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Abstract. Data selection has proven its merit for improving Neural Machine Translation
(NMT), when applied to authentic data. But the benefit of using synthetic data in NMT
training, produced by the popular back-translation technique, raises the question if data
selection could also be useful for synthetic data?
In this work we use Infrequent n-gram Recovery (INR) and Feature Decay Algorithms (FDA),
two transductive data selection methods to obtain subsets of sentences from synthetic data.
These methods ensure that selected sentences share n-grams with the test set so the NMT
model can be adapted to translate it.
Performing data selection on back-translated data creates new challenges as the source-side
may contain noise originated by the model used in the back-translation. Hence, finding n-
grams present in the test set become more difficult. Despite that, in our work we show that
adapting a model with a selection of synthetic data is an useful approach.

1 Introduction

Neural Machine Translation (NMT) models tend to perform better with larger amounts of data.
However, a smaller model trained with data in the same domain as the document to be translated
(test set) may perform better than a bigger general-domain model.

Data selection algorithms can be applied as a technique to obtain data of a particular domain.
Generally speaking, these methods start from a large set of sentences, and from this set select a
subset of sentences that are closer to the domain of interest than other sentences in the large set.
Among these methods, Transductive Algorithms (TA) perform the selection by using the test set
as seed and retrieving those sentences that are relatively closer to this seed than others. Models
built using the output of TA also perform better than general-domain models [1,2].

Alternatively, a general-domain model can also be adapted to a certain domain by applying the
technique known as fine-tuning [3,4,5]. This consists of training the last epochs of an NMT model
(built with out-domain data) using a smaller but in-domain set of sentences.

Unfortunately, additional data that are closer to the test set are not always available. The work
of [6] showed that the inclusion of back-translated data can boost the performance of NMT models.
Since then, adding synthetic data for training Machine Translation (MT) models has become more
popular.

In this work we want to investigate whether it is useful to apply TA to synthetic data selection,
in order to retrieve artificial sentences closer to the test set. We study the performance of TA on
the task of synthetic data selection, applied in two different configurations (see Figure 1):



1. Batch processing: The first approach involves back-translating a monolingual set of sentences
completely and then selecting sentences from synthetic parallel set. The selection criteria of TA
are based on the overlap of n-grams of the test set (the seed) with those in the source-side of the
parallel set. For this reason, the performance of TA may be worse on back-translated data as
the n-grams, which have been artificially generated, may be unnatural in terms of word-order.

2. Online processing: This involves selecting the necessary monolingual, target-side, sentences and
afterwards back-translating the selected set. The advantage of the online process is that it is
not necessary to back-translate the complete data set before selecting data. Nevertheless, as the
selection is performed in monolingual target-language we cannot use the test set (which is in
the source-side language) as seed. To solve this, we can proceed as described in the work of [7]
and translate the test set using a generic-domain NMT model. Then, this translated text can
be used as seed.

Fig. 1: Pipeline of the batch (left) and online (right) processing to obtain TA-selected synthetic
data.

2 Related Work

2.1 Transductive Data Selection Algorithms

In this section we describe the algorithms used in the paper, which belong to the family of trans-
ductive [8] data selection methods. Such methods select the most relevant sentences for the test set
using the (source-side) test set itself. The methods score each sentence s in the candidate data U
(the set of sentences that have not been yet selected), and then the sentence with the highest score
is added to selected pool L, which is initially empty. Note that this process is done iteratively as
the scores (which depend on U and L) are updated after a sentence has been selected.



Infrequent n-gram Recovery (INR): In the work of [9,10] they propose extracting sentences contain-
ing n-grams (present in the test set) that are considered infrequent. Therefore, words such as stop
words are ignored. The sentences in the candidate data U are scored according to Equation (1):

score(s, U) =
∑

ngr∈Stest

max(0, t− CL(ngr)) (1)

where t is the threshold that indicates whether an n-gram is frequent or not. If the count of the
n-gram ngr (CL(ngr)) in the selected pool L exceeds the value of t then it will not contribute to
the score of the sentence.

