
Multiplicative Models for Recurrent
Language Modeling
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Abstract. Recently, there has been interest in multiplicative recurrent
neural networks for language modeling. Indeed, simple Recurrent Neu-
ral Networks (RNNs) encounter difficulties recovering from past mis-
takes when generating sequences due to high correlation between hidden
states. These challenges can be mitigated by integrating second-order
terms in the hidden-state update. One such model, multiplicative Long
Short-Term Memory (mLSTM) is particularly interesting in its origi-
nal formulation because of the sharing of its second-order term, referred
to as the intermediate state. We explore these architectural improve-
ments by introducing new models and testing them on character-level
language modeling tasks. This allows us to establish the relevance of
shared parametrization in recurrent language modeling.

1 Introduction

One of the principal challenges in computational linguistics is to account for
the word order of the document or utterance being processed [7]. Of course, the
numbers of possible phrases grows exponentially with respect to a given phrase
length, requiring an approximate approach to summarizing its content. Recur-
rent Neural Networks (RNNs) are such an approach, and they are used in various
tasks in Natural Language Processing (NLP), such as machine translation [17],
abstractive summarization [21] and question answering [12]. However, RNNs, as
approximations, suffer from numerical troubles that have been identified, such as
that of recovering from past errors when generating phrases. We take interest in
a model that mitigates this problem, multiplicative RNNs (mRNNs), and how it
has been and can be combined for new models. To evaluate these models, we use
the task of recurrent language modeling, which consists in predicting the next
token (character or word) in a document. This paper is organized as follows:
RNNs and mRNNs are introduced respectively in Sections 2 and 3. Section 4
presents new and existing multiplicative models. Section 5 describes the datasets
and experiments performed, as well as results obtained. Sections 6 discusses and
concludes our findings.
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2 Recurrent neural networks

RNNs are powerful tools of sequence modeling that can preserve the order of
words or characters in a document. A document is therefore a sequence of words,
x1, . . . , xT . Given the exponential growth of possible histories with respect to
the sequence length, the probability of observing a given sequence needs to be
approximated. RNNs will make this approximation using the product rule,

P (x1, . . . , xT ) = P (x1)P (x2|x1) . . . P (xT |x1, . . . , xT−1),

and updating a hidden state at every time step. This state is first null,

h0 = 0.

Thereafter, it is computed as a function of the past hidden state as well as the
input at the current time step,

ht = f(ht−1, xt),

known as the transition function. f is a learned function, often taking the form

ht = tanh(Uxt +Wht−1).1

This allows, in theory, for straightforward modeling of sequences of arbitrary
length.

In practice, RNNs encounter some difficulties that need some clever engineer-
ing to be mitigated. For example, learning long-term dependencies such as those
found in language is not without its share of woes arising from numerical con-
siderations, such as the well-known vanishing gradient problem [2]. This can be
addressed with gating mechanisms, such as Long Short-Term Memory network
(LSTM) [10] and Gated Recurrent Unit (GRU) [3].

A problem that is more specific to generative RNNs is their difficulty re-
covering from past errors [8], which [16] argue arises from having hidden-state
transitions that are highly correlated across possible inputs. One approach to
adapting RNNs to have more input-dependent transition functions is to use the
multiplicative ”trick” [24]. This approximates the idea of having the input at
each time synthesize a dedicated kernel of parameters dictating the transition
from the previous hidden state to the next. These two approaches can be com-
bined, as in the multiplicative LSTM (mLSTM) [16].

We begin by contending that, in making RNNs multiplicative, sharing what
is known as the intermediate state does not significantly hinder performance
when parameter counts are equal. We verify this with existing as well as new
gated models on several well-known language modeling tasks.

1 Additive biases are omitted throughout the paper for concision
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3 Multiplicative RNNs

Most recurrent neural network architectures, including LSTM and GRU share
the following building block:

h̃t = Uxt +Wht−1. (1)

h̃t is the candidate hidden state, computed from the previous hidden state, ht−1,
and the current input, xt, weighted by the parameter matrices W and U , respec-
tively. This candidate hidden state may then be passed through gating mecha-
nisms and non-linearities depending on the specific recurrent model.

