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Abstract. When analyzing the spread of viruses, epidemiologists often
need to identify the location of infected hosts. This information can be
found in public databases, such as GenBank [3], however, information
provided in these databases are usually limited to the country or state
level. More fine-grained localization information requires phylogeogra-
phers to manually read relevant scientific articles. In this work we pro-
pose an approach to automate the process of place name identification
from medical (epidemiology) articles. The focus of this paper is to pro-
pose a deep learning based model for toponym detection and experiment
with the use of external linguistic features and domain specific informa-
tion. The model was evaluated using a collection of 105 epidemiology
articles from PubMed Central [33] provided by the recent SemEval task
12 [28]. Our best detection model achieves an F1 score of 80.13%, a sig-
nificant improvement compared to the state of the art of 69.84%. These
results underline the importance of domain specific embedding as well
as specific linguistic features in toponym detection in medical journals.

Keywords: Named entity Recognition · Toponym Identification · Deep
Neural Network · Epidemiology Articles.

1 Introduction

With the increase of global tourism and international trade of goods, phylo-
geographers, who study the geographic distribution of viruses, have observed an
increase in the geographical spread of viruses [9,12]. In order to study and model
the global impact of the spread of viruses, epidemiologists typically use infor-
mation on the DNA sequence and structure of viruses, but also rely on meta
data. Accurate geographical data is essential in this process. However, most
publicly available data sets, such as GenBank [3], lack specific geographical de-
tails, providing information only at the country or state level. Hence, localized
geographical information has to be extracted through a manual inspection of
medical journals.

The task of toponym resolution is a sub-problem of named entity recognition
(NER), a well studied topic in Natural Language Processing (NLP). Toponym



resolution consists of two sub-tasks: toponym identification and toponym disam-
biguation. Toponym identification consists of identifying the word boundaries of
expressions that denote geographic expressions; while toponym disambiguation
focuses on labeling the expression with their corresponding geographical loca-
tions. Toponym resolution has been the focus of much work in recent years
(e.g. [2,7,30]) and studies have shown that the task is highly dependent on the
textual domain [1,25,26,14,8]. The focus of this paper is to propose a deep learn-
ing based model for toponym detection and experiment with the use of external
linguistic features and domain specific information. The model was evaluated
using the recent SemEval task 12 datatset [28] and shows that domain specific
embedding as well as some linguistic features do help in toponym detection in
medical journals.

2 Previous Work

The task of toponym detection consists in labeling each word of a text as a
toponym or non-toponym. For example, given the sentence:

(1) WNV entered Mexico through at least 2 independent introductions1.

The expected output is shown in Figure 1.

Fig. 1. An example of input and expected output of toponym detection task. Example
from the [33] dataset.

Toponym detection has been addressed using a variety of methods: rule based
approaches (e.g. [29]), dictionary or gazetteer-driven (e.g. [18]), as well as ma-
chine learning approaches (e.g. [27]). Rule based techniques try to manually cap-
ture textual clues or structures which could indicate the presence of a toponym.
However, these handwritten rules are often not able to cover all possible cases,
hence leading to a relatively large number of false negatives. Gazetteer driven
approaches (e.g. [18]), suffer from a large number of false positive identifications,
since they cannot disambiguate entities that refer to geographical locations from
other categories of named entities. For example in the sentence,

(2) Washington was unanimously elected President by the Electoral College in
the first two national elections.

1 Example from the [33] dataset.



the word Washington will be recognized as a toponym since it is present in
geographic gazetteers but in this context, the expression refers to a person name.
Finally, standard machine learning approaches (e.g. [27]), require large datasets
of labeled texts and carefully engineered features. Collecting such large datasets
is costly and feature engineering is a time consuming task, with no guarantee
that all relevant features have been modeled. This motivated us to experiment
with automatic feature learning to address the problem of toponym detection.
Deep Learning approaches to NER (e.g. [5,6,16,17,31]) have shown how a system
can infer relevant features and lead to competitive performances in that domain.

