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Abstract. Automatic recognition of human emotions is a relatively new
field and is attracting significant attention in research and development
areas because of the major contribution it could make to real appli-
cations. Previously, several studies reported speech emotion recognition
using acted emotional corpus. For real world applications, however, spon-
taneous corpora should be used in recognizing human emotions from
speech. This study focuses on speech emotion recognition using the FAU
Aibo spontaneous children’s corpus. A method based on the integration
of feed-forward deep neural networks (DNN) and the i-vector paradigm
is proposed, and another method based on deep convolutional neural net-
works (DCNN) for feature extraction and extremely randomized trees as
classifier is presented. For the classification of five emotions using bal-
anced data, the proposed methods showed unweighted average recalls
(UAR) of 61.1% and 59.2%, respectively. These results are very promis-
ing showing the effectiveness of the proposed methods in speech emotion
recognition. The two proposed methods based on deep learning (DL)
were compared to a support vector machines (SVM) based method and
they demonstrated superior performance.

Keywords: Speech emotion recognition, spontaneous corpus, deep neural net-
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1 Introduction

Emotion recognition plays an important role in human-machine communica-
tion [1]. Emotion recognition can be used in human-robot communication, when
robots communicate with humans in accord with the detected human emotions,
and also has an important role to play in call centers in detecting a caller’s emo-
tional state in cases of emergency (e.g., hospitals, police stations), or to identify
the level of the customer’s satisfaction (i.e., providing feedback). In the current
study, emotion recognition based on speech is experimentally investigated.



Previous studies reported automatic speech emotion recognition using Gaus-
sian mixture models (GMMs) [2,3], hidden Markov models (HMM) [4], support
vector machines (SVM) [5], neural networks (NN) [6], and DNN [7,8]. In [9], a
study based on concatenated i-vectors is reported. Audiovisual emotion recog-
nition is presented in [10].

Previously, i-vectors were used in speech emotion recognition [11]. However,
only a very few studies reported speech emotion recognition using i-vectors inte-
grated with DNN [12]. Furthermore, to our knowledge the integration of i-vectors
and DL for speech emotion recognition when limited data are available has not
been investigated exhaustively so far and, therefore, the research area still re-
mains open. Additionally, in the current study the FAU Aibo [13] state-of-the-
art spontaneous children’s emotional corpus is used for the classification of five
emotions based on DNN and i-vectors. Another method is proposed that uses
DCNN [14,15] to extract informative features, which are then used by extremely
randomized trees [16] for emotion recognition. The extremely randomized trees
classifier is similar to the random forest classifier [17], but with randomized tree
splitting. The motivation for using extremely randomized trees lies in previous
observations showing their effectiveness in the case of a small number of features,
and also because of the computational efficiency.

The proposed methods based on DL are compared with a baseline classi-
fication approach. In the baseline method, i-vectors and SVM are being used.
To further increase temporal information in the feature vectors, in the current
study, shifted delta cepstral (SDC) coefficients [18,19] were also used along with
the well-known mel-frequency cepstral coefficients (MFCC) [20].

2 Methods

2.1 Data

The FAU Aibo corpus consists of 9 hours of German speech of 51 children be-
tween the ages of 10 and 13 interacting with Sony’s pet robot Aibo. Spontaneous,
emotionally colored children’s speech was recorded using a close-talking micro-
phone. The data was annotated in relation to 11 emotion categories by five
human labelers on a word level. In the current study, the FAU Aibo data are
used for classification of the emotional states of angry, emphatic, joyful, neutral,
and rest. To use balanced training and test data, 590 training utterances and
299 test utterances randomly selected from each emotion were used.

2.2 Feature selection

MFCC features are used in the experiments. MFCCs are very commonly used
features in speech recognition, speaker recognition, emotion recognition, and
language identification. Specifically, in the current study, 12 MFCCs plus energy
are extracted every 10 ms using a window length of 20 ms.

