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Abstract. We introduce a method for computing classifier-based se-
mantic spaces on top of text2ddc. To this end, we optimize text2ddc,
a neural network-based classifier for the Dewey Decimal Classification
(DDC). By using a wide range of linguistic features, including sense em-
beddings, we achieve an F-score of 87,4%. To show that our approach is
language independent, we evaluate text2ddc by classifying texts in six
different languages. Based thereon, we develop a topic model that gener-
ates probability distributions over topics for linguistic input at the word
(sense), sentence and text level. In contrast to related approaches, these
probabilities are estimated with text2ddc, so that each dimension of the
resulting embeddings corresponds to a separate DDC class. We finally
evaluate this C lassifier-based Semantic space (CaSe) in the context of
text classification and show that it improves the classification results.

Keywords: Topic model · Text classification · Sense embeddings.

1 Introduction

We present a model for calculating neural network-based Classifier-Induced Se-
mantic Spaces (CaSe) using the Dewey Decimal Classification (DDC), that is, an
international standard for topic classification in libraries. Based on this model,
input units on the sense-, word-, sentence- or text level can be mapped onto
the same feature space to compute, for example, their semantic similarity [1, 17].
Such an approach is needed whenever multiresolutional semantic information has
to be processed to interrelate, for example, units of different levels of linguistic
resolution (e.g., words or phrases to texts). Contrary to related approaches [9, 2]
we use classifiers to define the dimensions of CaSe, which are directly labeled by
the underlying target class. This has the advantage that embeddings of linguis-
tic units in semantic spaces can be interpreted directly in relation to the class
labels.

To this end, we generate several DDC corpora by exploring information from
Wikidata, Wikipedia and the Integrated Authority File (Gemeinsame Normdatei
– GND) of the German National Library. Since Wikipedia is offered for a wide
range of languages, such corpora can be created for different languages. In this
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paper, we focus on Arabic, English, French, German, Spanish, and Turkish while
performing a deeper analysis by example of the German corpus.

Our Classifier-Induced Semantic Space (CaSe) utilizes a classifier that is a
further development of a feedforward neural network (FNN) which has previously
been evaluated in text classification and automatic disambiguation (Anonymous,
2017, 2018). In this paper, we optimize this classifier with respect to feature
selection, extend it to the 3rd level of the DDC (comprising up to 641 target
classes) and train it for six languages. To this end, we consider a wide range
of pre-processing steps including lemmatization, part of speech (POS) tagging,
word sense disambiguation (WSD) and sense embeddings.

Our approach is in line with [17] and, thus, disambiguates input words to ob-
tain sense representations as input for calculating sense embeddings. To this end,
we disambiguate the entire German Wikipedia and calculate sense embeddings
using word2vec [15]. Based on this approach, we achieve the best classification
results. This is shown for the 2nd (including up to 98 classes) and the 3rd level
of the DDC (including up to 641 classes).

Using the so trained and evaluated DDC-related classifier, we derive a novel
model of CaSe. For each sense-, word-, or text-level input CaSe generates a
probability distribution over the DDC classes (of either the 2nd or 3rd level). In
this way, each input unit is mapped onto an n-dimensional feature vector whose
dimensions are uniquely labeled by the corresponding DDC classes. In order to
demonstrate the expressiveness of CaSe, we conduct two classification tasks and
show that using CaSe-based feature vectors improve any of these classifications.

The paper is organized as follows. Section 2 discusses previous literature
related to this article. In Section 3 we describe the models and corpora used
for the experimental framework. The main studies and results are presented in
Section 4, followed by a discussion of the outcome and an error analysis in Section
5. Section 6 provides some final conclusions and directions for future work.

2 Related Work

In this section, we review related work based on similar approaches, methods or
experiments.

[20] and [3] introduce SVM-based topic classifiers regarding the DDC as the
target scheme. However, these approaches require a minimum number of words
and thus reduce the number of classes. In previous work (Anonymous, 2018),
we introduced a topic classifier which outperforms these approaches and even
considers the third level of the DDC. Text classification, regardless of the clas-
sification scheme, has made significant progress by means of neural networks.
[7] and [8] show, for example, that convolutional neural networks perform com-
parable to the state-of-the-art in text classification. [6] present an FNN-based
classifier consisting of only one hidden layer. They show that this classifier is
competitive, even though it is many times faster than its competitors.
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Fig. 1. Flowchart of the experimental framework.

