
A study of text representations for Hate Speech
Detection ?

Chrysoula Themeli1, George Giannakopoulos2, and Nikiforos Pittaras1,2

1 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens

{cthemeli, npittaras}@di.uoa.gr
2 NCSR Demokritos, Athens, Greece

{ggianna, pittarasnikif}@iit.demokritos.gr

Abstract. The pervasiveness of the Internet and social media have en-
abled the rapid and anonymous spread of Hate Speech content on mi-
croblogging platforms such as Twitter. Current EU and US legislation
against hateful language, in conjunction with the large amount of data
produced in these platforms has led to automatic tools being a neces-
sary component of the Hate Speech detection task and pipeline. In this
study, we examine the performance of several, diverse text representa-
tion techniques paired with multiple classification algorithms, on the
automatic Hate Speech detection and abusive language discrimination
task. We perform an experimental evaluation on binary and multiclass
datasets, paired with significance testing. Our results show that sim-
ple hate-keyword frequency features (BoW) work best, followed by pre-
trained word embeddings (GLoVe) as well as N-gram graphs (NGGs): a
graph-based representation which proved to produce efficient, very low-
dimensional but rich features for this task. A combination of these rep-
resentations paired with Logistic Regression or 3-layer neural network
classifiers achieved the best detection performance, in terms of micro
and macro F-measure.

Keywords: hate speech · natural language processing · classification ·
social media

1 Introduction

Hate Speech is a common affliction in modern society. Nowadays, people can
come across Hate Speech content even more easily through social media plat-
forms, websites and forums containing user-created content. The increase of the
use of social media gives individuals the opportunity to easily spread hateful con-
tent and reach a number of people larger than ever before. On the other hand,
social media platforms like Facebook or Twitter want to both comply with leg-
islation against Hate Speech and improve user experience. Therefore, they need
to track and remove Hate Speech content from their websites efficiently.

? Supported by NCSR Demokritos, and the Department of Informatics and Telecom-
munications, National and Kapodistrian University of Athens



2 Ch. Themeli et al.

Due to the large amount of data transmitted through these platforms, dele-
gating such a task to humans is extremely inefficient. A usual compromise is to
rely on user reports in order to review only the reported posts and comments.
This is also ineffective, since it relies on the users’ subjectivity and trustwor-
thiness, as well as their ability to thoroughly track and flag such content. Due
to all of the above, the development of automated tools to detect Hate Speech
content is deemed necessary. The goal of this work is: (i) to study different text
representations and classification algorithms in the task of Hate Speech detec-
tion; (ii) evaluate whether the n-gram graphs representation [10] can constitute
a rich/deep feature set (as e.g. in [20]) for the given task.

The structure of the paper is as follows. In section 2 we define the hate speech
detection problem, while in section 3 we discuss related work. We overview our
study approach and elaborate on the proposed method in section 4. We then
experimentally evaluate the performance of different approaches in Section 5,
concluding the paper in Section 6, by summarizing the findings and proposing
future work.

2 Problem Definition

The first step to Hate Speech detection is to provide a clear and concise definition
of Hate Speech. This is important especially during the manual compilation of
Hate Speech detection datasets, where human annotators are involved. In their
work, the authors of [13] have asked three students of different race and same age
and gender to annotate whether a tweet contained Hate Speech or not, as well as
the degree of its offensiveness. The agreement was only 33%, showing that Hate
Speech detection can be highly subjective and dependent on the educational
and/or cultural background of the annotator. Thus, an unambiguous definition
is necessary to eliminate any such personal bias in the annotation process.

Usually, Hate Speech is associated with insults or threats. Following the def-
inition provided by [3], “it covers all forms of expressions that spread, incite,
promote or justify racial hatred, xenophobia, antisemitism or other forms of
hatred based on intolerance”. Moreover, it can be “insulting, degrading, defam-
ing, negatively stereotyping or inciting hatred, discrimination or violence against
people in virtue of their race, ethnicity, nationality, religion, sexual orientation,
disability, gender identity”. However, we cannot disregard that Hate Speech can
be also expressed by statements promoting superiority of one group of people
against another, or by expressing stereotypes against a group of people.

