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Abstract. Joint learning of different NLP-related tasks is an emerging
research field in Machine Learning. Yet, most of the recent models pro-
posed on joint learning require a dataset that is annotated jointly for all
the tasks involved. Such datasets are available only for frequently used
languages. In this paper, we propose a novel BiLSTM CRF based joint
learning model for dependency parsing and named entity recognition
tasks, which has not been employed before for any language to the best
of our knowledge. We also propose a novel joint learning method which
uses different datasets for each task to solve the joint learning problem.
This enables joint learning of various tasks for languages that have lim-
ited amount of annotated datasets. Our model, tested on a frequently
used NER dataset for Turkish, has comparable results with the state-of-
the-art systems. We also show that our proposed model outperforms the
joint learning model which uses a single dataset.

Keywords: Joint Learning · Named Entity Recognition · Dependency
Parsing · Turkish.

1 Introduction

Named Entity Recognition (NER) is the task of detecting and categorizing the
entities in a given text. Entities contain valuable information related to various
Natural Language Processing (NLP) tasks which makes NER an important and
a popular research area.

Nadeau et al. [12] give a detailed survey of the work done until 2007 in
this area. Many of the systems relied on manually crafted feature sets and used
statistical machine learning methods to make NER predictions. Most feature
based models require third party tools, like morphological analyzers, to anno-
tate a given dataset for the features [14]. Recent state-of-the-art works focus on
representing each word with character and word embeddings [9], and learn the
entity tags by using Bidirectional Long Short Term Memory (BiLSTM) layers.
One of the main motivations of these approaches is to relieve NLP models from
relying on manually crafted features. Even though these systems do not rely on
manually crafted feature sets, for joint learning of multiple tasks these systems
require a dataset to be annotated jointly for all the tasks involved. However, such
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jointly annotated datasets usually do not exist, especially for less frequently used
languages such as Turkish.

In this paper, we propose a novel joint learning model that attempts to solve
this joint annotation problem. Our model jointly learns named entity recogni-
tion and dependency parsing using separate datasets for each task similar to the
approach used for named entity recognition and morphological disambiguation
[5]. Dependency parsing information is shown to improve the performance of fea-
ture based NER systems. Based on this observation, we incorporate dependency
parser output into the named entity recognition component to learn both tasks
jointly. Our results show that joint learning on separate gold-labeled datasets
for each task outperforms joint learning on a single dataset annotated automat-
ically using a third party tool [13] for the dependency parsing tags. Moreover,
our model is the first model in the literature that attempts joint learning of
dependency parsing and named entity recognition. Our main contributions can
be summarized as follows:

– We implement a novel joint learning model for dependency parsing and
named entity recognition.

– We propose a novel way of learning these tasks where we make use of different
datasets for each task.

The paper is organized as follows: Section 2 describes the related work on
NER and joint learning. Section 3 describes the datasets used for each task.
Section 4 explains the details of the proposed joint learning model. Section 5
gives the results obtained. Section 6 concludes the paper. All the work we have
done can be accessed and reproduced from the relevant GitHub repository which
includes the source codes, the results obtained and explanation about how the
model should be run 1.

2 Related Work

Most of the recent work on NER make use of neural network models and es-
pecially BiLSTM based systems. Chiu et al. [2] use a BiLSTM based neural
network model and learn the character embeddings using Convolutional Neural
Networks (CNNs). Lample et al. [9] propose a system based on BiLSTMs and
Conditional Random Fields (CRFs) where CRFs are used to find the optimal tag
sequence using the Viterbi decoding algorithm. Ma et al. [11] propose a model
that combines the previous two works. They use CNNs to learn character em-
beddings and use BiLSTMs together with a CRF layer. Their model currently
holds the state-of-the-art result for the NER task on the frequently used CoNLL
2003 English dataset with 91.21% F1 score.

