
Composing Word Vectors for Japanese
Compound Words Using Dependency Relations

Kanako Komiya1 Takumi Seitou1 Minoru Sasaki1 and Hiroyuki Shinnou1

Ibaraki University, 4-12-1 Nakanarusawa, Hitachi-shi, Ibaraki, 316-8511 JAPAN,
{kanako.komiya.nlp, 14t4037r,

minoru.sasaki.01,hiroyuki.shinnou.0828}@vc.ibaraki.ac.jp

Abstract. The use of distributed representations, e.g., via word2vec,
has become popular in recent years. However, Japanese has many com-
pound words and we often face the situation where meanings of a word
and a compound word should be compared. Therefore, in the current
study, we composed compound word vectors from those of constituent
word vectors. We took into consideration the dependency relations of
compound words to compose word vectors of them. The experiments re-
vealed that, when we consider dependency relations, (1) we could obtain
better representations for compound words when we separately learn
models for each dependency relation, (2) each model could obtain good
representations with fewer epochs, and (3) the learned weights for a
model of compound words with one dependency relation could be used
for fine-tuning for models for compound words of other dependency re-
lations.

1 Introduction

　 The use of distributed representations, e.g., via word2vec [6–8], has become
popular in recent years. Distributed representations are vector representations
of meanings, which are calculated on the basis of their contexts, and are used to
investigate the similarity in meaning of two individual language units. There is
much research on distributed representations of various language units, such as
on a word, a phrase or a document level (see Section 2).

However, Japanese has many compound words and sometimes it makes it
difficult to compare two words. For example, UniDic1 [4], a dictionary developed
by National Institute for Japanese Language and Linguistics, defined“いちご狩
り, ichigo-gari, strawberry picking”as one word (short-term unit) and“ぶどう
狩り, budou-gari, grape picking”as a compound word (long-term unit)　2. In
this case, a morphological analyzer using UniDic treats“いちご狩り, ichigo-gari,
strawberry picking”as one word and“ぶどう狩り, budou-gari, grape picking”
as two words, which makes it impossible to directly compare the word meanings
of these two words via word vectors: the distributed representation of words.

1 http://unidic.ninjal.ac.jp/(In Japanese)
2 いちご means strawberries, ぶどう means grapes, and 狩り means picking or hunting
in Japanese.

2

In addition, word boundaries in Japanese are unspecific because Japanese
does not have word delimiters between words. Therefore, Japanese dictionary
individually defines words; Japanese has different definitions of words according
to each dictionary or each tagger. That is why a word for a dictionary or a tagger
could be a compound word for another dictionary or another tagger. Therefore,
we believe that a method to compare meanings of a word and a compound word
is necessary.

In the current study, we composed a compound word vector from those of
constituent word vectors. We focused on UniDic that defined two language units,
the short-term unit and the long-term unit, and composed word vectors of long-
term units from word vectors of two short-term units. We took into consideration
the dependency relations of compound words to compose word vectors of them.
Specifically, we classified the compound words by the dependency relations and
separately trained models for each dependency relation (see Section 3). We uti-
lized 13 dependency relations (described in Section 4).

The experiments revealed that we could obtain better representations for
compound words when we separately learn models for each dependency relation
than when we learn a model for all the relations together. In addition, the ex-
periments showed that each model could obtain good representations with fewer
epochs when we took into consideration the dependency relations (see Sections
5 and 6).

We examined other classifications of dependency relations and investigated
the effectiveness of fine-tuning (described in Section 7). Finally, we conclude our
work in Section 8.

2 Related Work

There has been much research on composing phrase representations from mul-
tiple word representations in recent years [1, 9, 2, 3]. [1, 9] used dependency rela-
tions. [9] showed that the model using different composition matrices for different
dependency relations was the best. [2] proposed an implicit tensor factorization
method for learning the word vectors of transitive verb phrases. [3] proposed a
method for jointly learning compositional and noncompositional word vectors
for phrases by adaptively weighting both types of word vectors using a compo-
sitionality scoring function.