SDC coefficients have been successfully used in language recognition. In the
current study, the use of SDC features in speech emotion recognition is also



Fig. 1: Computation of SDC coefficients using MFCC and delta MFCC features.

experimentally investigated. The motivation for using SDC is to increase the
temporal information in the feature vectors, which consist of frame-level fea-
tures with limited temporal information. The SDC features are obtained by con-
catenating delta cepstral features across multiple frames. The SDC features are
described by four parameters, N, d, P and k, where N is the number of cepstral
coefficients computed at each frame, d represents the time advance and delay
for the delta computation, k is the number of blocks whose delta coefficients are
concatenated to form the final feature vector, and P is the time shift between
consecutive blocks. Accordingly, kN parameters are used for each SDC feature
vector, as compared with 2N for conventional cepstral and delta-cepstral feature
vectors. The SDC is calculated as follows:

∆c(t+ iP ) = c(t+ iP + d)− c(t+ iP − d) (1)

The final vector at time t is given by the concatenation of all ∆c(t+ iP ) for all
0 ≤ i < k − 1, where c(t) is the original feature value at time t. In the current
study, the feature vectors with static MFCC features and SDC coefficients are
of length 112. The concatenated MFCC and SDC features are used as input
when using the DCNN with extremely randomized trees and conventional CNN
classifiers. In the case of using DNN and SVM, the MFCC and SDC features
are used to construct i-vectors used in classification. Figure 1 illustrates the
extraction of SDC features.

2.3 The i-vector paradigm

A widely used classification approach in speaker recognition is based on GMMs
with universal background models (UBM). In this approach, each speaker model
is created by adapting the UBM using maximum a posteriori (MAP) adapta-
tion. A GMM supervector is constructed by concatenating the means of the
adapted models. As in speaker recognition, GMM supervectors can also be used
for emotion classification.

The main disadvantage of GMM supervectors, however, is the high dimen-
sionality, which imposes high computational and memory costs. In the i-vector



paradigm, the limitations of high dimensional supervectors (i.e., concatenation
of the means of GMMs) are overcome by modeling the variability contained in
the supervectors with a small set of factors. Considering speech emotion classi-
fication, an input utterance can be modeled as:

M = m+Tw (2)

where M is the emotion-dependent supervector, m is the emotion-independent
supervector, T is the total variability matrix, and w is the i-vector. Both the
total variability matrix and emotion-independent supervector are estimated from
the complete set of training data.

2.4 Classification approaches

Deep Neural Networks DL [21] is behind several of the most recent break-
throughs in computer vision, speech recognition, and agents that achieved human-
level performance in several games such as go, poker etc. A DNN is a feed-forward
neural network with more than one hidden layer. The units (i.e., neurons) of each
hidden layer take all outputs of the lower layer and pass them through an acti-
vation function. In the current study, three hidden layers with 64 units and the
ReLu activation function are used. On top, a Softmax layer with five classes was
added. The number of batches was set to 512, and 500 epochs were used.

Convolutional Neural Networks A CNN is a special variant of the con-
ventional network, which introduces a special network structure consisting of
alternating convolution and pooling layers. CNN have been successfully applied
to sentence classification [22], image classification [23], facial expression recogni-
tion [24], and in speech emotion recognition [25]. Furthermore, in [26] bottleneck
features extracted from CNN are used for robust language identification.

In this paper, DCNN for learning informative features from the signal that
is then used for emotion classification is investigated. The MFCC and SDC
features are calculated using overlapping windows with a length of 20 ms. This
generates a multidimensional time-series that represent the data for each session.
The proposed method is a simplified version of the method recently proposed
in [27] for activity recognition using mobile sensors.

The proposed classifier consists of a DCNN followed by extremely random-
ized trees instead of the standard fully connected classifier. The motivation for
using extremely randomized trees lies in previous observations showing their ef-
fectiveness in the case of a small number of features. The network architecture is
shown in Figure 2, and consists of a series of five blocks, each of which consists
of two convolutional layers (64 5 × 5) followed by a max-pooling layer (2 × 2).
Outputs from the last three blocks are then combined and flattened to repre-
sent the learned features. Training of the classifier proceeds in three stages as
shown in the Figure 3: Network training, feature selection, and tree training.
During network training, the DCNN is trained with predefined windows of 21
feature MFCC/SDC blocks (21×112 features). Network training consists of two