Related work for Turkish, which make use of manually crafted feature sets,
show that NER performance increases when syntactical and morphological fea-
tures are employed [14]. Their findings show the importance of using features

1 https://github.com/ardakdemir/Named-Entity-Recognition-in-Turkish-Using-
Deep-Learning-Models-and-Joint-Learning
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for morphologically rich languages like Turkish. Following the state-of-the-art
work for English, Gungor et al. [5] use a BiLSTM and CRF based model, and
show that morphological features improve the NER performance. Using a sim-
ilar BiLSTM based deep learning architecture, Gunes et al. [4] obtained the
state-of-the-art score for the commonly used NER dataset for Turkish [16].

Joint learning is an emerging research area in NLP. Joint learning of POS
tagging and dependency parsing is shown to improve the dependency parser per-
formance [13, 10] for the CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies. Syntactic parsers are used to increase the
performance of various NLP tasks. However, these models are in pipeline format
and are not trained jointly. Hashimoto et al. [6] attempt joint learning of various
NLP tasks of different levels of complexity. They follow the work of Sogard et
al. [15] which shows using outputs of different levels of the neural network for
different tasks outperforms using the outputs at the same level for each task.
Similarly, Gungor et al. [5] showed that joint learning of morphological disam-
biguation and named entity recognition improves the named entity recognition
performance when different layer outputs are used for each task.

3 Datasets

This section describes the datasets used in this paper. For the named entity
recognition task for Turkish we used a frequently used NER dataset [16]. The
dataset was created as part of a work which tackles four information extraction
tasks including NER. It is made up of articles from a national newspaper. Table 1
gives the number of entities in each set. For the configuration of our model which
uses a single dataset annotated for both tasks, we used a dependency parser to
annotate this dataset for dependency parsing.

The IOB tagging scheme is used for the NER task. The dataset is annotated
for three entity types: Location, Organization and Person. Including the label of
the non-entity words we have the following seven entity tags: B-PER, I-PER, B-
LOC, I-LOC, B-ORG, I-ORG, and O. In the IOB scheme, each entity is labeled
with the ‘I’ prefix unless the entity token is an immediate successor of a separate
entity token with same entity type. In that case, ‘B’ prefix is used to overcome
the entity boundary ambiguity problem.

Table 1. Number of annotated entities in the Turkish NER dataset.

Subset LOC ORG PER

Training 6,720 9,260 6,249

Development 769 1,412 824

Test 907 1,174 670

For dependency parsing we used the IMST-UD dataset provided by the Uni-
versal Dependency framework for the CoNLL 2018 Shared Task [17]. The dataset
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is in CoNLL-U format which was designed to form a universal format for depen-
dency datasets of multiple languages. The dataset is a semi-automatic conver-
sion of the IMST Treebank, which is itself a reannotated version of the METU-
Sabanci Turkish Treebank. The dataset is made up of 5,635 sentences from daily
news reports and novels. An example annotated sentence from this dataset is
given in Fig. 1. The example sentence in Turkish is: ‘Karşısında, pantolonu di-
zlerine dek ıslak, önlük torbası ham eriklerle dolu İbrahim dikiliyordu’, which
corresponds to the following English sentence: ‘Ibrahim was standing against
him with his pants wet up to the knees and with his bag filled with plums.’
The joint learner only makes use of the surface form, dependency relation type,
and dependency head index fields which correspond to 2nd, 7th, and 8th fields,
respectively.

Fig. 1. An example sentence from the IMST-UD Treebank dataset used by the depen-
dency parser of the joint learner.

4 Methodology

This section explains in detail the joint learning model we propose. The joint
learning model is a BiLSTM CRF based neural network model that has two
main components corresponding to the two tasks being tackled. We begin by
explaining the overall model which will be followed by detailed descriptions of
each component in separate sections.

The overall architecture of the model is shown in Fig. 2. The first component
in the network produces the output for the dependency parsing task. Given a
token sequence, BiLSTM is used to calculate the vector representation of each
word. These vectors are given to two separate Multilayer Perceptrons (MLP)
which output the scores for the directed dependency arcs between each pair of
tokens and the relation type prediction for the predicted dependency arcs, re-
spectively. The second part of the network is responsible for the named entity
recognition task. It takes as input the output produced by the dependency pars-
ing component in vector format, in addition to the same inputs given to the
dependency parser. BiLSTM is used to find the vector representation of each
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token, by taking into account the prediction of the dependency parser. These
vectors are given to a MLP which outputs scores for all possible NER tags for
each token. A CRF layer is used to find the highest scoring tag sequence for the
calculated tag scores.