At the same time, as described in Section 1, it is necessary to compose dis-
tributed representations of compound words. We believe that we can compose
word vectors of compound words from those of constituent word vectors using
the method to compose word vectors of phrases. Therefore, in the current study,
we compose word vectors of Japanese compound words following a method of
composing phrase vectors.

3

3 Composing Word Vectors of Japanese Compound
Words Using Dependency Relation

We followed the method of [9], the method for composition of phrase vectors,
to compose word vectors of compound words. We employed UniDic that defined
two language units, the short-term unit and the long-term unit and composed
word vectors for long-term units from two word vectors of short-term units. We
only utilized the long-term units that consists of two short-term units although
some long-term units consist of more than two short-term units, because we
believe that these long-term units can be recursively composed using the same
way to compose long-term units that consist of two short-term units.

[9] composed word vectors for phrases taking word vectors as inputs. They
utilized the method proposed by [10, 11], Relfunc, the method that can compose
a vector depending on the relation r between two inputs. We used this model to
compose word vectors for long-term units from two vectors of short-term units.
A word vector of a long-term unit, l, can be composed from two word vectors of
short-term units, s1 and s2, using the following model.

l = f(s1, s2, r) = σ

Wr

s1r
s2r
br

 (1)

where, σ(.) denotes an element-wise sigmoid function, and Wr ∈ Rd×(2d+1)

and br ∈ R are parameters trained for each relation r. Therefore, the weights
and biases of neural networks varies according to the dependency relations.

We employed the same loss function as [9]. It is the square errors between
composed vectors and gold word vectors:

J(θ) =
1

T

N∑
i=1

1

2
||li − ti||2 +

λ

2
||θ||2 (2)

　 where, vector lt denotes a long-term-unit vector composed by Equation 1
and vector ti denotes a gold word vector for a long-term unit. θ is all the other
parameters.

We classified the compound words by the dependency relations and sepa-
rately trained models for each dependency relation, following [9].

4 Compound Words and Dependency Relations

We defined the classes of dependency relations based on the structure of Japanese
compound words. First, we extracted the long-term units that consists of two
short-term units from 23,000 compound words in Balanced Corpus of Contem-
porary Japanese (BCCWJ) [5]. They were 3,500 examples and we manually
classified them. A class of dependency relation has at least 30 examples in 3,500
compound words 3. The definitions of the classes are as follows.

3 The relations that had less than 30 examples were stuck in ’others’ class

4

Dependency 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Data 1010 107 34 38 650 259 49 422 307 428 71 37 88

Table 1. Dependency relations and number of examples.

1. Combinations where the former short-term unit explains the latter short-
term unit, c.f. “講習会, kousyu- kai, lecture-class” when “講習” means lectre
and “会” means class or meating.

2. Combinations of an object and a predicate, c.f. “債務放棄, saimu-houki,
debt-waiver” when “債務” means debt and “放棄” means waive, waiver or
waiving,

3. Combinations of a complement and a predicate, c.f. “法的整理, houteki-seiri,
legal-liquidation (liquidating)” when “法的” means legal and “整理” means
liquidating,

4. Combinations of a subject and a predicate, c.f. “画面割れ, gamen-ware,
screen-cracking” when “画面” means screen and “割れ” means cracking,

5. Combinations includes a unit, c.f. “1 ドル, 1 doru, 1 dollar” when “ドル”
means dollar,

6. Combinations of a main word and a suffix, c.f. “具体的”, gutai-teki, concrete
(combination of a word concrete (具体) and a suffix that makes an adjective
verb (的)),”

7. Combinations of a prefix and a main word, c.f. “副代表, fuku-daihyou, sub-
delegate” when “副” means sub and “代表” means delegate,

8. Combinations that includes a particle, c.f. “ための, tame-no, for (combina-
tion of for(ため) and a particle “no(の),”)”

9. Combinations of a proper noun and a general noun, c.f. “茨城県, Ibaraki-
ken, Ibaraki-prefecture”when “茨城” means Ibaraki (place name) and “県”
means prefecture.