[22] also experiment with neural networks in text classification by considering
different classification tasks. In the present study, we adopt their scenarios to
evaluate our DDC-based CaSe.

The best-known topic model is probably the one being based on Latent
Dirichlet Allocation (LDA) as introduced by [2]. Irrespective of its outstand-
ing applications, a central problem of this approach is that topics being detected
are not directly labeled. This makes it difficult to interpret the resulting topic
distributions assigned, for example, to input texts. There exist many approaches
to automatically labeling topics as detected by LDA by means of heuristic meth-
ods [14, 13]. In this way, topic labels are derived from the underlying training
corpus. In contrast to this, our topic model refers to the DDC as a pre-established
standard used by libraries worldwide for topic classification. Thus, any of the
topic labels used by our CaSe can be directly interpreted and related to other
classifications for which the DDC has also been used.

To this end, we perform a feature analysis which is related to [11] who analyze
the effect of sense embeddings on tasks in Natural Language Processing (NLP).
li2015multi compute sense embeddings based on a manually generated dictionary
(e.g., WordNet). The embeddings are then assigned to tokens of input texts to
disambiguate them. Several classification tasks are conducted to evaluate this
approach. They show that sense embeddings lead to improvements compared to
word-related embeddings.

[19], [12] and [16] also generate sense embeddings by heuristically utilizing
classical word embeddings. [12] use synonyms with only one sense and try to
learn sense embeddings based thereon. [19] compute sense embeddings using the
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mouse (computer) mouse (rodent) ball (sport) ball (dance)

remote control cat hockey puck masquerade ball
keyboard rat bat clown
Wii remote control snake batsman costume ball
scanner tick strike dinner
video camera cavy ball carrier dance night
touchpad ant basket stag party

Table 1. Nearest neighbors of ambiguous words (both translated from German to
English) using cosine similarity operating on the space of sense embeddings.

Language articles avg tokens/article classes (2nd) classes (3rd)

German 15 136 1 228 98 641
English 10 991 2 799 95 603
Arabic 9 910 788 96 591
Turkish 7 998 539 94 566
French 12 406 1 740 96 616
Spanish 13 221 2 053 95 620

Table 2. Training & test corpora for six languages, number of articles, average number
of tokens per article, number of target classes on the 2nd and 3rd level for which the
apparatus of Figure 1 was trained.

normalized sum of all word embeddings that occur in a dictionary for the current
sense. [16] create a graph based on word embeddings and use cluster algorithms
to create sense embeddings.

In this paper, we learn sense embeddings similar to the approach of [5].
iacobacci2015sensembed disambiguate the complete Wikipedia with the help of
Babelfy1 and calculate sense embeddings using word2vec [15]. In summary, by
looking at different NLP tasks, these approaches show that sense embeddings
are effective and usually outperform their word-based competitors.

CaSe have been introduced by [10] who uses Support Vector Machines (SVM)
to induce the dimensions of the semantic space. Contrary to this approach, we
compute CaSe by means of sense embeddings combined with neural networks.

In this way, we extend previous models of semantic spaces by providing a
largely language-independent (Wikipedia- and Wikidata-based) approach that
differentiates between the 2nd and the 3rd DDC level to provide semantic spaces
of different granularity. This also means that CaSe generates low-dimensional
spaces that are much more compact than feature spaces derived from semantic
networks.

1 www.babelfy.org
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3 Model

The overall architecture of the experimental framework is depicted in Figure
1. It consists of four steps: in step 1 we use TextImager [4] for preprocessing
and fastSense [18] to disambiguate the German Wikipedia. Currently, the focus
of fastSense is on the disambiguation of nouns. The disambiguated Wikipedia
is then used in Step 2 to create sense embeddings by means of word2vec [15].
The aim is to obtain disambiguated articles and sense embeddings for training
a DDC classifier in Step 3 and thus generating text2ddc. For this we enrich the
disambiguated Wikipedia articles with DDC information using Wikidata/GND.
Next, in Step 4, we utilize text2ddc to generate CaSe for a given input A: in this
way, each input unit on the sense-, word- or text-level can be mapped onto an
n-dimensional feature vector whose dimensions correspond to DDC classes.

