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Abstract. The current study focuses on human emotion recognition
based on speech, and particularly on multilingual speech emotion recog-
nition using Japanese, English, and German emotional corpora. The pro-
posed method exploits conditional random fields (CRF) classifiers in a
two-level classification scheme. Specifically, in the first level, the language
spoken is identified, and in the second level, speech emotion recognition
is carried out using emotion models specific to the identified language.
In both the first and second levels, CRF classifiers fed with acoustic fea-
tures are applied. The CRF classifier is a popular probabilistic method
for structured prediction, and is widely applied in natural language pro-
cessing, computer vision, and bioinformatics. In the current study, the
use of CRF in speech emotion recognition when limited training data are
available is experimentally investigated. The results obtained show the
effectiveness of using CRF when only a small amount of training data
are available and methods based on a deep neural networks (DNN) are
less effective. Furthermore, the proposed method is also compared with
two popular classifiers, namely, support vector machines (SVM), and
probabilistic linear discriminant analysis (PLDA) and higher accuracy
was obtained using the proposed method. For the classification of four
emotions (i.e., neutral, happy, angry, sad) the proposed method based
on CRF achieved classification rates of 93.8% for English, 95.0% for
German, and 88.8% for Japanese. These results are very promising, and
superior to the results obtained in other similar studies on multilingual
or even monolingual speech emotion recognition.
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1 Introduction

Automatic recognition of human emotions [1] is a relatively new field, and is
attracting considerable attention in research and development areas because of



its high importance in real applications. Emotion recognition can be used in
human-robot communication, when robots communicate with humans accord-
ing to the detected human emotions, and also has an important role at call cen-
ters to detect the caller’s emotional state in cases of emergency (e.g., hospitals,
police stations), or to identify the level of a customer’s satisfaction (i.e., pro-
viding feedback). In the current study, multilingual emotion recognition based
on speech is experimentally investigated. Specifically, using English, German,
and Japanese emotional speech data, multilingual emotion recognition experi-
ments are conducted based on several classification approaches and the i-vector
paradigm framework.

Previous studies reported automatic speech emotion recognition using Gaus-
sian mixture models (GMMs) [2], support vector machines [3], neural networks
(NN) [4], and deep neural networks (DNN) [5]. Most studies in speech emotion
recognition have focused solely on a single language, and cross-corpus speech
emotion recognition has been addressed in only a few studies. In [6], experi-
ments on emotion recognition are described using comparable speech corpora
collected from American English and German interactive voice response sys-
tems, and the optimal set of acoustic and prosodic features for mono-, cross-,
and multilingual anger recognition are computed. Cross-language speech emo-
tion recognition based on HMMs and GMMs is reported in [7]. Four speech
databases for cross-corpus classification, with realistic, non-prompted emotions
and a large acoustic feature vector are reported in [8].

In the current study, however, multilingual speech emotion recognition us-
ing Japanese, English, and German corpora based on a two-level classification
scheme is demonstrated. Specifically, spoken language identification and emotion
recognition are integrated in a complete system capable of recognizing four emo-
tions from English, German, and Japanese databases. In the first level, spoken
language identification using emotional speech is performed, and in the second
level the emotions are classified using acoustic models of the language identified
in the first level. For classification in both the first and second levels, CRF clas-
sifiers are applied and compared to SVM and PLDA classifiers. A similar study
—but with different objectives— is presented in [9]. In a more recent study [10], a
three-layer perception model is used for multilingual speech emotion recognition
using Japanese, Chinese, and German emotional corpora. In that specific study,
the volume of training and test data used in classification is closely compara-
ble with the data used in the current study, and, therefore, comparisons are, to
some extent, possible. Although very limited training data were available, DNN
and convolutional neural networks (CNN) were also considered for comparison
purposes.

Automatic language identification (LID) is a process whereby a spoken lan-
guage is identified automatically. Applications of language identification include,
but are not limited to, speech-to-speech translation systems, re-routing incom-
ing calls to native speaker operators at call centers, and speaker diarization.
Because of the importance of spoken language identification in real applications,
many studies have addressed this issue. The approaches reported are categorized



into the acoustic-phonetic approach, the phonotactic approach, the prosodic ap-
proach, and the lexical approach [11]. In phonotactic systems [11,12], sequences
of recognized phonemes obtained from phone recognizers are modeled. In [13],
a typical phonotactic language identification system is used, where a language
dependent phone recognizer is followed by parallel language models (PRLM).
In [14], a universal acoustic characterization approach to spoken language recog-
nition is proposed. Another method based on vector-space modeling is reported
in [11,15], and presented in [16].