10. Combinations of a noun and a verb. The combination makes a verb, c.f. “応
募する, oubo-suru, apply (combination of do(する) and application(応募),)”

11. Numbers, c.f.“三二, sanjyu-ni, 32 (combination of 3(三) and 2(二),)”
12. Combinations where each short-term unit has no meaning, c.f.“だが, daga,

however,”and
13. Others, c.f. a four-character idiom like“意気揚々, iki-youyou, high-spirits.”

Here, “意気” means spirits, “揚” means upraise and “々” means the same
charcter as the last character, or repetation 4.

Table 1 shows the number of examples of long-term units by each dependency
relation in manually-classified 3,500 examples.

We trained a model with manually-tagged examples using support vector
machine (liblinear5). After that, SVM model classified the dependency relations
of the other compound words in BCCWJ.

4 “揚々” is the same as “揚揚.”
5 https://www.csie.ntu.edu.tw/ cjlin/liblinear/

5

5 Experiment

We generated word vectors of long-term units and short-term units as follows.

1. Separate long-term-unit words in Japanese in a corpus with spaces.
2. Separate short-term-unit words in Japanese in a corpus with spaces.
3. Add a file of long-term-unit words to a file of short-term-unit words.
4. Generate word vectors from a file that contains long-term-unit words and

short-term-unit words.

We employed BCCWJ as a corpus. We used word2vec6 to generate word
vectors. We employed a skip-gram algorithm and the vector size was set to 100
to generate the word vectors. We used default settings for other parameters. We
utilized only long-term units that consists of two short-term units. Word vectors
of 169,736 long-term units and 339,472 short-term units, those of constituent
word vectors, were obtained in this way.

We employed a feed-forward neural network to compose word vectors for
long-term units. Here, inputs are two word vectors for short-term units and an
output is a word vector for long-term unit. We set maximum epoch number to
2,000 and tried three types of unit number of a hidden layer: 100, 300, and 500.
The initial weights of the network were randomly generated.

We carried out two-fold cross validation, specifically, we used half of word
vectors we generated as the training data and used the rest of them as the test
data. We evaluated the cosine similarities between a composed word vector and
a word vector for a long-term unit directly generated by the word2vec program.
Here, the composed vector is better when the cosine similarity is higher.

6 Results

6.1 Unit Number of a Hidden Layer

We tried three types of unit number of a hidden layer, 100, 300, and 500, to
find the best settings for the neural network to compose the word vectors for
compound words. We examined the best unit number using the network without
considering dependency relations, namely, the model trained by all the word
vectors. Table 2 shows the result of the experiment.

Table 2 shows that the best unit number for a hidden layer is 500. However,
it takes time to train a model with 500 and the training data decrease when the
models were separately learned. Therefore, we used 300 units for a hidden layer
when we separately learn the models.

6.2 Effect of Dependency Relations

We compared the composed word vectors for compound words with and without
taking into consideration dependency relations. Micro-averaged cosine similari-
ties over the whole dataset of word vectors were evaluated. Table 3 summarizes
6 https://radimrehurek.com/gensim/

6

Epochs 100 300 500

200 0.263 0.284 0.337
400 0.300 0.328 0.393
600 0.333 0.387 0.435
800 0.412 0.425 0.475
1,000 0.433 0.468 0.501
1,200 0.460 0.491 0.522
1,400 0.476 0.515 0.538
1,600 0.498 0.528 0.552
1,800 0.510 0.545 0.562
2,000 0.523 0.555 0.569

Table 2. Comparison of performances by unit numbers for a hidden layer.

Epochs - Dependency + Dependency

200 0.337 0.415
400 0.393 0.500
600 0.435 0.548
800 0.475 0.575

1,000 0.501 0.596
1,200 0.522 0.607
1,400 0.538 0.615
1,600 0.552 0.621
1,800 0.562 0.626
2,000 0.569 0.629

Table 3. Comparison of cosine similarities of models with and without taking into
consideration dependency relations.

the cosine similarities between the composed word vectors and the gold word
vectors for the compound words. In this table, we compared word vectors of
compound words when the dependency relations were taken into consideration
and those when the dependency relations were not taken into consideration.
The cosine similarities were calculated from 200 epochs to 2000 epochs. Table 3
shows that cosine similarity is 0.060 higher when the dependency relations were
taken into consideration at 2,000 epochs. In addition, the difference between co-
sine similarities tend to become higher when the numbers of epochs are smaller.
These results indicate that we can obtain the better composed word vectors with
fewer epochs when we separately learn models for each dependency relation than
when we learn a model for all the relations together.