The following subsections briefly describe the models and data used to gen-
erate CaSe.

3.1 Step 1 & 2: word sense disambiguation

Word Sense Disambiguation (WSD) is performed by means fastSense [18]. fast-
Sense is trained on the entire German Wikipedia. For this purpose, the Wikipedia’s
link structure is explored to resolve ambiguous words. The context information
at paragraph level of any ambiguous token is given as input. In this way, the
neural network based classifier fastSense learns which senses are more likely
to be associated in a given context. fastSense achieves an F-score of over 80%
in disambiguating the German Wikipedia and state-of-the-art results concern-
ing various SemEval and Senseval WSD tasks. Furthermore, fastSense is very
time efficient compared to related taggers. It disambiguates the entire German
Wikipedia in about 12 hours. Using the resulting corpus, we created sense em-
beddings by means of word2vec [15]. Table 1 exemplifies the results by example
of two ambiguous words and their nearest neighbors computed by our sense
embeddings.

3.2 Step 3: classifier

We introduce a classifier called text2ddc, to classify an input on the sense-,
word, sentence- or document-level regarding the DDC as the target classification.
text2ddc is based on a FNN and is able to use word embeddings as additional
input. We extend text2ddc by alternatively using sense embeddings combined
with a disambiguated corpus and many more features (see Table 4).

3.3 Step 4: classification scheme

We use the 2nd and 3rd level of the Dewey Decimal Classification (DDC) as two
alternative classification schemes. The DDC includes three levels of thematic res-
olution: the first level distinguishes 10 main topics, each of which is subdivided



6 Tolga Uslu, Alexander Mehler, and Daniel Baumartz

into maximally 10 topics on the 2nd level (summing up to 99 classes), which in
turn are subdivided into maximally 10 topics on the 3rd level (summing up to
915 classes). For example, DDC 500 denotes Natural Sciences and contains the
subtopics Physics (DDC 530), Chemistry (DDC 540) and Life Sciences (DDC
570). On the 3rd level one finds more specific classes such as Magnetism (DDC
538) and Light & Related Radiations (DDC 535). References to the DDC are
provided by Wikidata and the the GND of the German National Library. Since
many Wikipedia articles refer to Wikidata or the GND, we were able to explore
these articles as training examples of the corresponding DDC classes. In addi-
tion, translations provided by both Wikipedia and Wikidata enable the creation
of language-specific training corpora by evaluating translation relationships be-
tween articles assigned to the DDC and articles for which these assignments
do not exist. Table 2 lists the statistics of the training & test corpora that we
generated for six target languages.

4 Experiment

In this section, we report on the results of evaluating Step 3 (text2ddc) and Step
4 (CaSe) of our algorithm depicted in Figure 1.

4.1 Evaluating text2ddc

We evaluate text2ddc with regarding the question which features are most suc-
cessful in DDC-oriented text classification. To this end, we split the corpora
described in Section 3.3 into 80%/20% for training/testing. We used the follow-
ing standard parameters to train the FNN underlying text2ddc:

– number of hidden layers: 1

– hidden layer dimension: 100

– learning rate: 0,1

– update rate: 100

– minimal number of word occurrence: 1

– number of negatives sampled: 5

text2ddc by example of the German Wikipedia We started by testing
which parts of an article have the greatest impact on classification when being
used for training. That is, for each article in the training corpus, we alternatively
trained text2ddc by means of the first sentence, the first paragraph, the first
section and the complete article. We did so by additionally testing the number
of training epochs as a test parameter. Figure 2 shows that using the entire
article as input achieves best results. However, the use of the first paragraph or
section as input leads to comparable results. In any event, the larger the input,
the better the results. We also see that 100 epochs are minimally required to
achieve an F-score of at least 50%.
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Fig. 2. The effect of different units of the logical document structure (first sentence,
first paragraph etc.) and of different numbers of epochs on F-score.

Content Epoch 100 Epoch 10 000

Article 0,8 0,822
Section 0,56 0,744
Paragraph 0,658 0,707
Sentence 0,698 0,592

Table 3. F-Scores considering different contents of the corpus.