The goal of a Hate Speech Detection model is, given an input text T , to
output True, if T contains Hate Speech and False otherwise. Modeling the
task as a binary classification problem, the detector is built by learning from a
training set and is subsequently evaluated on unseen data. Specifically, the input
is transformed to a machine-readable format via a text representation method,
which ideally captures and retains informative characteristics in the input text.
The representation data is fed to a machine learning algorithm that assigns the
input to one of the two classes, with a certain confidence. During the training



A study of text representations for Hate Speech Detection 3

phase, this discrimination information is used to construct the classifier. The
classifier is then applied on data not encountered during training, in order to
measure its generalization ability.

In this study, we focus on user-generated texts from social media platforms,
specifically Twitter posts. We evaluate the performance of several established
text representations (e.g. Bag of words, word embeddings) and classification
algorithms. We also investigate the contribution of the graph-based the n-gram
graph features to the Hate Speech classification process. Moreover, we examine
whether a combination of deep features (such as n-gram graphs) and shallow
features (such as Bag of Words) can provide top performance in the Hate Speech
detection task.

3 Related Work

In this section, we provide a short review of the related work, not only for Hate
Speech detection, but for similar tasks as well. Examples of such tasks can be
found in [18] where the authors aim to identify which users express Hate Speech
more often, while [32] detect and delete hateful content in a comment, making
sure what is left has correct syntax. The latter is a demanding task which requires
the precise identification of grammatical relations and typed dependencies among
words of a sentence. Their proposed method results have 90.94% agreement with
the manual filtering results.

Automatic Hate Speech detection is usually modeled as a Binary Classifica-
tion. However, multi-class classification can be applied to identify the specific
kind of Hate Speech (e.g. racism, sexism etc) [1, 21]. One other useful task is the
detection of the specific words or phrases that are offensive or promote hatred,
investigated in [28].

3.1 Text representations for Hate Speech

In this work we focus on representations, i.e. the mapping of written human
language into a collection of useful features in a form that is understandable
by a computer and, by extension, a Hate Speech Detection model. Below we
overview a number of different representations used within this domain.

A very popular representation approach is the Bag of Words (BOW) [13, 2, 1]
model, a Vector Space Model extensively used in Natural Language Processing
and document classification. In BOW, the text is segmented to words, followed
by the construction of a histogram of (possible weighted) word frequencies. Since
BOW discards word order, syntactic, semantic and grammatical information, it
is commonly used as a baseline in NLP tasks. An extension of the BOW is the
Bag of N-grams [19, 13, 18, 5, 29], which replaces the unit of interest in BOW
from words to n contiguous tokens. A token is usually a word or a character in
the text, giving rise to word n-gram and character n-gram models. Due to the
contiguity consideration, n-gram bags retain local spacial and order information.



4 Ch. Themeli et al.

The authors in [5] claim that lexicon detection methods alone are inade-
quate in distinguishing between Hate Speech and Offensive Language, counter-
proposing n-gram bags with TF-IDF weighting along with a sentiment lexicon,
classified with L2 regularized Logistic Regression [16]. On the other hand, [1] use
character n-grams, BOW and TF-IDF features as a baseline, proposing word em-
beddings from GloVe 3. In [21] the authors use character and word CNNs as well
a hybrid CNN model to classify sexist and racist Twitter content. They com-
pare multi-class detection with a coarse-to-fine two-step classification process,
achieving similar results with both approaches. There is also a variety of other
features used such as word or paragraph embeddings ([7], [28], [1]), LDA and
Brown Clustering ([24], [31], [28], [29]), sentiment analysis([12], [5]), lexicons and
dictionaries ([12], [26], [6] etc) and POS tags([19], [32], [24] etc).

3.2 Classification approaches

Regarding classification algorithms, SVM [4], Logistic Regression (LR) and Naive
Bayes (NB) are the most widely used (e.g. [28, 24, 5, 7] etc). In [30] and [31], the
authors use a bootstrapping approach to aid the training process via data gener-
ation. This approach was used as a semi-supervised learning process to generate
additional data automatically or create hatred lexical resources. The authors
of [31] use the Map-Reduce framework in Hadoop to collect tweets automati-
cally from users that are known to use offensive language, and a bootstrapping
method to extract topics from tweets.

