follows from Cn (i)-(iv).
Tn+1 (types of order n + 1)

Let n be the collection of all constructions of order n over B. Then
i) n and every type of order n are types of order n + 1.
ii) If m > 0 and , 1, ..., m are types of order n + 1 over B, then (1 ... m) (see

T1 ii)) is a type of order n + 1 over B.
iii) Nothing is a type of order n + 1 over B unless it so follows from (i) and (ii).

Remark. For the purposes of the analysis of our sample example of agents’ learning the
concept of myopia intensional fragment of TIL based on the simple types of order 1
suffices. Yet when the agents learn new concepts, they enrich their ontology by new
constructions that are just displayed rather than executed. To this end, the full ramified
hierarchy is needed. For details see, e.g., [4], [7].

For the purposes of natural-language analysis, we are usually assuming the
following base of elementary types:

ο: the set of truth-values {T, F};
ι: the set of individuals (the universe of discourse);
τ: the set of real numbers (doubling as discrete times);
ω: the set of logically possible worlds (the logical space).

We model sets and relations by their characteristic functions. Thus, for instance, ()
is the type of a set of individuals, while () is the type of a relation-in-extension
between individuals. Empirical expressions denote empirical conditions that may or may
not be satisfied at the world/time pair selected as points of evaluation. We model these
empirical conditions as possible-world-semantic intensions. Intensions are entities of
type (): mappings from possible worlds to an arbitrary type . The type is frequently
the type of the chronology of -objects, i.e., a mapping of type (). Thus -intensions
are frequently functions of type (()), abbreviated as ‘’. Extensional entities are
entities of a type where () for any type .

6

Hence, empirical expressions denote (non-trivial, i.e. non-constant) intensions.
Where variable w ranges over and t over , the following logical form essentially
characterizes the logical syntax of empirical language:

wt […w….t…]

Examples of frequently used intensions are:

 propositions of type denoted by sentences like “John is a student”;
 properties of individuals of type () denoted by nouns and adjectives, e.g.

‘student’, ‘red’, ‘tall’, ‘myopia’, ‘near-sighted’;
 binary relations-in-intension between individuals of type (), e.g. being

‘composed of’, ‘seeing’;
 individual offices (or roles) of type that are denoted by definite descriptions like

‘the tallest mountain’, ‘Miss World 2019’, ‘the President of Zanzibar’.

Logical objects like truth-functions and are extensional: (conjunction),
(disjunction) and (implication) are of type (), and (negation) of type ().

The quantifiers , are type-theoretically polymorphic total functions of type
(()), for an arbitrary type , defined as follows. The universal quantifier is a
function that associates a class A of -elements with T if A contains all elements of the
type , otherwise with F. The existential quantifier is a function that associates a class
A of -elements with T if A is a non-empty class, otherwise with F.

Notational conventions. Below all type indications will be provided outside the
formulae in order not to clutter the notation. Moreover, the outermost brackets of
Closures will be omitted whenever no confusion arises. Furthermore, ‘X/’ means that
an object X is (a member) of type . ‘X v ’ means that X is typed to v-construct an
object of type , regardless of whether X in fact constructs anything. We write ‘X ’
if what is v-constructed does not depend on a valuation v. Throughout, it holds that the
variables w v and t v . If C v then the frequently used Composition [[C w]
t], which is the intensional descent (a.k.a. extensionalization) of the -intension v-
constructed by C, will be encoded as ‘Cwt’. When applying quantifiers, we use a simpler
notation ‘x B’, ‘x B’ instead of the full notation ‘[0 x B]’, ‘[0x B]’, x ,
B , to make the quantified constructions easier to read. When applying truth-
functions we use infix notation without Trivialization. For instance, instead of the
Composition ‘[0 A B]’ we write simply ‘[A B]’.

For illustration, here is an example of the analysis of a simple sentence “John is near-
sighted”. First, type-theoretical analysis, i.e. assigning types to the objects that receive
mention in the sentence: John/; Nearsighted/(); the whole sentence denotes a
proposition of type . Now we compose constructions of these objects to construct the
denoted proposition. To predicate the property of being near-sighted of John, the
property must be extensionalized first: [[0Nearsighted w] t], or 0Nearsightedwt v (),
for short. The Composition [0Nearsightedwt

0John] v ; and finally, the whole empirical
sentence denotes a proposition of type , hence it encodes as its meaning the Closure

wt [0Nearsightedwt
0John] .