Now that we detected the optimal input unit and the minimal number of
epochs, we tested additional features to improve the classification. This includes
information about the lemmas of tokens in input text streams. Figure 3 shows
that lemmatization improves the results in all experiments. This makes sense
because in this way, one gets more information about the association of DDC
classes and text content. For example, prays, prayed and praying are word-
forms of the same lexeme pray. Under this regime, rare occurrences can still be
covered because of being mapped onto the corresponding lemma: even if, for ex-
ample, the wordform praying was never observed in training, it can be processed
later on when other wordforms of the same lemma pray have been observed. In
addition, we also considered lexical information from different sources to measure
their effect on classification. This includes Wikipedia categories and Wikidata
properties. That is, we used the Wikipedia categories assigned to articles in the
training corpus as additional input for training text2ddc and alternativly did
the same using the Wikidata properties of the corresponding Wikidata article.
Figure 4 shows that Wikipedia categories improve the classification, while Wiki-
data properties worsen it. Therefore, we excluded Wikidata properties from the
subsequent evaluation.

Next, we examined the impact of embeddings, disambiguation and function
words. Since the results of these features are very close to each other (see Table
4), we also carried out these experiments with 1 000 epochs. This shows that word
embeddings improve the classification, but by means of disambiguation we can
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Fig. 3. The effect of lemmatization on classification.

Nr Features Epoch 100 1000

1 Lemma 80,8%
2 1 + Categories 82,1%
3 2 + Wikidata 81,4%
4 2 + Embeddings 84,9% 85,5%
5 4 + Disambiguation 84,9% 86,7%
6 5 + No functors 85,0% 87,1%
7 6 + Subwords 85,3% 86,7%
8 6 + Word n-grams 84,7%

Table 4. Feature analysis by example of the German Wikipedia.

perform even better. Moreover, the removal of function words also improves the
classification. Next, we experimented with sub-word units and n-gram features,
showing that they do not improve classification. In fact, word n-grams (2 and
3-grams) even worsen the results (see Table 4).

After determining which approach based on the standard parameters achieves
the best results, we conducted a parameter study to find the optimal hyperpa-
rameters. This includes the following parameters:

– learning rate: 0,2

– update rate: 150

– minimal number of word occurrences: 5

– epochs: 10 000

In this way, we have increased the F-score to 87,4%.

Tackling language independence By means of the language-specific corpora
that we generated for different languages (see Section 3.3) we additionally trained
text2ddc for Arabic, English, French, Spanish, and Turkish. Table 5 shows that
though text2ddc performs worse in the case of the latter five languages compared
to German, the results for the 2nd level of the DDC are nevertheless close to 80%.
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Language DDC 2 DDC 3

German 87,4% 78,1%
English 79,8% 72,6%
Arabic 79,8% 68,8%
Turkish 78,9% 67,5%
French 79,4% 68,1%
Spanish 79,7% 70,5%

Table 5. F-scores for different languages for 2nd and 3rd level DDC.

Input DBpedia AG News

Text without CaSe 97,89% 89,88%
Text + CaSe (DDC 2) 98,00% 90,18%
Text + CaSe (DDC 3) 98,06% 90,33%

Table 6. F-Scores in the DBpedia and AG News classification tasks.

This makes it possible to determine the topic of linguistic units (senses, words,
sentences etc.) of any of these languages to a remarkable degree. Since corpus
generation for these languages is straightforward, this also demonstrates that
our approach is largely language independent at least what concerns languages
that are sufficiently manifested by language specific releases of Wikipedia.

Third Level DDC In order to perform a more detailed analysis, we also an-
alyzed text2ddc with respect to the 3rd level of the DDC. This increased the
number of target classes, however, any topic vector is enriched by providing
more detailed information. Table 2 shows the frequency distributions of the
DDC classes and the number of examples for each language. Table 5 shows the
corresponding results: we observe a drop in F-score when switching to the 3rd
level, while the case of the German Wikipedia we still perform at about 78% –
a result that is similar the one that we observed for the other languages on the
2nd level of the DDC.