In acoustic modeling-based systems, different features are used to model
each language. Earlier language identification studies reported methods based
on neural networks [17,18]. Later, the first attempt at using deep learning has
also been reported [19]. Deep neural networks for language identification were
used in [20]. The method was compared with i-vector-based classification, lin-
ear logistic regression, linear discriminant analysis-based (LDA), and Gaussian
modeling-based classifiers. In the case of a large amount of training data, the
method demonstrated its superior performance. When limited training data were
used, the i-vector yields the best identification rate. In [21] a comparative study
on spoken language identification using deep neural networks was presented.
Other methods based on DNN and recurrent neural networks (RNN) were pre-
sented in [22,23]. In [24], experiments on language identification using i-vectors
and CRF were reported. The i-vector paradigm for language identification with
SVM [25] was also applied in [26]. SVM with local Fisher discriminant analysis
is used in [27]. Although significant improvements in LID have been achieved
using phonotactic approaches, most state-of-the-art systems still rely on acoustic
modeling.

2 Methods

2.1 Emotional Speech Data

Four professional female actors simulated Japanese emotional speech. These
comprised neutral, happy, angry, sad, and mixed emotional states. Fifty-one
utterances for each emotion were produced by each speaker. The sentences were
selected from a Japanese book for children. The data were recorded at 48 kHz and
down-sampled to 16 kHz, and they also contained short and longer utterances
varying from 1.5 sec to 9 sec. Twenty-eight utterances were used for training
and 20 for testing. The remaining utterances were excluded due to poor speech
quality.

For the English emotional speech data, the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS) set [28] was used. RAVDESS uses a set
of 24 actors (12 male, 12 female) speaking and singing with various emotions, in a
North American English accent, and contains 7,356 high-quality video recordings
of emotionally-neutral statements, spoken and sung with a range of emotions.
The speech set consists of the 8 emotional expressions: neutral, calm, happy, sad,
angry, fearful, surprised, and disgusted. The song set consists of the 6 emotional
expressions: neutral, calm, happy, sad, angry, and fearful. All emotions except



neutral are expressed at two levels of emotional intensity: normal and strong.
There are 2,452 unique vocalizations, all of which are available in three formats:
full audio-video (720p, H.264), video only, and audio only (wav). The database
has been validated in a perceptual experiment involving 297 participants. The
data are encoded as 16-bit, 48-kHz wav files, and down-sampled to 16 kHz. In
the current study, 96 utterances for neutral, happy, angry, and sad emotional
states were used. For training, 64 utterances were used for each emotion, and 32
for testing.

The German database used was the Berlin database [29], which includes
seven emotional states: anger, boredom, disgust, anxiety, happiness, sadness,
and neutral speech. The utterances were produced by ten professional German
actors (5 female, 5 male) speaking ten sentences with an emotionally neutral
content but expressed with the seven different emotions. The actors produced
69 frightened, 46 disgusted, 71 happy, 81 bored, 79 neutral, 62 sad, and 127
angry emotional sentences. For training, 42 utterances were used in the study,
and for testing, 20 utterances, in the neutral, happy, angry, and sad modes.

2.2 Classification Approaches

Conditional Random Fields (CRF) CRF is a modern approach similar to
HMMs, however with a different nature. CRF are undirected graphical models,
a special case of conditionally trained finite state machines. They are discrim-
inative models, which maximize the conditional probability of observation and
state sequences. CRF assume frame dependence, and as a result context is also
considered. The main advantage of CRF is their flexibility to include a wide va-
riety of non-independent features. CRF have been successfully used for meeting
segmentation [30], for phone classification [31], and for events recognition and
classification [32]. A language identification method based on deep-structured
CRF has been reported in [33]. The current study is based on the popular and
very simple linear-chain CRF, along with low dimensional feature representation
using i-vectors. Similarly, to [34] for object recognition using CRF, each input
sentence in represented by a single vector (i.e., an i-vector), and this scenario
is different from the conventional classification approaches in machine learning,
where the input space is represented as a set of feature vectors.

In CRF, the probabilities of a class label s given the observation sequence o
= (01, 02, ...,07) are given by the following equation:

1
p(klo, ) = eMf(kss0) 1
HoN = 5 (1)

where A is the parameter vector, f is the sufficient statistics vector, and s =
(s1,82,...,87) is a hidden state sequence. The function z(o, A) ensures that the
model forms a properly normalized probability and is defined as:

2(0,0) =) ) eMIthse) (2)
k s€k
Figure 1 demonstrates the structure of HMM and CRF models.
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Fig.1: Structures of hidden Markov models (HMM) and conditional random
fields (CRF).