6.3 Cosine similarities of each dependency relation

Table 4 shows the cosine similarities of each dependency relation. The table
also shows the number of epochs when the best performances were obtained.
This table shows that the dependency relation with the highest performance

7

Dependency Cos-Sim Epochs

1 0.608 2,000
2 0.656 1,600
3 0.610 600
4 0.668 800
5 0.617 2,000
6 0.630 2,000
7 0.619 2,000
8 0.620 400
9 0.619 2,000

10 0.722 2,000
11 0.666 600
12 0.470 200
13 0.632 2,000

Table 4. Cosine similarities of each dependency relation.

was Dependency Relation 10, the combination of a noun and a verb, and the
dependency relation with the lowest performance was Dependency Relation 12,
the combination where each short-term unit has no meaning. we compared the
difference between the cosine similarity averaged over all the dependency relation
at the best epoch and the cosine similarity averaged over all the dependency
relation at 2,000 epochs. They were rarely different from each other (difference
was only 0.001) because word vectors were the best at 2,000 epochs for most of
dependency relations.

7 Discussion

7.1 Performances of the Models and Classification Accuracy of
SVM

In the current study, the classification accuracy of SVM greatly affects the perfor-
mances of the models to compose word vectors for compound words. Therefore,
we evaluated the classification accuracy of SVM. We extracted 100 compound
words of each dependency relation and manually checked if they were right or
wrong. Table 5 shows the accuracy and most frequent errors of each dependency
relation. MFE in the table stands for most frequent errors.

Table 5 shows the classification accuracies of Dependency Relation 3 and De-
pendency Relation 4 are much lower than other classes of dependency relations.
Dependency Relation 3 is combinations of a complement and a predicate and
Dependency Relation 4 is combinations of a subject and a predicate. The most
frequent error of these classification was misclassification to Dependency Rela-
tion 1, combinations where the former short unit explains the latter short unit,
and they are similar each other. Therefore, we combined Dependency Relation
3 and Dependency Relation 4 to Dependency Relation 1, refer to it as Depen-
dency Relation 1’, and learned the models again. Table 6 summarizes the results

8

Dependency MFE Accuracy

1 6 84
2 1 42
3 1 8
4 1 16
5 6 99
6 13 91
7 1,6,13 94
8 1,6 85
9 1 91

10 1 99
11 1 86
12 1 86
13 1 84

Table 5. Accuracy and most frequent errors of each dependency relation.

Epochs Whole Dependency 1’

200 0.402 0.327
400 0.489 0.415
600 0.541 0.480
800 0.571 0.521

1,000 0.590 0.547
1,200 0.603 0.567
1,400 0.613 0.583
1,600 0.620 0.594
1,800 0.624 0.602
2,000 0.629 0.609

Table 6. Experiment with Dependency 1’

of the experiment. Whole and Dependency 1’ in the table indicate the co-
sine similarities of the whole dataset and the class of Dependency Relation 1’,
respectively.

When +Dependency in Table 3 and Whole in Table 6 are compared, the
results of original setting, +Dependency in Table 3, was slightly better. We
think this is because the cosine similarities for Dependency Relation 3 and De-
pendency Relation 4 were higher than Dependency Relation 1. The examples of
Dependency Relation 3 and Dependency Relation 4 did not contribute the cosine
similarities of Dependency Relation 1 because their examples were much fewer
than Dependency Relation 1. In addition, the classification accuracies of Depen-
dency Relation 3 and Dependency Relation 4 were low because their examples
were few and they misclassified to Dependency Relation 1 because it was the
class with the most examples.