4.2 Evaluating CaSe

To show that our DDC-based topic model improves classification, we performed
two classification tasks. To this end, we consider two data sets: the DBpedia
Ontology Classification Dataset and the AG’s news corpus2. The DBpedia On-
tology Classification Dataset is created by selecting 14 non-intersecting classes
from DBpedia 20143. [22] constructed a topic classification dataset using the
AG’s news corpus by selecting the 4 largest classes.

2 www.di.unipi.it/ gulli/AG corpus of news articles.html
3 www.wiki.dbpedia.org/data-set-2014
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For each input text of these two datasets we generated CaSe-related feature
vectors. That is, each text is represented by a feature vector of DDC classes of
either the 2nd (DDC 2) or 3rd level (DDC 3). Next, we trained a FNN-based
classifier that uses these feature vectors as input in addition to the input texts.
That is, the FNN is trained in such a way that the words of the input text
are presented to the input layer in conjunction with 98 (DDC 2) or 641 (DDC
3) input neurons representing the corresponding DDC classes. For any input
word the corresponding input neuron is activated with weight 1. The DDC input
neurons are activated using the output values generated by text2ddc for the given
text and DDC class. To be independent of the classifier, this experiment was
conducted by means of StarSpace [21], a text classification framework developed
by Facebook’s research team. Table 6 shows the results and the impact of CaSe.
The improvements over purely the text-based classifier are not very large, but
with such a high classification quality (in the case of DBpedia over 97%), every
percentage is important. These two experiments document an impact of CaSe
on text classification.
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Fig. 4. Analysis of the F-score by considering the top n classes.

5 Discussion

We have increased the performance of the DDC-related classification to over 87%
for German. This is remarkable considering that our corpus was automatically
generated from Wikipedia articles in conjunction with data from Wikidata and
GND. That is, we developed CaSe as an approach that maps any lexical or
textual input onto probability distributions over DDC classes. In this way, it is
possible to automatically label the topic of this input, referring to interpretable
subject names as provided by DDC. On the other hand, topic vectors provided
by CaSe can also be used as additional input for classification experiments. We
have shown that these vectors improve classification by example of two tasks
based on DBpedia and AG News data.
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Language Successful Unsuccessful

German 3 364,40 3 066,72
English 3 031,78 2 503,29
Arabic 880,36 684,28
Turkish 570,44 395,32
French 2 119,06 1 768,47
Spanish 1 808,43 1 237,92

Table 7. Tokens per example. A comparison between successful and unsuccessful clas-
sification.

5.1 Error analysis

We additionally performed an error analysis of the DDC classification. We ex-
amined which classes are most often misclassified. On the other hand, we also
investigated the performance when considering the top n predicted classes. In
the previous experiments we only selected the class with the highest score. Here
we discovered that we already achieve a score of over 96% when considering the
top 3 classes (see Figure 4). We also discovered that the most common errors
occur since some classes are quite similar. One of the most common mistakes
is the tagging of DDC 590 (Zoological sciences) instead of DDC 560 (Paleon-
tology). This is very comprehensible, because animals are mentioned in both
topics. Another common mistake is the classification of DDC 530 (Astronomy
& allied sciences) instead of DDC 520 (Physics). Thus, we recognize that the re-
maining errors are not necessarily actual errors, but rather similar topics which
still might have a high probability.

We also analyzed the average number of words in a successful and unsuc-
cessful classification (see Table 7. Here we discovered that the unsuccessful clas-
sifications always contain fewer words on average than the successful ones. The
more data the classifier receives, the better is the classification.

6 Conclusion

We have presented a neural network based classifier to categorize DDC classes.
For this we have used various features and resources to achieve the best possible
classification. This includes POS tagging, lemmatizing and disambiguating the
German Wikipedia. Together with this information, we have managed to achieve
a classification quality of over 87%. Considering the top three classes, we even
exceed 96%. For a given text, the classifier generates a probability distribution
over the DDC classes and thus a vector. This vector can be used as input for
other classification tasks and we have shown that improvements can be achieved.

We have also trained the classifier in English, Spanish, French, Arabic and
Turkish in order to be able to use these vectors in different languages. In future
work we would optimize the classifiers of the different languages in the same way
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we did for the German version. We offer the classifier (text2ddc) and the DDC
topic model (CaSe) as API for all above mentioned languages via GitHub.
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