Other algorithms used are Decision Trees and Random Forests (RF) ([5, 2,
31]), while [1] and [6] have used Deep Learning approaches via LSTM networks.
Specifically, [1] use CNN, LSTM and FastText, i.e. a model that is represented
by average word vectors similar to BOW, which are updated through backprop-
agation. The LSTM model achieved the best performance with 0.93 F-Measure,
used to train a GBDT (Gradient Boosted Decision Trees) classifier. In [5], the
authors use several classification algorithms such as regularized LR, NB, Deci-
sion Trees, RF and Linear SVM, with L2-regularized LR outperforming other
approaches in terms of F-score.

For more information, the survey of [25] provides a detailed analysis of de-
tector components used for Hate Speech detection and similar tasks.

4 Study and Proposed Method

In this section we will describe the text representations and classification com-
ponents used in our implementations of a Hate Speech Detection pipeline. We
have used a variety of different text representations, i.e. bag of words, embed-
dings, n-grams and n-gram graphs and tested these representations with multiple
classification algorithms. We have implemented the feature extraction in Java

3 https://nlp.stanford.edu/projects/glove/



A study of text representations for Hate Speech Detection 5

and used both Weka and scikit-learn (sklearn) to implement classification algo-
rithms. For artificial neural networks (ANNs), we have used sklearn and Keras
frameworks. Our model can be found in our GitHub repository 4.

4.1 Text representations

In order to discard noise and useless artifacts we apply standard preprocess-
ing to each tweet. First, we remove all URLs, mentions (e.g. @username), RT
(Retweets) and hashtags (e.g. words starting with #), as well as punctuation,
focusing on the text portion of the tweet. Second, we convert tweets to lowercase
and remove common English stopwords using a predefined collection 5.

After preprocessing, we apply a variety of representations, starting with the
Bag of Words (BOW) model. This representation results in a high dimensional
vector, containing all encountered words, requiring a significant amount of time
in order to process each text. In order to reduce time and space complexity, we
limit the number of words of interest to keywords from HateBase 6 [5].

Moreover, we have used additional bag models, with respect to word and
character n-grams. In order to guarantee a common bag feature vector dimension
across texts, we pre-compute all n-grams that appear in the dataset, resulting in
a sparse and high-dimensional vector. Similarly to the BOW features, in order
to reduce time and space complexity, it is necessary to reduce the vector space.
Therefore, we keep only the 100 most frequent n-grams features, discarding the
rest. Unfortunately, as we will illustrate in the experiments, this decision resulted
in highly sparse vectors and, thus, reduced the efficiency of those features.

Furthermore, we have used GloVe word embeddings [22] to represent the
words of each tweet, mapping each word to a 50-dimensional real vector and ar-
riving at a single tweet vector representation via mean averaging. Words missing
from the GloVe mapping were discarded.

Expanding the use of n-grams, we examine wether n-gram graphs (NGGs)
[9, 11] can have a significant contribution in detecting Hate Speech. NGGs are a
graph-based text representation method that captures both frequency and local
context information from text n-grams (as opposed to frequency-only statistics
that bag models aggregate). This enables NGGs to differentiate between mor-
phologically similar but semantically different words, since the information kept
is not only the specific n-gram but also its context (neighboring n-grams). The
graph is constructed with n-grams as nodes and local co-occurence information
embedded in the edge weights, with comparisons defined via graph-based simi-
larity measures [9]. NGGs can operate with word or character n-grams – in this
work we employ the latter version, which has been known to be resilient to social
media text noise [20, 11].

During training, we construct a representative category graph (RCG) for
each category in the problem (e.g. “Hate Speech” or “Clean”), aggregating all

4 https://github.com/cthem/hate-speech-detection
5 https://github.com/igorbrigadir/stopwords
6 https://github.com/t-davidson/hate-speech-and-offensive-language



6 Ch. Themeli et al.

training instances per category to a single NGG. We then compare the NGG
of each instance to each RCG, extracting a score expressing the degree that
the instance belongs that class – for this, we use the NVS measure [9], which
produces a similarity score between the instance and category NGGs. After this
process completes, we end up with similarity-based, n-dimensional model vector
features for each instance – where n is the number of possible classes. We note
that we use 90% of the training instances to build the RCGs, in order to avoid
overfitting of our model: in short, using all training instances would result in very
high instance-RCG similarities during training. Since we use the resulting model
vectors as inputs to a classification phase in the next step, the above approach
would introduce extreme overfit to the classifier, biasing it towards expecting
perfect similarity scores in cases of an instance belonging to a class, a scenario
which of course rarely – if ever – happens with real world data.