In TIL we reject individual essentialism; instead, we adhere to intensional
essentialism. It means that each -intension P is necessarily related to a collection of

7

requisites of P, its essence, that together define the intension P. For instance, requisites
of the property of being a horse are the property of being a mammal of the family
Equidae, species Equus Caballus, the property of having blood circuit, being a living
creature, and many others. Necessarily, if some individual a happens to be a horse then
a is a mammal of the family Equidae, etc.

The requisite relations Req are a family of relations-in-extension between two
intensions, hence of the polymorphous type (), where possibly = . Infinitely
many combinations of Req are possible, but the following is the relevant one that we
need for our purpose:3

Req /(()()): an individual property is a requisite of another such property.

Thus, we define:

Definition (requisite relation between -properties) Let X, Y be constructions of
properties, X, Y/n (); x , True/(): the property of propositions of being
true in a given world and time of evaluation. Then

[0Req Y X] = wt [x [[0Truewt wt [Xwt x]] [0Truewt wt [Ywt x]]]].

Gloss definiendum as, “Y is a requisite of X”, and definiens as, “Necessarily, at every
w, t, whatever x instantiates X at w, t also instantiates Y at w, t.”

Remark. Here we have to apply the property of propositions True to handle
partiality. This is due to the fact that there is a stronger relation between properties,
namely that of pre-requisite. If Y is a pre-requisite of X, then if an individual x does not
instantiate Y it is neither true nor false that x instantiates X. The proposition wt [Xwt x]
has a truth-value gap. For instance, the property of having stopped smoking has a pre-
requisite of being an ex-smoker. If somebody never smoked they could not stop smoking,
of course. Then, however, the Composition [0Truewt wt [Xwt x]] is simply false and
since it is an antecedent of the above implication, the implication is true, as it should be.

Since the topic of this paper is learning and refining concepts, we need to define the

notion of concept. In TIL concepts are explicated as closed constructions in their normal
form. Referring for details to [7, §2.2], we briefly recapitulate. Concepts are meanings
of semantically complete terms that do not contain indexicals or other pragmatically
incomplete terms. In case of the latter we furnish a pragmatically incomplete expression
with an open construction containing free variables. An open construction cannot be
executed unless valuation of its free variables is supplied, usually by the situation of
utterance. For instance, the meaning of the sentence “He is smart” is the open
construction wtSmartwt he], he , that cannot be evaluated until an individual is
assigned to the free variable he as its valuation.4 Hence, we don’t treat this open

3 For details see [7, §4.1]
4 If such a sentence occurs in a broader discourse, its meaning can be completed by

anaphoric references as well. For instance, in “John is a student, he is smart” the
meanings are not pragmatically incomplete, because the individual John is substituted
for the anaphoric variable he. For details on resolving anaphoric references in TIL, see
[6]

8

construction as a concept. Since concepts should be at least in principle executable in
any state of affairs, we explicate them as closed constructions.

However, our TIL constructions are a bit too fine-grained from the procedural point
of view. Some closed constructions differ so slightly that they are virtually identical. In
a natural language we cannot even render their distinctness, which is caused by the role
of -bound variables that lack a counterpart in natural languages. These considerations
motivated definition of the relation of procedural isomorphism on TIL constructions.5
Procedurally isomorphic constructions form an equivalence class at which we can vote
for a representative. To this end a normalization procedure has been defined that results
in the unique normal form C of a construction that is a representative of the class of
procedurally isomorphic constructions. Hence, we adopt this definition:

Definition (concept) A concept is a closed construction in its normal form.

For the sake of simplicity, in what follows we deal with concepts simply as with
closed constructions, ignoring the above technicalities, because we believe that this
simplification is harmless for our purposes.