Fig. 2: The architecture of the deep feature extractor along with the classifier
used during feature learning.

sub-stages: First, the network is concatenated with its inverse to form an auto-
encoder that is trained in unsupervised mode using all data in the training set
and without the labels (i.e., pre-training stage). Second, three fully connected
layers are attached to the output of the network, and the whole combined ar-
chitecture is trained as a classifier using the labeled training set. These fully
connected layers are then removed, and the output of the neural network (i.e.,
deep feature extractor) represents the learned features. Every hidden layer is
an optimized classifier, and an optimized classifier is a useful feature extractor
because the output is discriminative.

The second training stage (i.e., feature selection) involves selecting a few of
the outputs from the deep feature extractor to be used in the final classification.
Each feature (i.e., neuronal output i) is assigned a total quality (Q (i)) accord-
ing to Equation 3, where Īj (i) is z-score normalized feature importance (Ij (i))
according to a base feature selection method.

Q (i) =

nf∑

j=0

wj Īj (i) , (3)

In the current study, three base selectors are utilized: randomized logistic
regression [28], linear SVMs with L1 penalty, and extremely randomized trees.
Random linear regression (RLR) estimates feature importance by randomly se-
lecting subsets of training samples and fitting them using a L1 sparsity inducing
penalty that is scaled for a random set of coefficients. The features that ap-
pear repeatedly in such selections (i.e., with high coefficients) are assumed to be
more important and are given higher scores. The second base extractor uses a
linear SVM with an L1 penalty to fit the data and then select the features that
have nonzero coefficients, or coefficients under a given threshold, from the fitted
model. The third feature selector employs extremely randomized trees. During
fitting of decision trees, features that appear at lower depths are generally more
important. By fitting several such trees, feature importance can be estimated
as the average depth of each feature in the trees. Feature selection uses n-fold
cross validation to select an appropriate number of neurons to retain in the final



Fig. 3: The proposed training process showing the three stages of training and
the output of each stage.

Table 1: Equal error rates (EER) for individual emotions when using three dif-
ferent classifiers.

Classifier Angry Emphatic Joyful Neutral Rest Average

DNN 20.1 19.8 16.4 21.1 29.8 21.4

DCNN 24.1 24.7 23.7 30.4 29.4 26.5
+

randomized trees

SVM 23.7 27.3 20.4 30.4 41.5 28.7

(fast) feature extractor (Figure 3). For this study, the features (outputs) whose
quality (Qi) exceeds the median value of qualities are retained

Given the selected features from the previous step, an extremely randomized
tree classifier is then trained using the labeled data set (i.e., tree training stage).

Note that the approach described above allows a classification decision to be
generated for each of the 21 MFCC/SDC blocks. To generate a single emotion
prediction for each test sample, the outputs of the classifier need to be combined.
One possibility is to use a recurrent neural network (RNN), an LSTM, or HMM
to perform this aggregation. Nevertheless, in this study, the simplest voting
aggregator, in which the label of the test file is the mode of the labels of all its
data, is used.

3 Results

In the current study, the equal error rate (EER) and the UAR are used as
evaluation measures. The UAR is defined as the mean value of the recall for
each class. In addition, in the current study, the detection error tradeoff (DET)
graphs are also shown.

Table 1 shows the EERs when using the three classifiers. As shown, by using
DNN along with i-vectors, the lowest EER is obtained. Specifically, when using
DNN, the EER was 21.4%. The second lowest EER was obtained using DCNN
with extremely randomized tress. In this case, a 26.5% EER was obtained. Using
SVM, the EER was 28.7%. The results also show, that joyful, emphatic, and
angry emotions show the lowest EERs. A possible reason may be the higher



Table 2: Confusion matrix of five emotions recognition when using DNN with
i-vectors.

Angry Emphatic Joyful Neutral Rest

Angry 63.5 14.4 6.7 5.0 10.4
Emphatic 15.1 63.9 0.3 14.3 6.4
Joyful 3.7 2.3 68.9 4.4 20.7
Neutral 3.3 14.4 6.4 60.2 15.7
Rest 12.3 9.0 17.1 12.4 49.2

Table 3: Confusion matrix of five emotions recognition when using DCNN and
extremely randomized trees.