Let us assume for simplicity that the input is a one-hot vector (one component
is 1, the rest are 0 [23] [see p.45]), as it is often the case in NLP. Then, the term
Uxt is reduced to a single column of U and can therefore be thought of as an
input-dependent bias in the hidden state transition. As the dependencies we wish
to establish between the elements of the sequences under consideration become
more distant, the term Wht will have to be significantly larger than this input-
dependent bias, Uxt, in order to remain unchanged across time-steps. This will
mean that from one time-step to the next, the hidden-to-hidden transition will
be highly correlated across possible inputs. This can be addressed by having
more input-dependent hidden state transitions, making RNNs more expressive.

In order to remedy the aforementioned problem, each possible input i can be
given its own matrix W (i) parameterizing the contribution of ht to h̃t.

h̃t = Uxt + (
∑
i

W (i)x
(i)
t )︸ ︷︷ ︸

W(xt)

ht−1. (2)

This is known as a tensor RNN (tRNN) [24], because all the matrices can be
stacked to form a rank 3 tensor, W. The input xt selects the relevant slice of
the tensor in the one-hot case and a weighted sum over all slices in the dense
case. The resulting matrix then acts as the appropriate W .

However, such an approach is impractical because of the high parameter
count such a tensor would entail. The tensor can nonetheless be approximated
by factorizing it [25] as follows:

W(xt) = V diag(Wxxt)Wh, (3)

where Wx and Wh are weight matrices, and diag is the operator turning a vector
v into a diagonal matrix where the elements of v form the main diagonal of said
matrix. Replacing W(xt) in Equation (2) by this tensor factorization, we obtain

h̃t = Uxt + V mt, (4)

where mt is known as the intermediate state, given by

mt = (Wxxt) ∗ (Whht−1). (5)
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Here, ∗ refers to the Hadamard or element-wise product of vectors. The inter-
mediate state is the result of having the input apply a learned filter via the new
parameter kernel W to the factors of the hidden state. It should be noted that
the dimensionality of mt is free and, should it become sufficiently large, the fac-
torization becomes as expressive as the tensor. The ensuing model is known as
a mRNN [24].

4 Sharing intermediate states

While mRNNs outperform simple RNNs in character-level language modeling,
they have been found wanting with respect to the popular LSTM [10]. This
prompted [16] to apply the multiplicative ”trick” to LSTM resulting in the mL-
STM, which achieved promising results in several language modeling tasks [16].

4.1 mLSTM

Gated RNNs, such as LSTM and GRU, use gates to help signals move through
the network. The value of these gates is computed in much the same way as the
candidate hidden state, albeit with different parameters. For example, LSTM
uses two different gates, i and f in updating its memory cell, ct,

ct = ft ∗ ct−1 + it ∗ tanh(h̃t). (6)

It uses another gate, o, in mapping ct to the new hidden state, ht,

ht = ot ∗ σ(ct), (7)

where σ is the sigmoid function, squashing its input between 0 and 1. f and i
are known as forget and input gates, respectively. The forget gates allows the
network to ignore components of the value of the memory cell at the past state.
The input gate filters out certain components of the new hidden state. Finally,
the output gates separates the memory cell from the actual hidden state. The
values of these gates are computed at each time step as follows:

it = σ(Uixt +Wiht−1) (8)

ft = σ(Ufxt +Wfht−1) (9)

ot = σ(Uoxt +Woht−1). (10)

Each gate has its own set of parameters to infer. If we were to replace each W? by
a tensor factorization as in mRNN, we would obtain a mLSTM model. However,
in the original formulation of mLSTM, there is no factorization of each would-be
W? individually. There is no separate intermediate state for each gate, as one
would expect. Instead, a single intermediate state, mt, is computed to replace
ht−1 in all equations in the system, by Eq.5. Furthermore, each gate has its own
V? weighting mt. Their values are computed as follows:

it = σ(Wiht−1 + Vimt) (11)
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ft = σ(Wfht−1 + Vfmt) (12)

ot = σ(Woht−1 + Vomt). (13)

The model can therefore no longer be understood as as an approximation of the
tRNN. Nonetheless, it has achieved empirical success in NLP. We therefore try
to explore the empirical merits of this shared parametrization and apply them
to other RNN architectures.