In addition, we produce sentiment, syntax and spelling features. Sentiment
analysis could be a meaningful feature, since hatred is related with a negative
polarity. For sentiment and syntax feature extraction we use the Stanford NLP
Parser 7. This tool performs sentiment extraction of the longest phrase tracked in
the input and additionally can be used to provide a syntactic score with syntax
trees, corresponding the best attained score for the entire tweet.

Finally, a spelling feature was constructed to examine whether Hate Speech is
correlated to the user’s proficiency in writing. We have used an English dictionary
to collect all English words with correct spelling and, then, for each word in a
tweet, we have calculated its edit distance from each word in the dictionary,
keeping the smallest value (i.e. the distance from the best match). The final
feature kept was the average edit distance for the entire post, with its value being
close to 0 for tweets with the majority of words correctly spelled. At the end of
this process, we obtain a 3-dimensional vector, each coordinate corresponding to
the sentiment, syntax and spelling scores of the text.

4.2 Classification Methods

Generated features are fed to a classifier that decides the presence of Hate Speech
content. We use a variety of classification models, as outlined below.

Naive Bayes (NB) [23] is a simple probabilistic classifier, based on Bayesian
statistics. NB makes the strong assumption that instance features are indepen-
dent from one another, but yields performance comparable to far more compli-
cated classifiers – this is why it commonly serves as baseline for various machine
learning tasks [14]. Additionally, the independence assumption simplifies the
learning process, reducing it to the model learning the attributes separately,
vastly reducing time complexity on large datasets.

Logistic Regression (LR) [17] is another statistical model commonly applied
as a baseline in binary classification tasks. It produces a prediction via a linear
combination of the input with a set of weights, passed through a logistic func-
tion which squeezes scores in the range between 0 and 1, i.e. thus producing

7 https://nlp.stanford.edu/software/lex-parser.html



A study of text representations for Hate Speech Detection 7

binary classification labels. Training the model involves discovering optimal val-
ues for the weights, usually acquired through a maximum likelihood estimation
optimization process.

The K-Nearest Neighbor (KNN) classifier [8] is another popular technique
applied to classification. It is a lazy and non-parametric method; no explicit
training and generalization is performed prior to a query to the classification
system, and no assumption is made pertaining to the probability distribution
that the data follows. Inference requires a defined distance measure for comparing
two instances, via which closest neighbors are extracted. The labels of these
neighbors determine, through voting, the predicted label of a given instance.

The Random Forest (RF) [15] is an ensemble learning technique used for both
classification and regression tasks. It combines multiple decision trees during the
training phase by bootstrap-aggregated ensemble learning, aiming to alleviate
noise and overfitting by incorporating multiple weak learners. Compared to de-
cision trees, RF produce a split when a subset of the best predictors is randomly
selected from the ensemble.

Artificial Neural Networks (ANNs) are computational graphs inspired by the
biological nervous systems. They are composed of a large number of highly inter-
connected neurons, usually organized in layers in a feed-forward directed acyclic
graph. Similarly to a LR unit, neurons compute the linear combination of their
input (including a bias term) and pass the result through a non-linear activation
function. Aggregated into an ANN, each neuron computes a specific feature from
its input, as dictated by the values of the weights and bias. ANNs are trained
with respect to a loss function, which defines an error gradient by which all pa-
rameters of the ANN are shifted. With each optimization step, the model moves
towards an optimum parameter configuration. The gradient with respect to all
network parameters is computed by the back-propagation method.In our case,
we have used an ANN composed of 3 hidden layers with dropout regularization.

5 Experiments and Results

In this section, we present the experimental setting used to answer the following:

– Which features have the best performance?