Fig. 2. Architecture of the joint learning model for dependency parsing and named
entity recognition.

4.1 Dependency Parsing Component

The dependency parsing component of our proposed model is similar to the
dependency parsing component of the joint POS Tagging Dependency Parsing
(jPTDP) system [13]. Word, character and capitalization embeddings of the to-
kens of a given sentence are given as input to the dependency parser. Following
the related works [2], in addition to the word and character representations,
we feed the model with the vector representation of the capitalization feature
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of each token. Capitalization information is important for the NER task. BiL-
STMs are used to produce vector representations of each token by analyzing the
given sentence in both directions. All embeddings are initialized randomly for all
words, capitalization types, and characters in the training set. The capitalization
embedding maps four capitalization types into vector representations: all lower
case, First Letter Only, ALL UPPER CASE, and miXEd Case. Let ew denote
the vector representation of a given token w. Let wemb, cemb, and capemb rep-
resent the corresponding word, character, and capitalization embeddings of the
word, respectively. The vector representation is calculated by concatenating the
above mentioned three vectors:

ew = wemb ◦ cemb ◦ capemb

cemb is calculated by using a BiLSTM layer. For a character x, we randomly
initialize a character embedding cx. To calculate the character embedding for
a given word each character embedding ci is fed into a BiLSTM which pro-
duces forward and backward character representations, cfemb and cbemb. These
are concatenated to produce the character embedding:

cemb = cfemb ◦ c
b
emb

So the overall vector representation of a given word is:

ew = wemb ◦ cfemb ◦ c
b
emb ◦ capemb

These vector representations for the words are given as input to the first
BiLSTM layer. The output of the first BiLSTM layer is the concatenations of
the vectors created by going over a given sentence in forward and backward
directions. The output of the LSTM layer has length ldims for each direction,
thus the output is of length 2× ldims. The second BiLSTM layer thus takes as
input a vector of size 2× ldims for each token in a sentence. The system again
goes over these vector representations to create forward and backward vector
outputs of size ldims.

The outputs of the second BiLSTM layer are used as the input for the multi
layer perceptrons (MLP) responsible for calculating the scores for the depen-
dency parsing task. The dependency parsing task contains two sub-tasks: creat-
ing a parse tree for a given sentence and labeling the arcs of the parse tree.

Let elstmwi
represent the final lstm output for word wi. Following the related

work [13], four vectors are concatenated and given as input to the MLP called
MLParc, which outputs the score for a directed arc from wi and wj :

scorearc(i, j) = MLParc(e
lstm
wi
◦ elstmwj

◦ (elstmwi
∗ elstmwj

) ◦ |elstmwi
− elstmwj

|)

where (elstmwi
∗ elstmwj

) and |elstmwi
− elstmwj

| are element-wise multiplication and
absolute element-wise difference, respectively. Each vector is of length 2× ldims
which results in a vector of size 8× ldims. Given these scores Eisner’s decoding
algorithm [3] is used to find the highest scoring dependency tree. Loss of this sub-
task, Lossarc, is calculated by maximizing the difference between the gold parse
tree and the highest scoring incorrect parse tree following the related work [7].
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To find the dependency relation type, i.e. the label, for each predicted arc,
another MLP called MLPrel is used. MLPrel takes the same input with the
previous MLP and outputs a vector containing a score for each relation type:

scoresrel(i, j) = MLPrel(e
lstm
wi
◦ elstmwj

◦ (elstmwi
∗ elstmwj

) ◦ |elstmwi
− elstmwj

|)

Cross entropy loss, Lossrel, is computed over this score vector using the gold
label for each token.