The last notion we need to define is that of refinement of a concept. Basically, by
refining a simple concept 0O of an object O we mean replacing 0O by an equivalent
molecular concept D that produces the same object O. We also say that the molecular
construction D is an ontological definition of the object O.

Here is an example. The Trivialization 0Prime is in fact the least informative
procedure for producing the set of prime numbers. Using particular definitions of the set
of primes, we can refine the simple concept 0Prime in many ways, including:6

x [0Card y [0Divide y x] = 02],

x [[x 01] y [[0Divide y x] [[y = 01] [y = x]]]],

x [[x > 01] y [[y > 01] [y < x] [0Divide y x]].

The involved types are: , the type of natural numbers; Card/(()): the cardinality of
a set of natural numbers; Divide/(): the relation of x being divisible by y; the other
types are obvious.

Thus, we define.

Definition (refinement of a construction) Let C1, C2, C3 be constructions. Let 0X be a
simple concept of an object X and let 0X occur as a constituent of C1. If C2 differs from
C1 only by containing in lieu of 0X an ontological definition of X, then C2 is a refinement
of C1. If C3 is a refinement of C2 and C2 is a refinement of C1, then C3 is a refinement of
C1.

Corollary. If C2 is a refinement of C1, then C1, C2 are equivalent but not procedurally
isomorphic.

For instance, the simple concept of primes is not procedurally isomorphic with the above
refinements, of course, which are molecular concepts with much richer structure than
just 0Prime. As a result, the term ‘prime’ is not synonymous with its equivalents like ‘the

5 For details, see [4].
6 For the sake of simplicity, here we again use infix notation without Trivialization

for application of the binary relations >, < and the identity = between numbers.

9

set of naturals with just two factors’, ‘the set of naturals distinct from 1 that are divisible
just by the number 1 and themselves’, because the meanings of synonymous terms are
procedurally isomorphic. Rather, ‘prime’ is only equivalent to these definitions.

So much for our formalism and background theory.

3. Supervised Machine Learning

Supervised machine learning is a method of predicting functional dependencies between
input values and the output value. The supervisor provides an agent/learner with a set of
training data. These data describe an object by a set of attribute values such that there is
a functional dependency between these values.

For instance, a house can be characterized by its size, locality, date of building,
architecture style, etc., and its price. Obviously, the price of a house depends on its size,
locality, date of building and architecture style. Hence, the price is called an output
attribute and the other attributes are input attributes. The goal of learning is to discover
this functional dependency on the grounds of training data examples so that the agent
can predict the value of the output attribute given the values of input attributes of a new
instance.

 More generally, where x1,…,xn are values of input attributes and y an output
attribute value, there is a function f such that y = f(x1,…,xn). The goal of the learning
process is to discover a function h that approximates the function f as close as possible.
The function h is called a hypothesis. The learner creates hypotheses on the grounds of
training data (input-output values) provided by the supervisor. Correctness of the
hypothesis is verified by using a set of test examples given their input attributes. The
hypothesis is plausible if the learner predicts the values of the output attribute with a
maximum accuracy.7

Since we decided to apply this method to learning concepts, we have to adjust the
method a bit. First, instead of input/output attributes, we deal with concepts, that is closed
constructions. The role of input ‘attributes’ is played by the constituents of a hypothetic
molecular concept and instead of the output attribute we deal with the simple atomic
concept that the learner aims to refine. The hypothetic function is that of a requisite.
Training data are natural-language texts. The supervisor extracts from the text data
positive and negative examples. For instance, let the ‘output’ concept to be learned be
that of a cat, i.e. 0Cat. The role of positive examples is played by particular descriptions
of the property of being a cat like “Cat is a predatory mammal that has been
domesticated”. The learner establishes a hypothesis that the property

wt x [[[0Predatory 0Mammal]wt x] [0Domesticatedwt x]]

belongs to the essence of the property Cat. Negative examples delineate the hypothesis
from other similar objects. As a negative example for cat can serve the sentence “Dog is
a domesticated predatory mammal that barks”. This triggers a specialization of the
hypothetic concept to the construction

wt x [[[0Predatory 0Mammal]wt x] [0Domesticatedwt x] [[0Barkwt x]]]