Angry Emphatic Joyful Neutral Rest

Angry 65.2 1.7 2.7 0.3 30.1
Emphatic 13.7 61.2 2.0 0 23.1
Joyful 4.2 2.2 61.3 0 32.3
Neutral 8.7 9.4 1.0 43.8 37.1
Rest 16.8 10.5 8.7 5.3 58.7

Table 4: Confusion matrix of five emotions recognition when using conventional
CNN.

Angry Emphatic Joyful Neutral Rest

Angry 51.5 15.1 11.4 10.0 12.0
Emphatic 10.7 53.8 14.7 12.7 8.1
Joyful 13.4 12.0 51.8 12.0 10.8
Neutral 11.7 13.4 12.4 52.5 10.0
Rest 13.7 8.0 16.4 9.4 52.5

Table 5: Confusion matrix of five emotions recognition when using SVM.
Angry Emphatic Joyful Neutral Rest

Angry 55.2 15.7 6.0 7.0 16.1
Emphatic 16.7 44.5 3.3 17.1 18.4
Joyful 3.3 2.7 62.2 4.7 27.1
Neutral 7.7 12.4 13.6 35.5 30.8
Rest 11.4 9.4 18.7 14.0 46.5

emotional information included in these three emotions. On the other hand, the
highest EER were obtained in the case of neutral and rest emotions (i.e., less
emotional states).



The UAR when using DNN with i-vectors was 61.1%. This is a very promising
result and superior to other similar studies [29–31] that used different classifiers
and features with unbalanced data. The result also show that DNN and i-vectors
can be effectively integrated in speech emotion recognition even in the case
of limited training data. The second highest UAR was obtained in the case
of DCNN with extremely randomized trees. In this case, a 59.2% UAR was
achieved. When a fully-connected layer was used on top of the convolutional
layers (i.e., conventional CNN classifier) the UAR was 52.4%. This rate was
lower compared to the extremely randomized trees classifier with deep feature
extractor. Finally, when using SVM and i-vectors, a 48.8% UAR was achieved.
The results show that when using the two proposed methods based on DL, higher
UARs are achieved compared to the baseline approach.

Tables 2, 3, 4, and 5 show the confusion matrices. As shown, in the case of
DNN, the classification rates are comparable (with the exception of rest). The
joyful, emphatic, angry classes are recognized with the highest rates, and rest

is recognized with the lowest rate. In the case of using DCNN with extremely
randomized trees, the classes angry and joyful show the highest rates. When
using the conventional CNN, similar rates were obtained for all emotions. In the
case of SVM, joyful and angry are recognized with the highest accuracy. It can
be, therefore, concluded that the emotions angry and joyful are recognized with
the highest rates in most cases.

Figures 4, 5, and 6 show the DET curves of the five individual emotions
recognition. As shown, in all cases, superior performance was achieved for the
emotion joyful.

Figure 7 shows the overall DET curves for the three classifiers. The figure
clearly demonstrates that by using the two proposed methods based on DL,
the highest performance is achieved. More specifically, the highest performance
is obtained when using DNN and i-vectors. Note that above 30% FPR, SVM
shows superior performance compared to DCNN with extremely randomized
trees. The overall EER, however, is lower in the case of DCNN with extremely
randomized trees compared to SVM.

4 Conclusion

The current paper focused on speech emotion recognition based on deep learning
and using the state-of-the-art FAU Aibo emotion corpus of children’s speech.
The proposed method based on DNN and i-vectors achieved a 61.1% UAR. This
result is very promising and superior to the results obtained using the same
data. The results also show that i-vectors and DNN can be efficiently used in
speech emotion recognition, even in the case of very limited training data. The
UAR when using DCNN with extremely randomized trees was 59.2%. The two
proposed methods were compared to a baseline SVM based classification scheme,
and they showed superior performance. Currently, speech emotion recognition
using the proposed methods and the FAU Aibo data in noisy and reverberant
environments is being investigated.



Fig. 4: DET curves of speech emotion recognition using DNN.
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