4.2 True mLSTM

We have presented the original mLSTM model with its shared intermediate state.
If we wish to remain true to the original multiplicative model, however, we have
to factorize every would-be W? tensor separately. We have:

it = σ(Uixt + Vimi,t) (14)

ft = σ(Ufxt + Vfmf,t) (15)

ot = σ(Uoxt + Vomo,t), (16)

with each m?,t being given by a separate set of parameters:

m?,t = (W?,xxt) ∗ (W?,hht−1). (17)

We henceforth refer to this model as true mLSTM (tmLSTM). We sought to
apply the same modifications to the GRU model, as LSTM and GRU are known
to perform similarly [9, 4, 13]. That is, we build a true multiplicative GRU (tm-
GRU) model, as well as a multiplicative GRU (mGRU) with a shared interme-
diate state.

4.3 GRU

The GRU was first proposed by [3] as a lighter, simpler variant of LSTM. GRU
relies on two gates, called, respectively, the update and reset gates, and no ad-
ditional memory cell. These gates intervene in the computation of the hidden
state as follows:

ht = (1− zt)ht−1 + zttanh(h̃t), (18)

where the candidate hidden state, h̃t, is given by:

h̃t = Uhxt +Wh(rt ∗ ht−1). (19)

The update gate deletes specific components of the hidden state and replaces
them with those of the candidate hidden state, thus updating its content. On
the other hand, the reset gate allows the unit to start anew, as if it were reading
the first symbol of the input sequence. They are computed much in the same
way as the gates of LSTM:

zt = σ(Uzxt +Wzht−1), (20)

rt = σ(Urxt +Wrht−1). (21)
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4.4 True mGRU

We can now make GRU multiplicative by using the tensor factorization for z
and r:

zt = σ(Uzxt + Vzmz,t), (22)

rt = σ(Urxt) + Vrmr,t, (23)

with each m?,t given by Eq. 17. There is a subtlety to computing h̃t, as we need
to apply the reset gate to ht−1. While ht itself is given by Eq. 4, mh,t is not
computed the same way as in mLSTM and mRNN. Instead, it is given by:

mh,t = (Wxxt) ∗ (Wh(rt ∗ ht−1)). (24)

4.5 mGRU with shared intermediate state

Sharing an intermediate state is not as immediate for GRU. This is due to the
application of rt, which we need in computing the intermediate state that we
want to share. That is, rt and mt would both depend on each other. We modify
the role of rt to act as a filter on mt, rather than a reset on individual components
of ht−1. Note that, when all components of rt go to zero, it amounts to having
all components of ht−1 at zero. We have

zt = σ(Uzxt + Vzmt) (25)

and
rt = σ(Urxt + Vrmt). (26)

h̃t is given by
h̃t = Uhxt + Vh(rt ∗mt), (27)

with mt the same as in mRNN and mLSTM this time, i.e. Eq.5. The final hidden
state is computed the same way as in the original GRU (Eq.18).

5 Experiments in character-level language modeling

Character-level language modeling (or character prediction) consists in predict-
ing the next character while reading a document one character at a time. It
is a common benchmark for RNNs because of the heightened need for shared
parametrization when compared to word-level models. We test mGRU on two
well-known datasets, the Penn Treebank and Text8.

5.1 Penn Treebank

The Penn Treebank dataset [18] comes from a series of Wall Street Journal
articles written in English. Following [19], sections 0-20 were used for training,
21-22 for validation and 23-24 for testing, respectively, which amounts to 5.1M,
400K and 450K characters, respectively.
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Model Parameter count Error(BPC)

GRU [1] 3M 1.53

mRNN [19] - 1.41

LSTM [5] - 1.38

batch-normalized LSTM [5] - 1.32

mLSTM [16] - 1.27

fast-slow LSTM [20] 7.2M 1.19

mLSTM 292K 1.11

tmLSTM 292K 1.09

tmGRU 292K 1.08

mGRU 292K 1.07

larger mGRU 2.1M 0.98

Table 1: Test set error on Penn Treebank and parameter counts in character-level
language modeling

The vocabulary consists of 10K lowercase words. All punctuation is removed
and numbers were substituted for a single capital N. All words out of vocabulary
are replaced by the token <unk>.