7 For details, see [13], [15].

10

Hence, given a positive example, the learner refines the hypothetic molecular
concept by adding other concepts to the essence, while a negative example triggers
specialization of the hypotheses. The hypothetic concept can be also generalized. For
instance, the learner can obtain as another positive example describing the property Cat
the sentence “Cat is a wild feline predatory mammal”. Since the properties Wild and
Domesticated are inconsistent, the agent consults his/her ontology for a more general
concept. If there is none, the ‘union’ of the properties, Wild or Domesticated, is included.
As a result, the learner obtains this hypothesis.

wt x [[[0Feline [0Predatory 0Mammal]]wt x]

[[0Domesticatedwt x] [0Wildwt x]]
[[0Barkwt x]]]

Remark. Both Feline and Predatory are property modifiers of type (()()), i.e.
functions that given an input property return another property as an output. Since these
two modifiers are intersective, the rules of left- and right-subsectivity are applicable
here.8 In other words, predatory mammal is a predator and is a mammal, similarly for
feline. If our agent has these pieces of information in their knowledge base, the above
Composition [[0Feline [0Predatory 0Mammal]]wt x] can be further refined to [[0Feline’wt

x] [0Predatory’wt x] [0Mammalwt x]], where Feline’ and Predatory’ are properties of
individuals, i.e. objects of type ().

Both generalization, specialization and conjunctive extension are methods of
refining a hypothetic concept, the methods that we are going to describe in the next
section.

3.1. Refining hypothesis space

In our method we try to find the description of all plausible hypotheses that are consistent
with the training data and are derivable from the provided examples.9 To this end we
assume that there is no noise in the training data [13]. In other words, the examples
provided to the learner are adequate for the prediction of the refined concept. Obviously,
a learner can usually examine just a small finite training set of examples instead of a
possibly infinite set of sample concepts. Hence, inductive learning is applied to obtain a
hypothetic concept.10 In the process of inductive learning, the relation ‘more general’
defined on the set of hypotheses is used. This relation is defined as follows. Let ℎ , ℎ
be hypothetic concepts defined on an input domain X. Then h1 is more general then ℎ ,
in symbols ‘h2 h1’, iff

∀𝑥 ∈ 𝑋 [(ℎ (𝑥) = 1) ⊃ (ℎ (𝑥) = 1)].

Note. By (hi(x) = 1) we mean that an object x falls under the concept hi in a given state
of affairs. Hence, this simplified notation can be read as “all objects x that fall under the
concept h2 fall also under the more general concept h1”.

8 For details and analysis of other kinds of modifiers, see [5].
9 Hypothesis is consistent with the training data, i.e. the set S of examples, if the

value predicted by the hypothesis is the value of output attribute of all examples
belonging to S.

10 For details on and definition of inductive learning see, e.g., [13, §2.2.2, p. 23].

11

The subset of hypotheses obtained by inductive learning which is consistent with the
training set of examples is called version-space.

3.2. Algorithm framework

All machine learning algorithms, no matter into which family they belong, can be
characterized by common categories which form a framework [10]. The algorithms are
characterized by task goals, training data, data representation, and a set of operators
which manipulate with data representation. In our machine learning algorithm, the
framework can be briefly described as follows.

Objective Goal. As mentioned above, the goal of an agent is to discover the best
refinement of the learned simple concept of an object O, i.e. a molecular closed
construction that produces the same object. Moreover, this molecular concept should
specify as much as possible of the requisites of the object O so that it also excludes other
similar concepts.

Training data. An agent works with positive and negative examples that are
sentences extracted by a supervisor from a textual base. Positive examples contain
concepts of requisites specifying the learned simple concept, while negative examples
specify properties that do not belong to the essence of the intension provided by the
concept.

Data Representation. The agents must have an internal formal representation of data
obtained by examples. Plausible hypotheses are then formulated in terms of this
representation. Our formalism is that of Transparent Intensional Logic so that the
sentences are analysed in terms of TIL constructions.