4.2 Named Entity Recognition Component

Let relj represent the dependency relation type for the dependency arc from
wi to wj . Each dependency relation type relj is represented with an embedding
erelj . Given the relation type prediction erelj of the dependency parsing com-
ponent for given words wi and wj , the word wj is represented by concatenating
the embedding of this relation to the vector representation of the word:

enerwj
= ewj

◦ erelj

For a given input sentence with n words, we represent each sentence with
the sequence of vector representations enerwi

for 1 ≤ i ≤ n and feed this sequence
of vectors into LSTMs in forward and backward directions. The LSTM outputs
vectors vi for each word wi in a given sentence by taking into account the context
in both directions:

vi = LSTMf (enerw1:i
) ◦ LSTMb(e

ner
wn:i

)

These vectors of size 2 × ldims are fed into a second LSTM layer which
outputs the final vector representation of each token:

vfin
k = LSTMf (v1:k) ◦ LSTMb(vn:k)

Each vector vfin
k is given as input to an MLP called MLPner which produces

scores for each possible entity type for each word. The score matrix of size (n, t)
is created where scorei,j refers to the score for the ith token having the jth tag:

Scoresner(i) = MLPner(vfin
i )

During the prediction mode, these scores are normalized into probabilities
to be used for finding the optimal tag sequence. For each tag for a given word
probability is calculated by normalizing the scores produced for each entity tag
type tagjusing the softmax function:

P (i, j) =
exp(score(i, j))∑

(j′∈tags) exp(score(i, j′))

where score(i, j) represents the score produced for tagj for a given word wi in a
sentence.
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We model the tag sequence jointly rather than predicting each label indepen-
dently. For this a CRF [8] is used to find the highest scoring named entity tag
sequence. Transitions between named entity tags are important because of the
sequential nature of the task and CRFs are used frequently for the NER task
[5, 1]. Using the score vectors produced for each word and randomly initialized
tag translation probabilities, we find the optimal tag sequence using the Viterbi
decoding algorithm.

Negative log likelihood loss Lossner is used to calculate the loss of the gold
label NER tag for each word in the sentence. The transition probabilities between
entity tag types are included implicitly in Lossner because the final prediction
of the model is calculated using the Viterbi algorithm which takes into account
the transition probabilities.

5 Experiments and Results

We performed various experiments with different versions of the proposed joint
learning model. This section will explain the experiments conducted and the
results obtained. In this paper we mainly focus on experiments with the following
configurations:

– Model 1: The named entity recognition component only. This configuration
does not take as input the dependency parsing prediction. It is a typical
BiLSTM CRF based named entity recognition model.

– Model 2: The joint learning model using a single dataset annotated jointly for
both tasks. The named entity recognition dataset is automatically annotated
using a third party dependency parsing tool [13].

– Model 3: Our proposed novel joint learning model which uses different datasets
for each task. Extensive results are obtained for this final proposed model
with various hyperparameter configurations. The results obtained with this
model are compared with the results obtained in the previous two configu-
rations.

For the evaluation of the performance of both of the tasks, we used the fre-
quently used evaluation metrics. For the dependency task, ‘Labeled Attachment
Score’ (LAS) and ‘Unlabeled Attachment Score’ (UAS) are used. For the named
entity recognition task, we use precision, recall and F1-Measure.

We first show the results on the development sets used to fine tune the models.
These results are calculated taking into account partial matches of entities so
every match between a gold label and a prediction is counted without checking
whether a named entity is completely predicted by the system or not. Fig. 3
shows the results obtained for running Model 1 for 40 epochs. The best F1-
Measure of 0.915 is obtained in the 34th epoch. As stated, the architecture of
this model is the same as shown in Fig. 2, but the part of the neural network
responsible for the dependency parsing task is not used. One can think of this
model as the dependency part of the network ‘silenced’.
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Fig. 3. Results for the NER only model in each epoch tested on the development set.

The next experiment is conducted for Model 2 on the version of the dataset
that is annotated jointly for both tasks using a third party dependency parsing
tool. The best results obtained for each task and the epoch numbers are given in
Table 2 where DEP refers to the dependency parser score and NER refers to the
named entity score. The dependency parser results for Model 2 are significantly
higher than Model 3 (See Table 3). This is probably due to the fact that the
architecture of the tool used for annotating the dataset is quite similar to the
dependency parser implemented in our system. This similarity can make it easier
for the system to quickly learn and mimic the parser used. The results also show
that we could not obtain a performance improvement over Model 1.