The task of toponym resolution for the epidemiology domain is currently the
object of the SemEval 2019 shared task 12 [28]. Previous approaches to toponym
detection in this domain includes rule based approach [33], Conditional Random
Fields [32], and a mixture of deep learning and rule based approaches [19].
The baseline model used at the SemEval 2019 task 12 [28] is modeled after
the deep feed forward neural network (DFFNN) architecture presented in [19].
The network consists of 2 hidden layers with 150 rectified linear unit (ReLU)
activation functions per layer. The baseline F1 performance is reported to be
69.84%. Building upon the work of [28,19] we propose a DFFNN that uses
domain-specific information as well as linguistic features to enhance the state of
the art performance.

3 Our Proposed Model

Figure 2 shows the architecture of our toponym recognition model. The model
is comprised of 2 main layers: an embedding layer, and a deep feed-forward
network.

3.1 Embedding Layer

As shown in Figure 2, the model takes as input a word (e.g. derived) and its
context (i.e. n words around it). Given a document, each word is converted into
an embedding along with its context. Specifically, two types of embeddings are
used: word embeddings and feature embeddings.

For word embeddings, our basic model uses the pretrained Wikipedia-PubMed
embeddings2. This embedding model was trained on a vocabulary of 201, 380
words and each word is represented by a 200 dimensional feature vector. This em-
bedding model was used as opposed to more generic Word2vec [20] or GloVe [23]
in order to capture more domain specific information (see Section 4). Indeed, the
corpus used for training the Wikipedia-PubMed embedding consists of Wikipedia
pages and PubMed articles [21]. This entails that the embeddings should be
more appropriate when processing medical journals, and domain specific words.
Moreover, the embedding model can better represent the closeness and rela-
tion of words in medical articles. The word embeddings for the target word and

2 http://bio.nlplab.org/

http://bio.nlplab.org/


Fig. 2. Toponym recognition model. Input: words are extracted with a fixed context
window (a) Embeddings: For each window, an embedding is constructed (b) Deep
Neural Network: A feed-forward neural network with 3 layers and 500 neurons per
layer outputs a prediction label indicating whether the word in the center of the context
window is a toponym or not.

its context are concatenated to form a single word embedding vector of size
200 × (2c + 1), where c is the context size.

Specific linguistic features have been shown to be very useful in toponym
detection [19]. In order to leverage this information, our model is augmented
using embedding for these features. These include the use of capital letters for
the first character of the word or for all characters of the word. These features
are encoded as a binary vector representation. If a word starts with a capitalized
letter, its feature embedding is [1, 0] otherwise it is [0, 1] and if all of its letters
are capitalized then its feature embedding is [1, 1]. Other linguistic features we
observed to be useful (see Section 4) include part of speech tags, and the word
embedding of the lemma of the word. The feature embedding of the input word
and its context are combined to the word embedding via concatenation to form
a single vector and passed to the next layer.

3.2 Deep Feed Forward Neural Network

The concatenated embeddings formed in the embedding layer (Section 3.1) are
fed to a deep feed forward network (DFFNN) (see Figure 2) whose task is to
perform binary classification. This component is comprised of 3 hidden layers and
one output layer. Each hidden layer is comprised of 500 ReLU activation nodes.
Once an input vector x enters a hidden layer h, the output h(x) is computed as:

h(x) = ReLU(Wx + b) (1)



The model is defined using the above equation recursively for all 3 hidden layers.
The output layer contains 2 dimensional softmax activation functions. Upon
receiving the input x, this layer will output O(x) as follows:

O(x) = Softmax(Wx + b) (2)

The Softmax function was chosen for the output layer since it provides a cate-
gorical probability distribution over the labels for an input x, i.e.:

p(x = toponym) = 1 − p(x = non-toponym) (3)

We employed 2 mechanisms to prevent overfitting: drop-out and early-stopping.
In each hidden layer the probability of drop-out was set to 0.5. The early-stopping
caused the training to stop if the loss on the development set (see Section 4)
started to rise preventing over-fitting and poor generalization. Norm clipping [22]
scales the gradient when its norm exceeds a certain threshold and prevents the
occurrence of exploding gradient; we experimentally found the best performing
threshold to be 1 for our model.