Feature Decay Algorithms (FDA): Feature Decay Algorithms [11] selects data by promoting sen-
tences containing many n-grams from the test set, but penalizing those n-grams that have been
selected several times. Each n-gram ngr is assigned an initial score, then each time a sentence
containing ngr is selected the score of ngr is decreased. The default scoring function is defined as
in Equation (2):

score(s, L) =

∑
ngr∈Stest

0.5CL(ngr)

length(s)
(2)

Observe that the more occurrences of ngr are in the selected pool L (C(L)) the less it contributes
towards the scoring of the sentence s.

2.2 Using Approximated Target Side

The methods presented in Section 2.1 use the test set as seed in order to retrieve sentences. How-
ever, a similar approach can be executed by using an approximated translation of the test set
(approximated target side) as seed [7]. This seed can be generated by another MT model.

The output of a TA, such as INR or FDA, can be represented as a sequence of sentences

TAsrc = (s
(src)
1 , s

(src)
2 , s

(src)
3 , ...s

(src)
N ) of N sentences. We use the subscript src to indicate that the

seed is a text in the source language. However, we can first translate the test set using a generic
NMT model and execute the TA using the translation as a seed. The output of this execution could

also be represented as a sequence of sentences TAtrg = (s
(trg)
1 , s

(trg)
2 , s

(trg)
3 , ...s

(trg)
N )

The two outputs, TAsrc and TAtrg, can be combined as a new sequence of N sentences as in
Equation (3)

TA = (s
(src)
1 , ...s

(src)
N∗α , s

(trg)
1 , ...s

(trg)
N∗(1−α)) (3)

where the top sentences from each output are concatenated. The value of α ∈ [0, 1] represents the
proportion of data that are selected from TAsrc and TAtrg.

Figure 2 (right) shows the pipeline that we followed to build the mixture of the outputs using
both seeds. Although the data obtained from TAtrg are not always useful for adapting an MT
model for the test set, mixing the data selected using the test set and the approximated target side
can lead to improvements [7].



Fig. 2: Pipeline of the traditional usage of FDA (left) and pipeline of our proposal, using the target-
side (right) [7].

3 Fine-tuning Models with Synthetic Data

The work of [6] showed that NMT models can be improved by adding synthetic training data.
In their work they use monolingual sentences in the target language and translate them into the
source-language with an NMT model. This creates a parallel corpus in which the source side has
been artificially generated and the target side is human-produced data (and hence, the fluency of
the translation will not be affected). Models built with back-translated data alone (or mixed with
back-translated data) can have a performance comparable to those built with real data [12].

In this work we want to explore the performance of NMT models when fine-tuned with TA-
selected synthetic data so they are adapted to a given test set. We are interested in exploring three
main Research Questions (RQ):

– RQ1: Does a model adapted with TA-selected back-translated data achieve improve-
ments over the non-adapted model?
The strength of performing the fine-tuning technique is to adapt a model with data in the same
domain as the document to be translated. Although TA can retrieve relevant data, we do not
know the performance when executed using synthetic data. The artificially-generated sentences
may contain unusual n-grams, so the overlap with the test set is lower. This prevents TA from
retrieving relevant sentences.

– RQ2: Does a model adapted with TA-selected back-translated data perform better
than a model adapted with TA-selected authentic data?
Suppose that using synthetic data for adaptation leads to improvements, we also want to com-
pare the performance to that of a model adapted with TA-retrieved authentic data. The quality



of the back-translated (source) data, in terms of being an exact translation of the target, is
expected to be lower than that of the source-side in the corresponding authentic sentence pairs
(which were after all created by human translators). However, the authentic data have already
been used to build the model to be adapted, whereas the selected artificial (source) sentences
is a set of newly generated data, which may add useful new information not present in the
original authentic data set. For this reason, the selected synthetic data might add more value
to training the model and may also improve generalization. Therefore, fine-tuning with selected
back-translated data may yield larger performance gains than fine-tuning with (repeated) au-
thentic sentences.

– RQ3: Is it preferable to follow the batch or the online processing?
As both processing (batch and online) retrieve different subsets of data, we want to study the
performance of the models when they are adapted with a mixture of both outputs. The strategy
we follow to combine the outputs is to concatenate them in different proportion in a similar
way (using different sizes of α) as explained in Section 2.2.