Table 2. Best results for the joint learning model on a single dataset.

Task Name Metric Best Results Best Epoch

DEP Average LAS - UAS Accuracy 0.760 13

NER F1-Measure 0.878 12

Next, we performed extensive experiments for Model 3. First, we give the
results for the default configuration of the model on the development sets of
each dataset. The parameters of the default configuration are set using the pre-
vious works on joint learning [5, 13]. The results with the default configuration
are given in Table 3. The results show a relative improvement for the NER
performance over using a single dataset annotated automatically.

There are various parameters in our joint learning model. The parameters of
the model are given in Table 4. The results obtained for various combinations
of word embedding dimensions and LSTM dimensions for Model 3 are given in
Table 5.
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Table 3. Best results for the joint learning model on development sets for each task.

Task Name Metric Best Results Best Epoch

DEP Average LAS - UAS Accuracy 0.600 16

NER F1-Measure 0.904 17

Table 4. Parameters of the joint learning model together with the default values.

Parameter Name Default Value

Word embedding size 100

Character embedding size 50

Capitalization feature embedding size 50

Relation embedding size 100

Hidden units 100

Activation function tanh

Lstm layers 2

Lstm dimensions 128

Enable dependency parsing True

Enable viterbi decoding True

We could not observe a significant difference in performance during the grid
search of other parameter configurations so we do not include them here. The
best F1-Measure scores are obtained for the NER task with the following two
configurations: (word embedding dim: 100 , lstm dim: 64) and (word embedding
dim: 150 , lstm dim: 64).

Table 5. Results for joint learning model with different parameter combinations.

wemb dim lstm dim NER F1-Measure Average LAS & UAS

50
64 0.905 0.587
128 0.908 0.580
256 0.904 0.588

100
64 0.909 0.595
128 0.904 0.600
256 0.907 0.593

150
64 0.909 0.594
128 0.908 0.595
256 0.908 0.591

Finally, we give the results obtained on the NER test set. We use the CoNLL
evaluation metric for consistency with other works on named entity recognition.
Table 6 shows the results for all models.

The results given here show that the novel joint learning model (Model 3)
brings a relative improvement over using a single dataset annotated jointly for
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Table 6. Results for all three models.

Model 1 Model 2 Model 3

Precision Recall F1 Precision Recall F1 Precision Recall F1

PER 89.74 89.89 89.81 92.43 77.82 84.50 86.29 86.66 86.48

LOC 89.95 90.04 89.99 77.07 87.53 81.97 86.84 85.89 86.36

ORG 87.56 86.65 87.10 81.21 75.67 78.34 80.97 76.41 78.63

Overall 89.28 89.15 89.21 83.78 80.51 82.11 85.23 83.91 84.56

both tasks (Model 2) for all entity types. Yet, we could not observe an improve-
ment over the NER only model. The overall F1-Measure for Model 1, Model 2,
and Model 3 are 89.21, 82.11 and 84.56, respectively. On the other hand, the
joint learning model has several advantages over the NER only model. It enables
learning both tasks jointly and, with sufficient amount of training time, Model
3 has the potential to match the Model 1 performance on the NER task while
learning an additional task.

6 Conclusion And Future Work

In this paper, we proposed a novel neural network model for joint learning, which
attempts to solve the joint annotation problem. We combined two BiLSTM based
neural components to jointly learn dependency parsing and named entity recog-
nition on different datasets. Our results show that we can obtain improvements
over using a single dataset for joint learning. Yet, the NER component trained
without using the dependency parsing prediction outperforms both models.

As future work, we plan to improve the performance of the proposed system
in several ways. Using embedding representations for outputs instead of the
outputs directly is shown to increase the performance of NLP systems for various
tasks. Representation learning is applied to the coarse-grained labeled NER task
in various studies. Using output representations of NER labels increases the
performance for both coarse-grained and fine-grained NER tasks. Future work
includes learning the representations of output labels to calculate losses in a
more robust way.

We will also modify the proposed architecture to take into account the de-
pendency prediction of the dependency parsing component in different ways.
We will implement a joint learning model that makes use of the head of the
dependency arc for a given word as well as the dependency relation.
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