We experimented with variations of the model architecture both in depth
and number of hidden units per layer as well as other hyper-parameters listed
in Table 1. However, deepening the model lead to immediate over-fitting due to
the small size of the dataset used [13] (see Section 4) even with the presence of a
dropout function to prevent it. The optimal hyper-parameter configuration with
the development set used to fine tune them can be found in Table 1.

Table 1. Optimal hyper-parameters of the neural network.

Parameters Value

Learning Rate 0.01
Batch Size 32
Optimizer SGD
Momentum 0.1
Loss Weighted Categorical cross-entropy
Loss weights (2, 1) for toponym vs. nontoponym

4 Experiments and Results

Our model has been evaluated as part of the recent SemEval 2019 task 12 shared
task [28]. As such, we used the dataset and the scorer3 provided by the organis-
ers. The dataset consists of 105 articles from PubMed annotated with toponym
mentions and their corresponding geographical locations. The dataset was split
into 3 sections: training, development, and test set containing 60%, 10%, and
30% of the dataset respectively. Table 2 shows statistics of the dataset.

3 https://competitions.codalab.org/competitions/19948#learn_the_

details-evaluation
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Table 2. Statistics of the dataset.

Training Development Test

Size 2.8MB 0.5MB 1.5MB
Number of articles 63 10 32
Average size of each article (in words) 6422 5191 6146
Average number of toponyms per article 43 44 50

A baseline model for toponym detection was also provided by the organizers
for comparative purposes. The baseline, inspired by [19], also uses a DFFNN but
only uses 2 hidden layers and 150 ReLU activation functions per layer.

Table 3 shows the results of our basic model presented in Section 3.2 (see
#4) compared to the baseline (row #3).4We carried out a series of experiments
to evaluate a variety of parameters. These are described in the next sections.

Table 3. Performance score of the baseline, our proposed model and its variations. The
suffixes represent the presence of a feature, P.:Punctuation marks, S: Stop words, C:
Capitalization features, POS: Part of speech tags, W: Weighted loss, L: Lemmatization
feature. For example DFFNN Basic+P+S+C+POS refers to the model that only takes
advantage of capitalization feature and part of speech tags and does not ignore stop
words or punctuation marks.

# Model Context Precision Recall F1

8 DFFNN Basic+P+S+C+POS+W+L 5 80.69% 79.57% 80.13%
7 DFFNN Basic+P+S+C+POS+W 5 76.84% 77.36% 77.10%
6 DFFNN Basic+P+S+C+POS 5 77.55% 70.37% 73.79%
5 DFFNN Basic+P+S+C 2 78.82% 66.69% 72.24%
4 DFFNN Basic+P+S 2 79.01% 63.25% 70.26%
3 Baseline 2 73.86% 66.24% 69.84%
2 DFFNN Basic+P−S 2 74.70% 63.57% 68.67%
1 DFFNN Basic+S−P 2 64.58% 64.47% 64.53%

4.1 Effect of Domain Specific Embeddings

As [1,25,26,14,8] showed, the task of toponym detection is dependent on the
discourse domain; this is why our basic model used the Wikipedia-PubMed
embeddings. In order to measure the effect of such domain specific informa-
tion, we experimented with 2 other pretrained word embedding models: Google
News Word2vec [11], and a GloVe Model trained on Common Crawl [24]. Ta-
ble 4 shows the characteristics of these pretrained embeddings. Although, the
Wikipedia-PubMed has a smaller vocabulary in comparison to the other embed-
ding models, it suffers from the smallest percentage of out of vocabulary (OOV)
words within our dataset since it was trained on a closer domain.
4 At the time of writing this paper, the results of the other teams were not available.

Hence only a comparison with the baseline can be made at this point.