Knowledge Modifying Module. The learning algorithm is biased in favour of a
preferred hypothesis. By using proper preferences, we reduce the hypothesis space. In
version-space learning the bias is called a restriction bias, because the bias is obtained
by restricting the allowable hypotheses. The agent uses a set of operations to modify the
hypothesis during a heuristic search in the hypothesis space. The three main operations
to modify a hypothetic concept are generalization, specialization and refinement. There
are two possibilities how to obtain a proper hypothesis. The first one is based on using
merely positive examples. In this case we need to be sure that the examples cover well
the positive cases; in other words, we need examples containing all and only requisites
of the learned concept. The second way that we vote for is using both positive and
negative examples. By applying specialization based on negative examples we exclude
too general hypotheses.

4. Inductive heuristics

For our purpose we voted for an adjusted version of Patrick Winston algorithm [17] of
supervised machine learning. This algorithm applies the principles of generalization and
specialization to obtain a plausible hypothesis, i.e. the functional dependency between
input and output attributes. In our case the main principle is the method of refining the
output simple concept. Hence, instead of a functional dependency between input and
output attributes, we are looking for molecular concepts refining the output simple

12

concept the constituents of which are related to the output concept by the requisite
relation. Winston algorithm assumes that examples differ from the model just in one
attribute while in our case we develop the molecular concept by adding new constituents
contained in example sentences describing or rather refining the output concept. Hence
our algorithm does not compare a model with examples; rather, it compares the
hypothetic concept with information in sample sentences.

As stated above, our main method is refinement of a concept, i.e. a hypothetic
construction. Based on positive examples we extend the collection of requisites by
adding missing concepts in a conjunctive way. As a special case, generalization can be
applied. Based on agents’ ontologies, generalization usually concerns replacing one or
more constituents of the hypothetic concept by a more general one.

Specialization is triggered by negative examples. As a result, negation of a property
that does not belong to the essence of the hypothetic concept is inserted. Specialization
serves to distinguish the output concept from similar ones. For instance, a wooden horse
can serve as a negative example to the concept of horse, because a wooden horse is not
a horse; rather, it is a toy horse though it may look like a genuine living horse.

Heuristic methods of the original Winston algorithm work with examples that cover
all the attributes of a learned object. Based on positive examples the hypothesis is
modified in such a way that the values of attributes are adjusted, or in case of a negative
example an unwanted attribute marked as Must-not-be is inserted. In our application the
sentences that mention the learned concept contain as constituents some but not all the
requisites of this concept, and we build up a new molecular concept by adding new
information extracted from positive or negative examples. Hence, we had to implement
a new heuristic Concept-introduction for adding concepts of new requisites into a
hypothetic concept. Negative examples trigger the method Forbid-link that inserts a
concept of negated property into the hypothesis. Generalization is realized by modules
that introduce a concept of a more general property; to this end we also adjusted the
original heuristic Close-interval so that it is possible to generalize values of numeric
concepts by the union of interval values from an example and model.11

Here is a brief specification of the algorithm.

Refinement.
1. Compare the model hypothesis (to be refined) and the positive example to find a

significant difference
2. If there is a significant difference, then

a) if the positive example contains as its constituent a concept that the model
does not have, use the Concept-introduction

b) else ignore example

Specialization.
1. Compare the model hypothesis (to be refined) and the near-miss example to find a

significant difference
2. If there is a significant difference, then

11 For the sake of simplicity, we did not change the original names of particular

modules though we do not work with ‘links’ between objects and attribute values any
more. The heuristics Require-link and Drop-link from the original algorithm have not
been used in our adjusted version.

13

c) if the near-miss example has a constituent of the concept that the model does
not have, use the Forbid-link

d) else ignore example

Generalization.
1. Compare the model hypothesis (to be refined) and the positive example to

determine a difference
2. For each difference do

a) if a concept in the model points at a value that differs from the value in the
example, then
i) if the properties in which the model and example differ have the most

specific general property, use the Climb-tree
ii) else use Union-set

b) if the model and example differ at an attribute numerical value or interval, use
the Close-interval

c) else ignore example.

5. Example of learning the concept of myopia

As a sample example we now introduce the process of learning refinements of the simple
concept of myopia, i.e. 0Myopia, by extracting information from natural language
sentences describing the property of having myopia.