4 Experiments

4.1 Experimental settings

We build German-to-English models with the parallel data provided in the WMT 2015 [13] (training
data). All data sets are tokenized and truecased. We also apply Byte Pair Encoding (BPE) [14]
with 89500 merge operations.

The synthetic data are built by translating the target-side (English) into the source language
(German). We use an NMT model built with 1M randomly-selected sentences.

The NMT models are built using OpenNMT-py 1 [15] with the default parameter values: 2-layer
LSTM with 500 hidden units, vocabulary size of 50000 words for each language.

All the models built are evaluated on two test sets using BLEU [16], TER [17] and METEOR [18]
evaluation metrics. These metrics provide an estimation of the quality of the translation compared
to a human-translated reference. The two test sets used to evaluate the models are: (i) NEWS test
set provided in WMT 2015 News Translation Task; and (ii) BIO test set, the Cochrane 2 dataset
from the WMT 2017 biomedical translation shared task [19].

In each table, we mark in bold the scores that are better than the baseline, and if they constitute
a statistically significant improvement (at level p=0.01) we mark them with an asterisk. This was
computed with multeval [20] using bootstrap resampling [21].

4.2 Model Adaptation with Subsets of Data

The general-domain model used in this work as baseline is an NMT model trained with the complete
training dataset for 13 epochs. The result of the model can be seen in Table 1

The experiments carried out consist of using INR and FDA to select different sizes of data:
100K, 200K and 500K sentence pairs. In INR method, a low value of t causes the method to be
more strict and retrieve less sentences. We use the larger value so the execution does not exceed
48 hours (i.e. t = 80 for NEWS test set and t = 640 for BIO test set). However, the amount of

1 https://github.com/OpenNMT/OpenNMT-py
2 http://www.himl.eu/test-sets

https://github.com/OpenNMT/OpenNMT-py
http://www.himl.eu/test-sets


Table 1: Results of the general-domain model evaluated in the NEWS test set and BIO test set.

NEWS BIO

BLEU 0.2634 0.3314
TER 0.5441 0.4679
METEOR 0.3009 0.3457

sentences retrieved are below 500K, so in the experiments we only evaluate the models adapted
with 100K and 200K INR-selected sentences.

The sentences retrieved are used to adapt the general-domain model. In particular, we adapt
the 12th epoch of the model by fine-tuning it with the selected data.

Table 2: Results of the models built with different sizes of INRsrc and INRtrg using authentic
data.

baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

1
0
0
K

BLEU 0.2634 0.2649 0.2659 0.2664* 0.2655 0.2659*
TER 0.5441 0.5419 0.5408* 0.5417* 0.5413 0.5430*
METEOR 0.3009 0.3021 0.3030* 0.3037* 0.3033* 0.3034*

2
0
0
K

BLEU 0.2634 0.2644 0.2661* 0.2666* 0.2655 0.2649
TER 0.5441 0.5435 0.5410* 0.5406* 0.5413* 0.5437*
METEOR 0.3009 0.3012 0.3025* 0.3028* 0.3029* 0.3027*

BIO

1
0
0
K

BLEU 0.3314 0.3352* 0.3346 0.3347 0.3370* 0.3339
TER 0.4679 0.4592* 0.4631 0.462 0.4591* 0.4605*
METEOR 0.3457 0.3477 0.3478 0.3463 0.3488* 0.3475

2
0
0
K

BLEU 0.3314 0.3388* 0.3362* 0.3403* 0.3386* 0.3343
TER 0.4679 0.459* 0.4589* 0.457* 0.4563* 0.4590*
METEOR 0.3457 0.3494* 0.3477 0.3502* 0.3489* 0.3495*

In Table 2 and Table 3 we show the performance of the models when fine-tuned with different
sizes of selected authentic data. In the tables we also indicate the proportions of data selected using
the test set or the approximated target side as seed.

As we can see, the performance of the adapted models are higher than that of the general-domain
model (Table 1). In addition, using a mixture of TAsrc and TAtrg (columns α = 0.75, α = 0.50
and α = 0.25) can achieve a higher performance than TAsrc or TAtrg alone.