– Does feature combination improve performance?

– Do NGGs have significant / comparable performance to BOW or word em-
beddings despite being represented by low dimensional vectors?

– Are there classifiers performing statistically significantly better than others?
Is the selection of features or classifiers more significant, when determining
the pipeline for Hate Speech detection?

In the following paragraphs, we elaborate on the the datasets utilized, present
experimental and statistical significance results, as well as discuss of our findings.



8 Ch. Themeli et al.

5.1 Datasets and Experimental Setup

We use the datasets provided by [30] 8 and [5] 9. We will refer to the first dataset
as RS (racism and sexism detection) and to the second as HSOL (distinguish
Hate Speech from Offensive Language). In both works, the authors perform
a multi-class classification task against the corpora. In [30], their goal is to
distinguish different kinds of Hate Speech, i.e. racism and sexism, and therefore
the possible classes in RS are Racist, Sexist or None. In [5], the annotated
classes are Hate Speech, Offensive Language or Clean.

Given the multi-class nature of these datasets, we combine them into a single
dataset, keeping only instances labeled Hate Speech and Clean in the original.
We use the combined (RS + HSOL) dataset to evaluate our model implementa-
tions on the binary classification task. Furthermore, we run multi-class experi-
ments on the original datasets for completeness, the results of which are omitted
due to space limitations, but are available upon request.

We perform three stages of experiments. First, we run a preliminary evalua-
tion on each feature separately, to assess its performance. Secondly, we evaluate
the performance of concatenated feature vectors, in three different combinations:
1) the top individually performing features by a significant margin (best), 2)
all features all and 3) vector-based features (vector), i.e. excluding NGGs. Via
the latter two scenarios, we investigate whether NGGs can achieve comparable
performance to vector-based features of much higher dimensionality.

Given the imbalanced dataset used (24463 Hate Speech and 14548 clean
samples), we report performance in both macro and micro F-measure. Finally, we
evaluate (with statistical significance testing) the performance difference between
run components, through a series of ANOVA and Tukey HSD test evaluations.

5.2 Results

Here we provide the main experimental results of our described in the previ-
ous section, presented in micro/macro F-measure scores. More detailed results,
including multi-class classification are omitted due to space limitations but are
available upon request.

Firstly, to answer the question on the value of different feature types, we
perform individual runs which designate BOW, glove embeddings and NGG
as the top performers, with the remaining features (namely sentiment, spelling
/ syntax analysis and n-grams) performing significantly worse. All approaches
however surpass a baseline performance in terms of a naive majority-class clas-
sifier (scoring 0.382/0.473, in terms of macro and micro F-measure respectively)
and are described below. Sentiment, spelling and syntax features proved to be
insufficient information sources to the Hate Speech detection classifiers when
used separately – not surprisingly, since they produce one-dimensional features.
The best performers are syntax with NNs in terms of micro F-measure (0.633)

8 https://github.com/ZeerakW/hatespeech
9 https://github.com/t-davidson/hate-speech-and-offensive-language



A study of text representations for Hate Speech Detection 9

and spelling with NNs in terms of macro F-measure (0.566). In contrast n-gram
graph similarity-based features perform close to the best performing BOW con-
figuration (cf. Table 1), having just one additional dimension. This implies that
appropriate, deep / rich features can still offer significant information, despite
the low dimensionality. NGG-based features appear to have this quality, as il-
lustrated by the results. Finally, N-grams were severely affected by the top-100
token truncation. The best character n-gram model achieves macro/micro F-
Measure scores of 0.507/0.603 with NN classification and the best word n-gram
model 0.493/0.627 with KNN and NN classifiers.

The results of the top individually performing features, in terms of micro /
macro average F-Measure, are presented in the left half of table 1. Bold values
represent column-wise maxima, while underlined ones depict maxima in the left
column category (e.g. feature type, in this case). “NN ke” and “NN sk” rep-
resent the keras and sklearn neural network implementations, repsectively. We
can observe that the best performer is BOW with either LR or NNs, followed
by word embeddings with NN classification. NGGs have a slightly worse perfor-
mance, which can be attributed to the severely shorter (2D) feature vector it
utilizes. On the other hand, BOW features are 1000-dimensional vectors. Com-
pared to NGGs, this corresponds to a 500-fold dimension increase, with a 9.0%
micro F-measure performance gain.