Table 4. Specifications of the word embedding models.

Model Vocabulary Size Embedding Dimension OOV words

Wikipedia-PubMed 201, 380 200 28.61%
Common Crawl GloVe 2.2M 300 29.84%
Google News Word2vec 3M 300 44.36%

We experimented with our DFFNN model with each of these embeddings
and optimized the context window size to achieve the highest F-measure on the
development set. The performance of these models on the test set is shown in
Table 5. As predicted, we observe that Wikipedia-PubMed performs better than
the other embedding models. This is likely due to its small number of OOV
words and its domain-specific knowledge. As Table 5 shows, the performance of
the GloVe model is quite close to the performance of Wikipedia-PubMed. To
investigate this further, we decided to combine the two embeddings and train
another model and evaluate performance. As shown in Table 5, the performance
of this model (Wikipedia-PubMed + GloVe) is higher than the GloVe model
alone but lower than the Wikipedia-PubMed. This decrease in performance sug-
gests that because GloVe embeddings are more general, when the network is
presented with a combination of GloVe and Wikipedia-PubMed, they dilute the
domain specific information captured by the Wikipedia-PubMed embeddings,
hence the performance suffers. From here on, our experiments were carried on
using Wikipedia-PubMed word embeddings alone.

Table 5. Effect of word embeddings on the performance of our proposed model ar-
chitecture.

Model Context Window Precision Recall F1

Wikipedia-PubMed 2 79.01% 63.25% 70.26%
Wikipedia-PubMed + GloVe 2 73.09% 67.22% 70.03%
Common Crawl GloVe 1 75.40% 64.05% 69.25%
Google News Word2vec 3 75.14% 58.96% 66.07%

4.2 Effect of Linguistic Features

Although deep learning approaches have lead to significant improvements in
many NLP tasks, simple linguistic features are often very useful. In the case of
NER, punctuation marks constitute strong signals. To evaluate this in our task,
we ran the DFFNN Basic without punctuation information. As Table 3 shows,
the removal of punctuation, decreased the F-measure from 70.26% to 64.53%
(see Table 3 #1). A manual error analysis showed that many toponyms appear
inside parenthesis, near a dot at the end of a sentence, or after a comma. Hence,
as shown in [10] punctuation is a good indicator of toponyms and should not be
ignored.



As Table 3 (#2) shows, the removal of stop words, did not help the model
either and lead to a decrease in F-measure (from 70.26% to 68.67%). We hy-
pothesize that some stop words such as in do help the system detect toponyms
as they provide a learnable structure for detection of toponyms and that is why
the model accuracy suffered once the stop words were removed.

As seen in Table 3 our basic model suffers from low recall. A manual in-
spection of the toponyms in the dataset revealed that either their first letter is
capitalized (e.g. Mexico) or all their letters are capitalized (e.g. UK ). As men-
tioned in Section 3.1 we used this information in an attempt to help the DFFNN
learn more structure from the small dataset. As a result the F1 performance of
the model increased form 70.26% to 72.27% (see Table 3 #5).

In order to help the neural network better understand and model the struc-
ture of the sentences, we experimented with part of speech (POS) tags as part
of our feature embeddings. We used the NLTK POS tagger [4] which uses the
Penn Treebank tagset. As shown in Table 3 (#6), the POS tags significantly
improve the recall of the network (from 66.69% to 70.37%) hence leading to
a higher performance in F1 (from 72.24% to 73.79%). The POS tags help the
DFFNN to better learn the structure of the sentences and take advantage of
more contextual information (see Section 4.3).