9

Epochs Whole Dependency 13’

200 0.415 0.497
400 0.500 0.570
600 0.548 0.599
800 0.575 0.616

1,000 0.596 0.622
1,200 0.608 0.627
1,400 0.616 0.630
1,600 0.622 0.622
1,800 0.627 0.632
2,000 0.630 0.630

Table 7. Experiment with Dependency 13’

7.2 Error Analysis

The class of dependency relation with the lowest performance was Dependency
Relation 12, the combination where each short-term unit has no meaning. The
properties of Dependency Relation 12 are as follows.

1. It has fewer examples.
2. It contains particles and verbal auxiliaries, which are not usually contained

in other classes, as short-term units that constitutes long-term units.

To address a problem caused from the first property, we combined Depen-
dency Relation 12 to Dependency Relation 13, refer to it as Dependency Relation
13’, and learned the models again. Table 7 summarizes the results of the experi-
ment. Whole and Dependency 13’ in the table indicate the cosine similarities
of the whole dataset and the class of Dependency Relation 13’, respectively.

When +Dependency in Table 3 and Whole in Table 7 are compared,
the results of new setting, Whole in Table 7, was slightly better. However,
the difference was very small because the number of examples of Dependency
Relation 12 was quite few.

We believe that the second property is the main reason of the low perfor-
mance of the class of Dependency Relation 12. We conduct the composition
assuming that the meanings of compound words could be composed from those
of constituent words. Therefore, we believe that the composition mechanism does
not work if the constituent words had no meanings.

7.3 Fine-tuning of Models

Fine-tuning is a method to improve the performance of one task by re-learning
using the weights of a model learned for another task as initial values. It is useful
to speed up the learning of the target task and is effective when the data size
of the target task is small. In the current study, we investigated two fine-tuning
models, fine-tuning using the weights of the model of Dependency Relation 1 and

10

Epochs Cos-Sim Difference from Random Initial Values

200 0.491 +0.080
400 0.541 +0.041
600 0.573 +0.025
800 0.591 +0.017

1,000 0.606 +0.009
1,200 0.612 +0.005
1,400 0.620 +0.005
1,600 0.624 +0.002
1,800 0.628 +0.001
2,000 0.630 +0.001

Table 8. Fine-tuning using weights of the model of Dependency Relation 1.

Epochs Cos-Sim Difference from Random Initial Values

200 0.609 +0.193
400 0.623 +0.123
600 0.630 +0.082
800 0.635 +0.060

1,000 0.637 +0.041
1,200 0.639 +0.032
1,400 0.641 +0.025
1,600 0.642 +0.020
1,800 0.643 +0.016
2,000 0.643 +0.014

Table 9. Fine-tuning using weights of the model of Dependency Relation 13.

that using the weights of the model of Dependency Relation 13. We selected them
because Dependency Relation 1 had the most examples in all the relations and
we believe that Dependency Relation 13 is independent from the other classes
because it contains “other”dependency relations.

Tables 8 and 9 shows that cosine similarities improved at all epochs when
the models were fine-tuned. In addition, the cosine similarities are relatively high
with fewer epochs. The performances of the models with fine-tuning converged
at approximately 2,000 epochs, which is almost identical to the model without
fine-tuning.

When Tables 8 and 9 are compared, fine-tuning with weights of the model
of Dependency Relation 13 is better than Dependency Relation 1. When Tables
10 and 11 are compared, fine-tuning with weights of the model of Dependency
Relation 13 tends to obtain better results for the class of word vectors for com-
pound words with dependency relations with more examples. We think that
fine-tuning with weights of the model of Dependency Relation 13 is better be-
cause it could improve the result for the class of word vectors for compound
words with Dependency Relation 1, which is the class with the most examples.