Subsequently, we test the question on whether the combination of features
achieve a better performance than individual features. The results are illustrated
in the right half of Table 1. First, the best combination that involves NGG, BOW
and GloVe features is, not surprisingly, the top performer, with LR and NN-
sklearn obtaining the best performance. The all configuration follows with NB
achieving macro/micro F-scores of 0.795 and 0.792 respectively. This shows that
the additional features introduced significant amounts of noise, enough to reduce
performance by canceling out any potential information the extra features might
have provided. Finally, the vector combination achieves the worst performance:
0.787 and 0.783 in macro/micro F-measure. This is testament to the added value
NGGs contribute to the feature pool, reinforced by the individual scores of the
other vector-based approaches.

Apart from experiments in the binary Hate Speech classification on the com-
bined dataset, we have tested our classification models in multi-class classifi-
cation, using the original RS and HSOL datasets. In RS, our best score was
achieved with the all combination and the RF classifier with a micro F-Measure
of 0.696. For the HSOL dataset, we achieved a micro F-Measure of 0.855, using
the best feature combination and the LR classifier.

5.3 Significance testing

In table 2 we present ANOVA results with respect to feature extractors and
classifiers, under macro and micro F-measure scores. For both metrics, the selec-
tion of both features and classifiers is statistically significant with a confidence
level greater than 99.9%. We continue by performing a set of Tukey’s Honest
Significance Difference test experiments in table 3, depicting each statistically



10 Ch. Themeli et al.

Table 1. Average micro & macro F-Measure for NGG, BOW and GloVe features (left)
and the “best”, “vector” and “all” feature combinations (right).

feature classifier macrof microf combo classifiers macrof microf

NGG

KNN 0.712 0.736

best

KNN 0.810 0.820
LR 0.712 0.739 LR 0.819 0.831
NB 0.678 0.713 NB 0.632 0.667

NN ke 0.718 0.727 NN ke 0.807 0.819
NN sk 0.716 0.740 NN sk 0.819 0.831

RF 0.699 0.726 RF 0.734 0.759

BOW

KNN 0.787 0.763

all

KNN 0.497 0.569
LR 0.808 0.776 LR 0.760 0.772
NB 0.629 0.665 NB 0.795 0.792

NN ke 0.808 0.776 NN ke 0.537 0.629
NN sk 0.808 0.776 NN sk 0.664 0.678

RF 0.807 0.776 RF 0.700 0.731

glove

KNN 0.741 0.765

vector

KNN 0.497 0.569
LR 0.749 0.769 LR 0.745 0.756
NB 0.715 0.726 NB 0.787 0.783

NN ke 0.774 0.788 NN ke 0.592 0.640
NN sk 0.786 0.800 NN sk 0.669 0.675

RF 0.731 0.755 RF 0.727 0.742

different group as a letter. In the upper part we present results between feature
combination groups (“a” to “d”), where the best combination is significantly
different by the similar all and vector combinations by a large margin, as ex-
pected. The middle part compares individual features (groupped from “a” to
“g”), where GloVe, BoW and NGGs are assigned to neighbouring groups and
arise the most significant features, with the other approaches having a large sig-
nificance margin from them. Spelling and syntax features are grouped together,
as well as the n-gram approaches. Finally, the lower part of the table examines
classifier groups (“a” to “c”). Here LR leads the ranking, followed by groups
with the ANNs approaches, the NB and RF, and the KNN method.

Table 2. ANOVA results with repect to feature and classifier selection, in terms of
macro F-measure (left) and micro-Fmeasure (right).

parameter Pr(>F) (macrof) Pr(>F) (microf)

features < 2e-16 < 2e-16
classifiers 2.77e-05 8.65e-08

5.4 Discussion

The results and statistical tests on our work showcase the BOW, GloVe embed-
dings and the NGG model as the top performing feature-related configurations.