4.3 Effect of Window Size

In order to measure the effect of the size of the context window, we varied this
value using the basic DFFNN. As seen in Figure 3, the best performance is
achieved at c = 2. With values over this threshold, the DFFNN overfits as it
cannot extract any meaningful structure. Due to the small size of the data set, the
DFFNN is not able to learn the structure of the sentences, hence increasing the
context window alone does not help the performance. In order to help the neural
network better understand and use the contextual structure of the sentences
in its predictions, we experimented with part of speech (POS) tags as part of
our feature embeddings. As shown in Figure 3, the POS tags help the DFFNN
to take advantage of more contextual information as a result the DFFNN with
POS embeddings achieves a higher performance on larger window sizes. The
context window for which the DFFNN achieved its highest performance on the
development set was c = 5, and on the test set the performance was increased
from 72.24% to 77.10% (see Table 3 #6).

4.4 Effect of the Loss Function

As shown in Table 2 most models suffer from a lower recall than precision. The
dataset is quite imbalanced, that is the number of non-toponyms are much higher
than toponyms (99% vs 1%). Hence, the neural network prefers to optimize its
performance by concentrating its efforts on correctly predicting the labels for
the dominant class (non-toponym). In order to minimize the gap between recall
than precision, we experimented with a weighted loss function. We adjusted
the importance of predicting the correct labels experimentally and found that



Fig. 3. Effect of context window on performance of the model with and without POS
features. (DFFNN Basic+P+S and DFFNN Basic+P+S+C+P )

by weighing the toponyms 2 times more than the non-toponyms, the system
reaches an equilibrium in the precision and recall measure, leading to a higher
F1 performance. (This is indicated by “w” in Table 3 row #7)

4.5 Use of Lemmas

Neural networks require large datasets to learn structures and they learn better
if the dataset contains similar examples so that the system can cluster them
in its learning process. Since our dataset is small and the Wikipedia-PubMed
embeddings suffer from 28.61% OOV words (see Table 4), we tried to help the
network better cluster the data by adding the lemmatized word embeddings of
the words to the feature embeddings and see how our best model reacts to it. As
shown in Table 3 (#8), this improved the F1 measure significantly (from 77.10%
to 80.13%).

Furthermore, we picked 2 random toponyms and 2 random non-toponyms
to visualize the confidence of our best model and the baseline model in their
prediction as given by the softmax function (see Equation 2). Figure 4 shows
that our model produces much sharper confidence in comparison to the baseline
model.

5 Discussion

Overall our best model (DFFNN #8 in Table 3) is made out of the basic DFFNN
plus capitalized feature, POS embeddings, weighted loss function, and lemma-



Fig. 4. (a) Confidence of our proposed model in its categorical predictions. (b) Con-
fidence of the baseline in its categorical predictions.

tization feature. The experiments and results described in Section 4 underlines
the importance of linguistic insights in the task of toponym detection. Ideally
the system should learn all these insights and features by itself given access to
enough data. However, when the data is scarce, as in our case, we should take
advantage of the linguistic structure of the data for better performance.

Our experiments also underline the importance of domain specific word em-
bedding models. These models reduce OOV words and also present us with
embeddings that capture the relation of the words in the specific domain of
study.

6 Conclusion and Future Work

This paper presented the approach we used to participate to the recent SemEval
task 12 shared task on toponym resolution [28]. Our best DFFNN approach
took advantage of domain specific embeddings as well as linguistic features. It
achieves a significant increase in F-measure compared to the baseline system
(from 69.74% to 80.13%). However, as the official results were not available at
the time of writing, comparison with other approaches cannot be done at this
time.

The focus of this paper was to propose a deep learning based model for
toponym detection and experiment with the use of external linguistic features
and domain specific information. The model was evaluated using the recent
SemEval task 12 datatset [28] and shows that domain specific embedding as well
as some linguistic features do help in toponym detection in medical journals.

One of the main factors preventing us from exploring deeper models, was
the small size of the data set. With more human annotated data the models
could be extended for better performance. However, since human annotated data
is expensive to produce, we suggest distant supervision [15] to be explored for



further increasing performance. As our experiments pointed out, the model could
heavily benefit from linguistic insights, hence equipping the model with more
linguistic driven features could potentially lead to a higher performing model.
We did not have the time or computational resources to explore recurrent neural
architectures, however future work could be done focusing on these models.
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