In our experiments we follow the same procedure using synthetic data in order to perform
comparisons among the general-domain model, models adapted with authentic data, and models
adapted with synthetic data.



Table 3: Results of the models built with different sizes of FDAsrc and FDAtrg using authentic
data.

baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

1
0
0
K

BLEU 0.2634 0.2649 0.2665* 0.2642* 0.2643 0.2633
TER 0.5441 0.5421 0.5412* 0.5413* 0.5416* 0.5416*
METEOR 0.3009 0.3021* 0.3027* 0.3022* 0.3019 0.3020

2
0
0
K

BLEU 0.2634 0.2655 0.2665* 0.2651 0.2652 0.2654*
TER 0.5441 0.5417* 0.5412* 0.5413* 0.5421* 0.5404*
METEOR 0.3009 0.3024* 0.3027* 0.3025* 0.3025* 0.3027*

5
0
0
K

BLEU 0.2634 0.264* 0.2658* 0.2671* 0.2654 0.2650
TER 0.5441 0.5447 0.5414* 0.5412* 0.5415* 0.5404*
METEOR 0.3009 0.3010* 0.3028* 0.3028* 0.3024* 0.3028*

BIO

1
0
0
K

BLEU 0.3314 0.3368* 0.3377* 0.3391* 0.339* 0.3331
TER 0.4679 0.4597* 0.4611* 0.4599* 0.4597* 0.4649
METEOR 0.3457 0.3471 0.3473 0.3476 0.3485 0.3463

2
0
0
K

BLEU 0.3314 0.3396* 0.3414* 0.3375* 0.3391* 0.3370*
TER 0.4679 0.4564* 0.459* 0.4574* 0.4596* 0.4572*
METEOR 0.3457 0.3501* 0.3503* 0.3491* 0.3484* 0.3496*

5
0
0
K

BLEU 0.3314 0.3375* 0.3406* 0.3358* 0.3354* 0.3336
TER 0.4679 0.4592* 0.4552* 0.4593* 0.4574* 0.4617
METEOR 0.3457 0.3492* 0.3496* 0.3485 0.3494* 0.3485*



5 Results

The results of the models adapted with synthetic data are shown in Table 4 (INR method) and
Table 5 (FDA method). In order to answer RQ1, we include in the first column, as baseline, the
performance of the 13th epoch of the general-domain model (Table 1). We mark in bold those scores
that indicate a better performance than the baseline and add an asterisk if they are statistically
significant at level p=0.01.

In the tables we observe that adapted models with artificial data tend to perform better on
NEWS test set than BIO test set (e.g. BLEU scores are only higher in the NEWS test set). This
manifests that the domain of the model used for back-translating plays an important role. In our
experiments the above model is closer to the news domain because it was built using a sample of
the authentic training data.

METEOR scores of adapted models are higher than those of the general-domain model for both
test sets, and in many cases the improvements are statistical significant (with p=0.001). In contrast,
TER scores are lower than the baseline. This may be caused by the synonym or conjugation chosen
by the adapted model. For example, the sentence “auch Schulen” is translated by the general-
domain model as “schools too” (the same as in the reference), but adapted model produced “also
schools”.

Table 4: Results of the models built with different sizes of INRsrc and INRtrg using back-translated
data.

baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

1
0
0
K

BLEU 0.2634 0.2664 0.267 0.2671 0.2679* 0.2675
TER 0.5441 0.5492 0.5496 0.55 0.5496 0.5513
METEOR 0.3009 0.3058* 0.3062* 0.3063* 0.3067* 0.3061*

2
0
0
K

BLEU 0.2634 0.2666 0.2673* 0.2678* 0.2673* 0.2672*
TER 0.5441 0.5485 0.5486 0.5478 0.5481 0.5481
METEOR 0.3009 0.3064* 0.3061* 0.3068* 0.3066* 0.3068*

BIO

1
0
0
K

BLEU 0.3314 0.324 0.327 0.3263 0.3269 0.3251
TER 0.4679 0.4762 0.4747 0.4753 0.4751 0.4764
METEOR 0.3457 0.3486 0.3490 0.3502* 0.351* 0.3489