11

Dependency Cos-Sim Epochs Difference from Table 4

1 0.608 2000 ±0
2 0.659 600 +0.003
3 0.626 200 +0.061
4 0.674 400 +0.014
5 0.619 1,400 +0.002
6 0.637 2,000 +0.007
7 0.621 1,000 +0.002
8 0.646 200 +0.026
9 0.624 2,000 +0.005

10 0.727 2,000 +0.005
11 0.680 200 +0.014
12 0.506 200 +0.034
13 0.634 1,200 +0.002

Table 10. Cosine similarities of each dependency relation with fine-tuning using
weights of the model of Dependency Relation 1.

Dependency Cos-Sim Epochs Difference from Table 4

1 0.635 2,000 +0.026
2 0.661 600 +0.005
3 0.630 200 +0.019
4 0.678 400 +0.009
5 0.620 1,400 +0.003
6 0.638 2,000 +0.008
7 0.622 800 +0.003
8 0.650 200 +0.034
9 0.728 2,000 +0.007

10 0.682 2,000 +0.005
11 0.524 200 +0.017
12 0.632 200 +0.051

Table 11. Cosine similarities of each dependency relation with fine-tuning using
weights of the model of Dependency Relation 13.

8 Conclusions

In this paper, we composed compound word vectors from those of constituent
word vectors. We took into consideration the dependency relations of compound
words and separately learn models for each dependency relation to compose
word vectors of compound words. The experiments revealed that, when we took
into consideration dependency relations, we could obtain better representations
for compound words with fewer epochs, and the learned weights for a model
of compound words with one dependency relation could be used for fine-tuning
for models for compound words of other dependency relations. Error analysis
of the class of the dependency relation with the lowest performance indicated

12

that the composition mechanism does not work if the constituent words had no
meanings because we conducted the composition assuming that the meanings of
compound words could be composed from those of constituent words.

Acknowledgments

References

1. Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: Represent-
ing adjective-noun constructions in semantic space. In: Proceedings of EMNLP
2010. pp. 1183–1193 (2010)

2. Hashimoto, K., Tsuruoka, Y.: Learning embeddings for transitive verb disambigua-
tion by implicit tensor factorization. In: Proceedings of the 3rd Workshop on Con-
tinuous Vector Space Models and their Compositionality. pp. 1–11 (2015)

3. Hashimoto, K., Tsuruoka, Y.: Adaptive joint learning of compositional and
non-compositional phrase embeddings. In: Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). pp. 205–215. Association for Computational Linguistics (2016),
http://arxiv.org/abs/1603.06067

4. Maekawa, K., Yamazaki, M., Maruyama, T., Yamaguchi, M., Ogura, H., Kashino,
W., Ogiso, T., Koiso, H., Den, Y.: Design, Compilation, and Preliminary Analyses
of Balanced Corpus of Contemporary Written Japanese. In: Proceedings of the
Seventh International Conference on Language Resources and Evaluation (LREC
2010). pp. 1483–1486 (2010)

5. Maekawa, K., Yamazaki, M., Ogiso, T., Maruyama, T., Ogura, H., Kashino, W.,
Koiso, H., Yamaguchi, M., Tanaka, M., Den, Y.: Balanced Corpus of Contemporary
Written Japanese. In: Language Resources and Evaluation. vol. 48, pp. 345–371
(2014)

6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. In: Proceedings of ICLR Workshop 2013. pp. 1–12
(2013)

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of NIPS
2013. pp. 1–9 (2013)

8. Mikolov, T., tau Yih, W., Zweig, G.: Linguistic regularities in continuous space
word representations. In: Proceedings of NAACL 2013. pp. 746–751 (2013)

9. Muraoka, M., Shimaoka, S., Yamamoto, K., Watanabe, Y., Okazaki, N., Inui, K.:
Finding The Best Model Among Representative Compositional Models. In: Pro-
ceedings of the 28th Pacific Asia Conference on Language, Information and Com-
putation (PACLIC 2014). pp. 65–74 (2014)

10. Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector
grammars. In: Proceedings of ACL 2013. pp. 455–465 (2013)

11. Socher, R., Karpathy, A., Le, Q.V., Manning, C.D., Ng, A.Y.: Grounded compo-
sitional semantics for finding and describing images with sentences. Transactions
of the Association for Computational Linguistics 2, 207–218 (2014)