A study of text representations for Hate Speech Detection 11

BOW and GloVe score best in terms of micro and macro F-measure respectively,
with NGG close behind, despite the extreme dimensionality reduction incurred
by the model vector representation of graph similarities. The combination of the
top performing features improves the results over individual ones, with 0.831
micro F-Measure when employed on an LR classifier or NN-sklearn.

Table 3. Tukey’s HSD group test on micro F-Measure between feature combination
groups (top), individual features (middle) and classifiers (bottom).

config micro F-measure groups

best 0.787 a
all 0.695 cd
vector 0.693 d

glove 0.767 a
BoW 0.755 ab
NGG 0.730 bc
spelling 0.617 e
syntax 0.613 e
c-ngrams 0.574 f
w-ngrams 0.572 f
sentiment 0.500 g

LR 0.689 a
NN ke 0.670 ab
NN sk 0.668 ab
NB 0.661 bc
RF 0.655 bc
KNN 0.639 c

Regarding classification methods, the LR and ANN classifiers perform best
when used with our top performing features (separately or combined). Statistical
tests show that in both micro and macro F-Measure terms, both representation
and classification approaches have a significant role in the performance results.

Finally, we understand from our study that the contribution of NGGs as
a text representation is significant. NGGs do not use domain-specific knowl-
edge (unlike the BOW vectors which use HateBase keywords) nor require prior
training on large document collections (unlike word embeddings, which need
extensive unsupervised pre-training). In addition, the vector dimension of the
NGG-based approach is equal to the number of classes, as opposed to the 1000
and 50-dimensional BOW and embedding vectors, respectively. Despite this low
dimensional representation, our empirical evaluation shows that NGGs have a
significant contribution to detection performance. Therefore NGGs can be seen
as off-the-shelf rich features that encapsulate useful information in a low dimen-
sional representation, which helps achieve significant performance either when
used by itself or in feature combination approaches.



12 Ch. Themeli et al.

6 Conclusion and Future Work

In this study, we investigated different text representation techniques and clas-
sification algorithms, performing a large number of experimental evaluations on
the Hate Speech detection problem. We showed that n-gram graph-based fea-
tures constitute deep/rich features, with significant contribution to the Hate
Speech classification results.

In the future, we aim to better evaluate the contribution of word roles (e.g.
POS tags) and combine them with improved preprocessing, to avoid possible
noise in the related features. Concerning NGGs in Hate Speech detection, we
want to apply the findings from the work of [27] on NGG variations, to represent
short texts with only the important n-grams of the text (e.g. through a TF-IDF
filtering process and/or a named entity recognizer). The aim is to reduce the
complexity and size of the NGGs, while retaining all the useful information.
Another avenue of research, is the enrichment of deep features with statistical
pre-trained models (such as Latent Dirichlet Allocation) or semantic information
(e.g. from thesauri) to further improve performance.

References

1. Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for hate speech
detection in tweets. In: Proceedings of the 26th International Conference on World
Wide Web Companion. pp. 759–760. International World Wide Web Conferences
Steering Committee (2017)

2. Bourgonje, P., Moreno-Schneider, J., Srivastava, A., Rehm, G.: Automatic classifi-
cation of abusive language and personal attacks in various forms of online commu-
nication. In: International Conference of the German Society for Computational
Linguistics and Language Technology. pp. 180–191. Springer (2017)

3. Brown, A.: What is hate speech? part 1: The myth of hate. Law and Philosophy
36(4), 419–468 (2017)

4. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

5. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection
and the problem of offensive language. arXiv preprint arXiv:1703.04009 (2017)

6. Del Vigna12, F., Cimino23, A., Dell’Orletta, F., Petrocchi, M., Tesconi, M.: Hate
me, hate me not: Hate speech detection on facebook (2017)

7. Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati,
N.: Hate speech detection with comment embeddings. In: Proceedings of the 24th
international conference on world wide web. pp. 29–30. ACM (2015)

8. Fix, E., Hodges Jr, J.L.: Discriminatory analysis-nonparametric discrimination:
Small sample performance. Tech. rep., CALIFORNIA UNIV BERKELEY (1952)

9. Giannakopoulos, G.: Automatic Summarization from Multi-
ple Documents. Ph.D. thesis, University of the Aegean (2009),
http://www.iit.demokritos.gr/ ggianna/thesis.pdf