2
0
0
K

BLEU 0.3314 0.3241 0.3255 0.3255 0.3254 0.3251
TER 0.4679 0.4782 0.4755 0.4732 0.4742 0.4745
METEOR 0.3457 0.3487 0.3501* 0.3508* 0.3509* 0.3505*

5.1 Model Adaptation with Synthetic Data

In our experiments, the back-translated data used for the adaptation are new data unseen by the
model (the authentic data used to adapt the models presented in tables 2 and 3 are subsets of the
same data used to build the general-domain model). The outcomes observed in the experiments



Table 5: Results of the models built with different sizes of FDAsrc and FDAtrg using back-
translated data.

baseline α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

NEWS

1
0
0
K

BLEU 0.2634 0.2639 0.2654 0.264 0.2655 0.2672*
TER 0.5441 0.5525 0.5509 0.5522 0.5511 0.5493
METEOR 0.3009 0.305* 0.3054* 0.3051* 0.3055* 0.3062*

2
0
0
K

BLEU 0.2634 0.2655 0.2658 0.2663 0.2666 0.2679*
TER 0.5441 0.5497 0.5512 0.5504 0.5493 0.5484
METEOR 0.3009 0.3051* 0.3053* 0.306* 0.3055* 0.3063*

5
0
0
K

BLEU 0.2634 0.2662 0.2674* 0.2668 0.2679* 0.2664
TER 0.5441 0.5483 0.5494 0.5501 0.5488 0.5489
METEOR 0.3009 0.3061* 0.3068* 0.3062* 0.3068* 0.3062*

BIO

1
0
0
K

BLEU 0.3314 0.3228 0.3248 0.3238 0.3254 0.3262
TER 0.4679 0.4755 0.475 0.4751 0.4742 0.4744
METEOR 0.3457 0.349 0.3488 0.3497* 0.3521* 0.3500*

2
0
0
K

BLEU 0.3314 0.3214 0.3245 0.3258 0.3255 0.3241
TER 0.4679 0.478 0.4743 0.4737 0.4751 0.4749
METEOR 0.3457 0.3487 0.3495 0.3501* 0.349 0.3482

5
0
0
K

BLEU 0.3314 0.3215 0.3223 0.3229 0.3241 0.3226
TER 0.4679 0.4842 0.4843 0.4817 0.4813 0.4811
METEOR 0.3457 0.3478 0.3488 0.3486 0.3491 0.349



show that adapting the models with synthetic data does not achieve as good results as adapting
them with authentic data (which answers the RQ2). If we compare cell-wise (i.e. same value of α
and same size of selected sentences) tables 2 and 4 or tables 3 and 5 we see slight improvements for
the BLEU and METEOR scores for the news test set (NEWS subtables). However, none of these
are statistically significant at p=0.01.

As mentioned previously, the sentences produced by the model used for back-translation may
contain mistakes such as word-ordering, incorrect translations etc. which reduces the potential
sentences that TA can retrieve. For example, in our experiments we find the following sentence
in the NEWS test set “Auf der Hüpfburg beim Burggartenfest war am Sonnabend einiges los.”
(according to the reference “Something is happening on the bouncy castle at the Burggartenfest.”)
contains the word “Hüpfburg” (“bouncy castle”) which is used by TA to retrieve sentences. There
are 18 occurrences of this word in the authentic data set. However, in the synthetic data there
are no instances of this word. Instead, the back-translated counterparts of sentences containing
“Hüpfburg” include words such as “bouncer” (copied from the English side) or “bounmit” (a word
that does not exist). Nevertheless, in some cases back-translated sentences may be closer to literal
translation than those found in the authentic set [7,22]. For example, in the authentic data set
we find the sentence-pair 〈“er ist verheiratet und hat zwei Kinder.”,“since then, he has had a long
career on stage, in film and on television. he has also established himself as a singer and an author in
recent years.”〉 which do not convey the same meaning. However, the machine-produced source-side
is “seitdem hat er eine lange Karriere auf der Bühne, im Film und im Fernsehen absolviert und hat
sich auch als Sängerin und Autor in den letzten Jahren etabliert” which is closer in meaning to the
target-side sentence. Another example is the pair 〈“10 %!”,“one tenth!”〉. Although, they have the
same meaning, in the back-translated counterpart the source-side sentence is “ein Zehntel!”, which
is a literal translation.