As always, first types.

Myopia / (𝜊𝜄)
Sharp, Blur, Disorder, Eye_nerve, Eye_lenses / (𝜊𝜄)
Eye_focus, Damaged, Inflexible / ((𝜊𝜄) (𝜊𝜄))
Close, Distant, Looking_at / (𝜊𝜄𝜄)
x, y 𝜄
Req / (𝜊(𝜊𝜄) (𝜊𝜄))
 / 𝜊(𝜊𝜄)

Positive examples:

1. In myopia, close objects look sharp.

𝑅𝑒𝑞 𝜆𝑤𝜆𝑡𝜆𝑥 ∃𝜆𝑦 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡 𝑥 𝑦 ∧ 𝐶𝑙𝑜𝑠𝑒 𝑥 𝑦

⊃ 𝑆ℎ𝑎𝑟𝑝 𝑦 𝑀𝑦𝑜𝑝𝑖𝑎

14

2. In myopia, distant objects appear blurred.

𝑅𝑒𝑞 𝜆𝑤𝜆𝑡𝜆𝑥 ∃𝜆𝑦 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡 𝑥 𝑦 ∧ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑥 𝑦

⊃ 𝐵𝑙𝑢𝑟 𝑦 𝑀𝑦𝑜𝑝𝑖𝑎

3. It is an eye focusing disorder.

𝑅𝑒𝑞 𝐸𝑦𝑒_𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟 𝑀𝑦𝑜𝑝𝑖𝑎

Negative examples.

1. Cause of myopia is not damaged eye-nerve.

 𝑅𝑒𝑞 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐸𝑦𝑒_𝑛𝑒𝑟𝑣𝑒 𝑀𝑦𝑜𝑝𝑖𝑎

2. Cause of myopia is not inflexible eye lenses.

 𝑅𝑒𝑞 𝐼𝑛𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝐸𝑦𝑒_𝑙𝑒𝑛𝑠𝑒𝑠 𝑀𝑦𝑜𝑝𝑖𝑎

Simulation of the algorithm execution.

The execution of our algorithm begins with a first chosen positive example. The
construction encoded by this sentence becomes an initial model.

”In myopia, close objects look sharp.”

𝑅𝑒𝑞 𝜆𝑤𝜆𝑡𝜆𝑥 ∃𝜆𝑦 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡 𝑥 𝑦 ∧ 𝐶𝑙𝑜𝑠𝑒 𝑥 𝑦

⊃ 𝑆ℎ𝑎𝑟𝑝 𝑦 𝑀𝑦𝑜𝑝𝑖𝑎

The second positive example

“In myopia distant objects appear blur.”

refines the model by Concept-introduction. As a result, we have a hypothetic model “In
myopia, close objects look sharp and distant objects look blur”.

15

𝑅𝑒𝑞 𝜆𝑤𝜆𝑡𝜆𝑥 ∃𝜆𝑦 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡 𝑥 𝑦 ∧ 𝐶𝑙𝑜𝑠𝑒 𝑥 𝑦 ⊃ 𝑆ℎ𝑎𝑟𝑝 𝑦

∧ ∃𝜆𝑦 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡 𝑥 𝑦 ∧ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑥 𝑦

⊃ 𝐵𝑙𝑢𝑟 𝑦 𝑀𝑦𝑜𝑝𝑖𝑎

The last positive example

“It is an eye focusing disorder.”

also refines the model by Concept-introduction:

𝑅𝑒𝑞 𝜆𝑤𝜆𝑡𝜆𝑥 ∃λy Looking_at x y ∧ Close x y ⊃ Sharp y

∧ ∃𝜆𝑧 𝐿𝑜𝑜𝑘𝑖𝑛𝑔_𝑎𝑡 𝑥 𝑧 ∧ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑥 𝑧

⊃ 𝐵𝑙𝑢𝑟 𝑧 ∧ 𝐸𝑦𝑒 𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟 𝑥 𝑀𝑦𝑜𝑝𝑖𝑎

The first negative example “The cause of myopia is not a damaged eye nerve” triggers
specialization of the hypothesis. As a result, we apply the negated property that is added
into the essence of myopia:

𝑅𝑒𝑞 𝜆𝑤𝜆𝑡𝜆𝑥 ∃𝜆𝑦 𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑎𝑡 𝑥 𝑦 ∧ 𝐶𝑙𝑜𝑠𝑒 𝑥 𝑦 ⊃ 𝑆ℎ𝑎𝑟𝑝 𝑦

∧ ∃𝜆𝑧 𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑎𝑡 𝑥 𝑧 ∧ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑥 𝑧

⊃ 𝐵𝑙𝑢𝑟 𝑧 ∧ 𝐸𝑦𝑒 𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟 𝑥

∧ ¬ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐸𝑦𝑒_𝑁𝑒𝑟𝑣𝑒 𝑥 𝑀𝑦𝑜𝑝𝑖𝑎

The second negative example “Myopia is not caused by inflexible eye lenses” also
specializes the concept. The resulting molecular concept defining the property of myopia
is this:

16

𝑅𝑒𝑞 𝜆𝑤𝜆𝑡𝜆𝑥 ∃𝜆𝑦 𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑎𝑡 𝑥 𝑦 ∧ 𝐶𝑙𝑜𝑠𝑒 𝑥 𝑦 ⊃ 𝑆ℎ𝑎𝑟𝑝 𝑦

∧ ∃𝜆𝑧 𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑎𝑡 𝑥 𝑧 ∧ 𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑧 𝑦

⊃ 𝐵𝑙𝑢𝑟 𝑧 ∧ 𝐸𝑦𝑒 𝑓𝑜𝑐𝑢𝑠 𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟 𝑥

∧ ¬ 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐸𝑦𝑒 𝑁𝑒𝑟𝑣𝑒 𝑥

∧ ¬ 𝐼𝑛𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝐸𝑦𝑒_𝑙𝑒𝑛𝑠𝑒𝑠 𝑥 𝑀𝑦𝑜𝑝𝑖𝑎

In this example we did not deal with generalization. It might concern calling the
Close-interval module or dealing with subsective modifiers of the property of being
shortsighted. For instance, in Wikipedia we can read:

The degree of myopia is described in terms of the power of the ideal correction,
which is measured in dioptres:

 Low myopia usually describes myopia of −3.00 dioptres or less (i.e. closer to 0.00).
 Moderate myopia usually describes myopia between −3.00 and −6.00 dioptres.
 High myopia usually describes myopia of −6.00 or more.

By the analysis of these sentences we would insert into the definition of myopia other
three concepts defining myopia, namely low, moderate and high myopia. By applying
generalization, we obtain still another definition, namely that myopia is measured in
negative dioptres.

6. Conclusion

In this paper we introduced the basic principles of supervised machine learning, namely
the method of refining hypothesis by means of positive and negative examples. The
process of refinement of a given hypothesis triggered by positive and near-miss examples
together with heuristic functions that modify the hypothesis has been described and
illustrated by examples. We applied an adjusted version of Patrick Winston’s data driven
algorithm for machine learning. The area under scrutiny has been agents’ learning simple
concepts by their refining. In other words, our agents learn new concepts by discovering
compound definitions of the objects specified just by a simple concept of Trivialization.
The method itself has been illustrated by the example of agent’s learning the concept of
myopia. Our data have been formalized by means of the TIL tools, namely constructions
and types produced by the NLA algorithm [11].

The proposed machine learning method heavily relies on the role of a supervisor.
For a success in learning it is important that the supervisor extracts from a given text
those sentences that mention the concept in a way plausible for learning. Moreover, there
should not by any noise in these input data, and the supervisor should properly classify
these sentences into positive and negative examples. Hence, we assume that the role of

17

a supervisor is played by an experienced linguist. As a future research, we intend to
extend the functionalities of the algorithm so that it will cover also the extraction of
sample sentences where the output learned concept receives mention. Though there is no
substitute for a supervisor in a supervised machine learning method, its role can be at
least partly played by an algorithm so that the manual work of a linguist is reduced to a
minimum. Our next goal is to improve the method so that the agents would learn
synonymous terms referring to the same concept as well and distinguish them from
merely equivalent ones. This is important for dealing with hyperintensional attitudes of
knowing, believing, designing, calculating, solvind, etc. properly. These attitudinal verbs
are part and parcel of our everyday vernacular so that their proper analysis and logic
should not be missing from any automatized multiagent system. And since these
attitudinal verbs establish hyperintensional contexts where the substitution of merely
equivalent terms fails, the agents need to know the synonyms of the learned concepts as
well.