Support Vector Machines (SVM) A support vector machine (SVM) is a
two-class classifier constructed from sums of a kernel function K(.,.)

L
f(z) = Z a;it; K (x,x;) +d (3)

where the t; are the ideal outputs, Zle a;t; =0, and «; > 0.

An SVM is a discriminative classifier, which is widely used in regression and
classification. Given a set of labeled training samples, the algorithm finds the
optimal hyperplane, which categorizes new samples. SVM is among the most
popular machine learning methods. The advantages of SVM include the support
of high-dimensionality, memory efficiency, and versatility. However, when the
number of features exceeds the number of samples the SVM performs poorly.
Another disadvantage is that SVM is not probabilistic because it works by cat-
egorizing objects based on the optimal hyperplane.

Originally, SVMs were used for binary classification. Currently, the multi-
class SVM, a variant of the conventional SVM, is widely used in solving multi-
class classification problems. The most common way to build a multi-class SVM
is to use K one-versus-rest binary classifiers (commonly referred to as ”one-
versus-all” or OVA classification). Another strategy is to build one-versus-one
classifiers, and to choose the class that is selected by the most classifiers. In this
case, K(K-1)/2 classifiers are required and the training time decreases because
less training data are used for each classifier.

Probabilistic Linear Discriminant Analysis (PLDA) PLDA is a popular
technique for dimension reduction using the Fisher criterion. Using PLDA, new
axes are found, which maximize the discrimination between the different classes.
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Fig.2: Classification scheme based on the i-vector paradigm.

PLDA was originally applied to face recognition, and and can be used to specify
a generative model of the i- vector representation. A study using UBM-based
LDA for speaker recognition was also presented in [35]. Adapting this to language
identification and emotion classification, for the i-th language or emotion, the
i-vector w; ; representing the j-th recording can be formulated as:

Wi j =m+ Sx; + e (4)

where S represents the between-language or between-emotion variability, and
the latent variable x is assumed to have a standard normal distribution, and to
represent a particular language or emotion and channel. The residual term e; ;
represents the within-language or within-emotion variability, and it is assumed
to have a normal distribution. Figure 2 shows the two-level classification scheme
used in the current study.

2.3 Shifted Delta Cepstral (SDC) Coefficients

Previous studies showed that language identification performance is improved by
using SDC feature vectors, which are obtained by concatenating delta cepstra
across multiple frames. The SDC features are described by the N number of
cepstral coefficients, d time advance and delay, ¥ number of blocks concatenated
for the feature vector, and P time shift between consecutive blocks. For each
SDC final feature vector, kN parameters are used. In contrast, in the case of
conventional cepstra and delta cepstra feature vectors, 2N parameters are used.
The SDC is calculated as follows:

Ac(t+iP)=c(t+iP+d)—c(t +iP —d) (5)



The final vector at time ¢ is given by the concatenation of all Ac(t + iP) for all
0 <i < k, where ¢(¢) is the original feature value at time ¢. In the current study,
SDC coefficients were used not only in spoken language identification, but also
in emotion classification.

2.4 Feature extraction

In automatic speech recognition, speaker recognition, and language identifica-
tion, mel-frequency cepstral coeflicients (MFCC) are among the most popular
and most widely used acoustic features. Therefore, in modeling the languages
being identified and the emotions being recognized, this study similarly used 12
MFCC, concatenated with SDC coefficients to form feature vectors of length
112. The MFCC features were extracted every 10 ms using a window-length of
20 ms. The extracted acoustic features were used to construct the i-vectors used
in emotion and spoken language identification modeling and classification.

A widely used approach for speaker recognition is based on Gaussian mix-
ture models (GMM) with universal background models (UBM). The individual
speaker models are created using maximum a posteriori (MAP) adaptation of
the UBM. In many studies, GMM supervectors are used as features. The GMM
supervectors are extracted by concatenating the means of the adapted model.

The problem of using GMM supervectors is their high dimensionality. To
address this issue, the i-vector paradigm was introduced which overcomes the
limitations of high dimensionality. In the case of i-vectors, the variability con-
tained in the GMM supervectors is modeled with a small number of factors,
and the whole utterance is represented by a low dimensional i-vector of 100-400
dimension.