5.2 Batch and Online Processing

In order to answer RQ3 we need to compare columns α = 1 (batch processing, i.e. extract from
back-translated data using the test set) and α = 0 (online processing, i.e. extract from authentic
data using the approximated set). In Table 4 and Table 5 we see that in our experiments following
the online process the results tend to be better.

Using an approximated target side as seed is risky, as it can be of low quality. For example,
the sentence “Das Buch wurde neu für 48$ verkauft.” (“The book was selling for $48 new.”) is
translated as “The book was sold for 48$.” by the general-domain model. As we can see, the word
“new” is omitted in the translation. This means that the TA will not consider the word “new” when
selecting sentences.

Despite that, we find that the generated target-side seed may contain n-grams that better
represent the context of the input document. For example, the sentence in the test set “Ich liebe
es, in einem Probenraum zu sein.” is translated, according to the reference, as “I love being in a
rehearsal room.”. The model adapted with 100K sentences from FDAsrc (α = 1) generates the
translation “I love to be in a sample room.”, whereas the model adapted with FDAtrg (α = 0)
produces a sentence that conveys the same meaning to the reference: “I love to be in a rehearsal
room.”.

We observe that the occurrences of “Proben” (due to BPE, the word is splitted as “Proben@@
raum”) are translated as “sample” or “rehersal” depending on the context. The fact that in the
approximated target side the word has been accurately translated as “rehearsal room” induces



FDAtrg to select more sentences that include the term “rehearsal”. In contrast, FDAsrc retrieves
sentences based on the word “Proben” in the seed (as it is present in the test set). However, in the
training data this word has been artificially produced and it replaces words such as “Messwasser”
(“water sample”) or “Musterproduktion” (“sample production”).

6 Conclusion and Future Work

In this paper we have analyzed various use-cases of synthetic data for adapting a general-domain
model. We have seen that using a TA it is possible to obtain sentences from synthetic data that can
improve the model, even if the sentences used for adaptation are an artificial version of the same
sentences used to construct the general model.

In addition, we have seen that performing the adaptation online, extracting just the necessary
monolingual target-language sentences (using an approximated translation of the test set as seed)
and back-translating them afterwards, is a reasonable approach that can even perform better than
selecting directly from synthetic sentences.

In the future, we want to further extend this research and explore the effects on the perfor-
mance of combining both authentic and synthetic data. In addition, we are interested in exploring
whether the results observed in this paper are the same when using other language pairs or other
configurations of INR and FDA [23,24].
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11. Biçici, E., Yuret, D.: Instance selection for machine translation using feature decay algorithms. In:
Proceedings of the Sixth Workshop on Statistical Machine Translation, Edinburgh, Scotland (2011)
272–283

12. Poncelas, A., Shterionov, D., Way, A., de Buy Wenniger, G.M., Passban, P.: Investigating backtransla-
tion in neural machine translation. In: 21st Annual Conference of the European Association for Machine
Translation, Alacant, Spain (2018) 249–258

13. Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P., Logacheva,
V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., Turchi, M.: Findings of the 2015 Workshop
on Statistical Machine Translation. In: Proceedings of the Tenth Workshop on Statistical Machine
Translation, Lisboa, Portugal (2015) 1–46

14. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Volume 1., Berlin, Germany (2016) 1715–1725

15. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: Opennmt: Open-source toolkit for neural
machine translation. In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics-System Demonstrations, Vancouver, Canada (2017) 67–72

16. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine
translation. In: Proceedings of 40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA (2002) 311–318

17. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with
targeted human annotation. In: Proceedings of the 7th Conference of the Association for Machine
Translation in the Americas, Cambridge, Massachusetts, USA (2006) 223–231

18. Banerjee, S., Lavie, A.: Meteor: An automatic metric for MT evaluation with improved correlation with
human judgments. In: Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures
for machine translation and/or summarization, Ann Arbor, Michigan (2005) 65–72
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