Acknowledgements. This research has been supported by the Grant Agency of the
Czech Republic, project No. GA18-23891S, “Hyperintensional Reasoning over Natural
Language Texts” and also by the internal grant agency of VSB-Technical University
Ostrava, project No. SP2019/40, “Application of Formal Methods in Knowledge
Modelling and Software Engineering II”.

References

1. Číhalová, M., Duží, M., Menšík, M. (2014). Logical specification of processes.
Frontiers in Artificial Intelligence and Applications, vol. 260: Information
Modelling and Knowledge Bases XXV, IOS Press, 45-63.

2. Duží, M. (2012). Extensional logic of hyperintensions. Lecture Notes in Computer
Science, vol. 7260, pp. 268-290. DOI: 10.1007/978-3-642-28279-9-19

3. Duží, M. (2014). Communication in a multi-cultural world. Organon F, vol. 21,
No. 2, pp. 198-218.

4. Duží, M. (2017). If structured propositions are logical procedures then how are
procedures individuated? Synthese special issue on the Unity of propositions. DOI:
10.1007/s11229-017-1595-5

5. Duží, M. (2017). Property modifiers and intensional essentialism. Computación y
Sistemas, vol. 21, No. 4, 2017, pp. 601–613. DOI: 10.13053/CyS-21-4-2811.

6. Duží, M. (2018). Logic of Dynamic Discourse; Anaphora Resolution. Frontiers in
Artificial Intelligence and Applications, vol. 301: Information Modelling and
Knowledge Bases XXIX, pp. 263-279, Amsterdam: IOS Press, DOI 10.3233/978-
1-61499-834-1-263

7. Duží, M., Jespersen, B., Materna, P. (2010). Procedural Semantics for
Hyperintensional Logic. Foundations and Applications of Transparent Intensional
Logic. Berlin: Springer.

8. Francez, N. (2015). Proof-theoretic Semantics. Studies in Logic 57, College
Publications.

9. Kovář, V. Baisa, V, Jakubíček, M. (2016). Sketch Engine for Bilingual
Lexicography. International Journal of Lexicography, vol. 29, No. 3, pp. 339-352.

18

10. Luger G. F. (2009). Artificial intelligence: structures and strategies for complex
problem solving. 6th ed. Boston: Pearson Addison-Wesley, 2009. ISBN 978-0-
321-54589-3.

11. Medveď, M., Šulganová, T. Horák, A. (2017). Multilinguality Adaptations of
Natural Language Logical Analyzer. In Proceedings of the 11th Workshop on
Recent Advances in Slavonic Natural Language Processing, RASLAN 2017, Brno:
Tribun EU, pp. 51-58.

12. Menšík, M., Duží, M., Albert, A., Patschka, V., Pajr, M. (2019). Machine learning
using TIL. To appear in Proceedings of the 29th International Conference on
Information Modelling and Knowledge Bases, EJC 2019.

13. Mitchell T. M. (1997). Machine Learning. New York: McGraw-Hill, 1997. ISBN
00-704-2807-7.

14. Poole D. L., Mackworth A. K. (2010). Artificial intelligence: foundations of
computational agents. 2nd pub. Cambridge: Cambridge University Press, 2010.
ISBN 978-0-521-51900-7.

15. Russell S. J., Norvig P. (2014). Artificial intelligence: a modern approach. 2nd ed.
Harlow: Pearson Education, 2014. ISBN 978-1-29202-420-2.

16. Tichý, P. (1988). The Foundations of Frege’s Logic. Berlin, New York: de
Gruyter.

17. Winston P. H. (1992). Artificial intelligence. 3rd ed., Mass.: Addison-Wesley Pub.
Co., 1992. ISBN 02-015-3377-4.