Considering language identification, an input utterance can be modeled as:

M=m+ Tw (6)

where M is the language-dependent supervector, m is the language-independent
supervector, T is the total variability matrix, and w is the i-vector. Both the total
variability matrix and language-independent supervector are estimated from the
complete set of the training data. The same procedure is used to extract i-vectors
used in speech emotion recognition.

2.5 Evaluation measures

In the current study, the equal error rates (EER) (i.e., equal false alarms and
miss probability) and the classification rates are used as evaluation measures.
The classification rate is defined as:

"\ No. of corrects for class k
No. of trials for class k

1
=— - 100 7
acc P (7)

=1
where n is the number of the emotions. In addition, the detection error trade-off

(DET) curves, which show the function of miss probability and false alarms, are
also given.



3 Results

This section presents the results for multilingual emotion classification based on
a two-level classification scheme using Japanese, English, and German corpora.

3.1 Spoken language identification using emotional speech data

The i-vectors used in modeling and classification are constructed using MFCC
features and SDC coefficients. For training, 160 utterances from each language
are used, and 80 utterances for testing. The dimension of the i-vectors is set to
100, and 256 Gaussian components are used in the UBM-GMM. Due to the fact
that only three target languages are used, the identification was perfect almost
in all cases (except in the case of using PLDA was 98.8%). On the other hand,
it should be noted that language identification is conducted using emotional
speech data, and this result indicates that spoken language classification using
emotional speech data does not present any particular difficulties compared to
normal speech.

3.2 Emotion recognition based on a two-level classification scheme

Table 1 shows the average emotion classification rates when using MFCC features
only. As shown, high classification rates are being obtained. The results show
that the two classifiers based on DNN and CNN show lower rates (except for
Japanese). A possible reason may be the small volume of training data in the
case of English and German.

Table 2 shows the average classification rates when using MFCC features
along with SDC coefficients. As shown, the CRF classifier shows superior per-
formance in most of cases, followed by SVM. The results show that using SDC
coefficients along with MFCC features improves classification rates. This result
indicates that SDC coefficients are effective not only in spoken language identi-
fication, but also in speech emotion recognition. Note, however, that in this case
of DNN and CNN, small or no improvements are being obtained. The results
indicate that due to the limited training data, DNN and CNN are less effective
for this task.

Table 3 shows the classification rates for the four emotions when using the
CRF classifier and MFCC features along with SDC coefficients. In the case of
Japanese the average accuracy was 88.8%, in the case of English the average was
93.8%, and in the case of German, a 95.0% accuracy was obtained. Concerning
the German corpus, the results obtained are significantly higher compared to
the results reported in [36] when the same corpus was used.

Table 4 shows the individual classification rates when SVM was used. In the
case of Japanese, a 82.8% average accuracy was achieved, in the case of English
the average accuracy was 91.4%, and when using the German corpus the average
accuracy was 95.0%.

Table 5 shows the recognition rates when using the PLDA classifier. The
average accuracy for Japanese was 85.2%, the accuracy for English was 90.2%,



Table 1: Average emotion classification rates when using MFCC features for the
i-vector construction.

Classifier Language
Japanese|English|German
PLDA 85.2 77.3 91.7
CRF 79.4 87.5 90.0
SVM 82.8 80.5 91.3
DNN 90.6 68.3 85.2
CNN 90.2 71.0 88.7

Table 2: Average emotion classification rates when using MFCC features and
SDC coefficients for the i-vector construction.

Classifier Corpus
Japanese|English|German
PLDA 87.6 90.9 91.7
CRF 88.8 93.8 95.0
SVM 90.9 93.0 95.0
DNN 83.7 76.2 82.7
CNN 88.8 77.1 84.5

and for the German corpus an accuracy of 89.3% was achieved. The results show
that when using CRF, superior performance was obtained, followed by SVM. The
lowest rates were obtained when the PLDA classifier was used. The results also
show that the emotion sad is recognized with the highest rates in most cases.

3.3 Emotion recognition using multilingual emotion models

In this baseline approach, a single-level classification scheme is used. Using emo-
tional speech data from Japanese, English, and German languages, common
emotion models are trained. For training, 112 Japanese, 64 English, and 40 Ger-
man i-vectors are used for each emotion. For testing, 80 Japanese, 32 English, and
20 German i-vectors are used for each emotion. Since also using SDC coefficients
improves the performance of the two-level approach, in this method, i-vectors
are constructed using MFCC features in conjunction with SDC coefficients. Ta-
ble 6 shows the classification rates. As shown, using a universal multilingual
model, the average emotion classification accuracies for the three languages are
75.2%, 77.7%, and 75.0% when using PLDA, CRF, and SVM classifiers, respec-
tively. This is a promising result and superior to the results obtained in other
similar studies. While the rates achieved are lower than with the two-level ap-
proach, in this approach a single level is used with reduced system complexity
(i.e., language identification is not applied). Furthermore, the classification rates
may be improved with a larger amount of training data. These result show that



Table 3: Emotion classification rates when using CRF classifier and MFCC fea-
tures, along with SDC coefficients, for the i-vector construction.