The training sequences were passed to the model in batches of 32 sequences.
Following [16], we built an initial mLSTM model of 700 units. However, we set
the dimensionality of the intermediate state to that of the input in order to
keep the model small. We do the same for our mGRU, tmLSTM and tmGRU,
changing only the size of the hidden state so that all four models have roughly
the same parameter count. We trained it using the Adam optimizer [14], selecting
the best model on validation over 10 epochs. We apply no regularization other
than a checkpoint which keeps the best model over all epochs.

The performance of the model is evaluated using the error in bits per char-
acter (BPC), which is log2 of perplexity. A perplexity of p means the model is as
good as if it were guessing from p options at each time step, therefore, a lower
perplexity (and a lower error) is better.

All models outperform previously reported results for mLSTM [16] despite
lower parameter counts. This is likely due to our relatively small batch size.
However, they perform fairly similarly. Encouraged by these results, we built an
mGRU with both hidden and intermediate state sizes set to that of the original
mLSTM (700). This version highly surpasses the previous state of the art while
still having fewer parameters than previous work.

For the sake of comparison, results as well as parameter counts (where avail-
able) of our models (bold) and related approaches are presented in Table 1.
mGRU and larger mGRU, our best models, achieved respectively an error of
1.07 and 0.98 BPC on the test data, setting a new state of the art for this task.



8 Authors Suppressed Due to Excessive Length

Model Parameter count Error (BPC)

GRU [1] 5M 1.53

mRNN [19] - 1.54

LSTM [5] - 1.43

mLSTM [16] 20M 1.42

mLSTM 133K 1.37

batch-normalized LSTM[5] - 1.36

tmGRU 133K 1.35

tmLSTM 133K 1.35

mGRU 133K 1.35

large mLSTM [16] 46M 1.27

larger mGRU 877K 1.21

LSTM [15]* 45M 1.19

Table 2: Test set error on Text8 and parameter counts in character-level language
modeling

5.2 Text8

The Text8 corpus [11] comprises the first 100M plain text characters in English
from Wikipedia in 2006. As such, the alphabet consists of the 26 letters of the
English alphabet as well as the space character. No vocabulary restrictions were
put in place. As per [19], the first 90M and 5M characters were used for training
and validation, respectively, with the last 5M used for testing.

Encouraged by our results on the Penn Treebank dataset, we opted to use
similar configurations. However, as the data is one long sequence of characters,
we divide it into sequences of 200 characters. We pass these sequences to the
model in slightly larger batches of 50 to speed up computation. Again, the di-
mensionality of the hidden state for mLSTM is set at 450 after the original
model, and that of the intermediate state is set to the size of the alphabet. The
size of the hidden state is adjusted for the other three models as it was for the
PTB experiments. The model is also trained using the Adam optimizer over 10
epochs.

The best model as per validation data over 10 epochs achieves 1.40 BPC
on the test data, slightly surpassing an mLSTM of smaller hidden-state dimen-
sionality (450) but larger parameter count. Our results are more modest, as are
those of the original mLSTM. Once again, results do not vary greatly between
models.

As with the Penn Treebank, we proceed with building an mGRU with both
hidden and intermediate state sizes set to 450. This improves performance to
1.21 BPC, setting a new state of the art for this task and surpassing a large
mLSTM of 1900 units from [16] despite having far fewer parameters (45M to
5M).
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For the sake of comparison, results as well as parameter counts of our models
and related approaches are presented in Table 2. It should be noted that some of
these models employ dynamic evaluation [8], which fits the model further during
evaluation. We refer the reader to [15]. These models are indicated by a star.

6 Conclusion

We have found that competitive results can be achieved with mRNNs using small
models. We have not found significant differences in the approaches presented,
despite added non-intuitive parameter-sharing constraints when controlling for
model size. Our results are restricted to character-level language modeling. While
the relevance of statistical language modeling and recurrent language modeling
to applied NLP tasks is uncertain [6], we believe they are a fair means of com-
parison among RNNs architectures. Along this line of thought, previous work on
mRNNs demonstrated their increased potential when compared to their regular
variants [24, 16, 22]. We therefore offer other variants as well as a first investi-
gation into their differences. We hope to have evinced the impact of increased
flexibility in hidden-state transitions on RNNs sequence-modeling capabilities.
Further work in this area is required to transpose these findings into applied
tasks in NLP.
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