10. Giannakopoulos, G., Karkaletsis, V., Vouros, G.A.: Testing the use of n-gram
graphs in summarization sub-tasks. In: TAC (2008)



A study of text representations for Hate Speech Detection 13

11. Giannakopoulos, G., Mavridi, P., Paliouras, G., Papadakis, G., Tserpes, K.: Rep-
resentation models for text classification: a comparative analysis over three web
document types. In: Proceedings of the 2nd international conference on web intel-
ligence, mining and semantics. p. 13. ACM (2012)

12. Gitari, N.D., Zuping, Z., Damien, H., Long, J.: A lexicon-based approach for hate
speech detection. International Journal of Multimedia and Ubiquitous Engineering
10(4), 215–230 (2015)

13. Kwok, I., Wang, Y.: Locate the hate: Detecting tweets against blacks. In: AAAI
(2013)

14. Lewis, D.D.: Naive (bayes) at forty: The independence assumption in information
retrieval. In: European conference on machine learning. pp. 4–15. Springer (1998)

15. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R news
2(3), 18–22 (2002)

16. McCullagh, P., Nelder, J.A.: Generalized linear models, vol. 37. CRC press (1989)

17. Menard, S.W.: Applied logistic regression analysis. No. 04; e-book. (1995)

18. Mubarak, H., Darwish, K., Magdy, W.: Abusive language detection on arabic social
media. In: Proceedings of the First Workshop on Abusive Language Online. pp.
52–56 (2017)

19. Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., Chang, Y.: Abusive language
detection in online user content. In: Proceedings of the 25th international confer-
ence on world wide web. pp. 145–153. International World Wide Web Conferences
Steering Committee (2016)

20. Papadakis, G., Giannakopoulos, G., Paliouras, G.: Graph vs. bag representation
models for the topic classification of web documents. World Wide Web 19(5),
887–920 (2016)

21. Park, J.H., Fung, P.: One-step and two-step classification for abusive language
detection on twitter. arXiv preprint arXiv:1706.01206 (2017)

22. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

23. Russell, S., Norvig, P., Intelligence, A.: A modern approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs 25(27), 79–80 (1995)

24. Saleem, H.M., Dillon, K.P., Benesch, S., Ruths, D.: A web of hate: Tackling hateful
speech in online social spaces. arXiv preprint arXiv:1709.10159 (2017)

25. Schmidt, A., Wiegand, M.: A survey on hate speech detection using natural lan-
guage processing. In: Proceedings of the Fifth International Workshop on Natural
Language Processing for Social Media. pp. 1–10 (2017)

26. Silva, L.A., Mondal, M., Correa, D., Benevenuto, F., Weber, I.: Analyzing the
targets of hate in online social media. In: ICWSM. pp. 687–690 (2016)

27. Tsekouras, L., Varlamis, I., Giannakopoulos, G.: A graph-based text similarity
measure that employs named entity information. In: Proceedings of the Interna-
tional Conference Recent Advances in Natural Language Processing, RANLP 2017.
pp. 765–771 (2017)

28. Warner, W., Hirschberg, J.: Detecting hate speech on the world wide web. In:
Proceedings of the Second Workshop on Language in Social Media. pp. 19–26.
Association for Computational Linguistics (2012)

29. Waseem, Z.: Are you a racist or am i seeing things? annotator influence on hate
speech detection on twitter. In: Proceedings of the first workshop on NLP and
computational social science. pp. 138–142 (2016)



14 Ch. Themeli et al.

30. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? predictive features for
hate speech detection on twitter. In: Proceedings of the NAACL student research
workshop. pp. 88–93 (2016)

31. Xiang, G., Fan, B., Wang, L., Hong, J., Rose, C.: Detecting offensive tweets via
topical feature discovery over a large scale twitter corpus. In: Proceedings of the
21st ACM international conference on Information and knowledge management.
pp. 1980–1984. ACM (2012)

32. Xu, Z., Zhu, S.: Filtering offensive language in online communities using gram-
matical relations. In: Proceedings of the Seventh Annual Collaboration, Electronic
Messaging, Anti-Abuse and Spam Conference. pp. 1–10 (2010)