Corpus Emotions
Neutral|Happy|Anger| Sad|Average
Japanese 85.0] 83.8| 88.8/97.5 88.8
English 87.5/ 100.0| 96.9| 90.6 93.8
German | 100.0f 95.0{ 85.0({100.0 95.0

Table 4: Emotion classification rates when using SVM classifier and MFCC fea-
tures, along with SDC coefficients, for the i-vector construction.

Corpus Emotions
Neutral|Happy|Anger| Sad|Average
Japanese| 92.5| 70.0| 81.3| 87.5 82.8
English 84.41 100.0| 93.8| &87.5 91.4
German 95.0/ 95.0/ 90.0|100.0 95.0

Table 5: Emotion classification rates when using PLDA classifier and MFCC
features, along with SDC coefficients, for the i-vector construction.

Corpus Emotions

Neutral|Happy|Anger| Sad|Average
Japanese 72.8| 86.4| 90.1|191.4 85.2
English 93.9] 90.9| 97.0| 78.8 90.2
German 95.2| 81.0| 85.7|95.2 89.3

Table 6: Average emotion classification rates when using a universal emotion
model with MFCC features and SDC coefficients for the i-vector construction.
Classifier Corpus
Japanese|English|German | Average
PLDA 75.3 68.2 82.1 75.2
CRF 80.9 73.4 78.8 7T.7
SVM 76.9 71.9 76.3 75.0

i-vectors can efficiently be applied in multilingual emotion recognition when uni-
versal, multilingual emotion models are also used. The results also show that in
most cases, the performance of the CRF classifier is superior.

Table 7 shows the EER when a universal, multilingual emotion model is used.
As shown, the EER for German is the lowest among the three, followed by the
EER for Japanese. The average EERs for the three languages are 20.9%, 19.3%,
and 23.2% when using PLDA, CRF, and SVM classifiers, respectively. Also in



Table 7: Equal error rates (EER) when using a universal emotion model with
MFCC features and SDC coeflicients for the i-vector construction.

Classifier Corpus
Japanese|English|German | Average
PLDA 22.6 22.6 17.5 20.9
CRF 17.6 22.9 17.5 19.3
SVM 22.5 26.8 20.4 23.2

this case, the lowest EERs were obtained using the CRF classifier. Figure 3 shows
the DET curves for multilingual emotion recognition using a universal emotion
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4 Discussion

Although using real-world emotional speech data would represent a more real-
istic situation, acted emotional speech data are widely used in speech emotion
classification. Furthermore, the current study mainly investigated classification
schemes and features extraction methods, so using acted speech is a reasonable
and acceptable approach. Because of limited emotional data, deep learning ap-
proaches in multilingual emotion recognition were not investigated. In contrast,
a method is proposed that integrates spoken language identification and emo-
tion classification. In addition to SVM and PLDA classifiers, the CRF classifier
is also used in combination with the i-vector paradigm. The results obtained
show the advantage of using the CRF classifier, especially when limited data are
available. For comparison purposes, deep neural networks were also considered.
Because of the limited training data, however, the classification rates when us-
ing DNN and CNN were significantly lower. In order to address the problems
associated with using acted speech, an initiative to obtain a large quantity of
spontaneous emotional speech is currently being undertaken. With such data, it
will also be possible to analyze the behavior of additional classifiers, such as deep
neural networks, and to investigate the problem of multilingual speech emotion
recognition in realistic situations (e.g., noisy or reverberant environments).

5 Conclusions

The current study experimentally investigated multilingual speech emotion clas-
sification. A two-level classification approach was used, integrating spoken lan-
guage identification and emotion recognition. The proposed method was based
on CRF classifier and the i-vector paradigm. When classifying four emotions,
the proposed method achieved a 93.8% classification rate for English, a 95.0%
rate for German, and 88.8% rate for Japanese. These results were very promis-
ing, and demonstrated the effectiveness of the proposed methods in multilingual
speech emotion recognition. An initiative to obtain realistic, spontaneous emo-
tional speech data for a large number of languages is currently being undertaken.
As future work, the effect of noise and reverberation will also be investigated.
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