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Abstract. This paper presents a suit of experiments carried out with different 

machine learning systems developed to learn how to find weak signals in news 

corpora. The task is particularly challenging as the weak signals are not marked 

at word or sentence level, but rather at document/paragraph level and while 

there is no explicit definition that strictly applies to them, people are very good 

at recognizing them. Purposely lacking strict annotation guidelines, a large 

news corpus was annotated via tacit knowledge and then we used a supervised 

learning technique to reproduce the weak signal label. We report a large 

improvement in weak signals recognition using deep learning over other 

approaches, useful for investors, entrepreneurs, economists, and normal users, 

to give them a clue on how to invest. 

Keywords: deep learning, weak signals, news corpora, statistics 

1   Introduction 

How would be it like going back in time and reading scientific predictions from 10 
years ago? Some of them would sound very strange, which supports once again the 
Old Danish proverb that “making predictions is hard, especially about the future”. 
However, sometimes, some predictions may prove quite accurate [Popescu & 
Strapparava, 2013; Gifu, 2015]. A subset of these are the result of corroborating 
small evidence existing in separate places for which the necessity to put them together 
was found by some visionary capable minds. Concisely, this paper is about building 
NLP (Natural Language Processing) systems to improve the probability for this type 
of predictions to be true. 

The need for detecting weak signals, defined as imprecise and early indicators of 
impending important trends or events, has been under focus in the last years. It 
becomes critical to realize what the next trends in economy will be. In science, 
making predictions almost equates to having a bright idea on how apparently 
disparate small achievements may be brought together to make something that is very 
promising.  

We present a methodology able to learn to discern between what may be vs. what is 
not a weak signal, and to retrieve and corroborate document that seems to amplify it.  

Initially we approach this problem as a supervised task. We compiled a relative 
large corpus of news from scientific journals, and we relied on a group of annotators 
to mark paragraphs in news from scientific journals, which may contain weak signals 
according to the annotators’ judgment. Then we run a series of learning algorithms to 



 

 

 

 

see the extent to which we could automatically identify what paragraph may contain 
weak signals. As it turned out that we can do it with a relatively good accuracy, we 
were wondering whether we could learn recognizing weak signals by reducing de-
pendency on annotated data. To reach this aim we used Google Ngrams Viewer to 
analyze the time distribution over certain topics we identified automatically from the 
corpus. We selected some of the topics described by an acceding ratio following a 
technology similar to the one presented in Popescu & Strapparava [2014] or 
Amarandei et al. [2017]. Our assumption is that the description of these topics at 
some point in time before they had a large impact was made by using weak signals. 
We automatically compiled a corpus from the time just before these topics became 
clearly important and we constructed word embedding for what appeared to be the 
common vocabulary in describing these topics. We trained a deep learning algorithm 
based on gradient descent and we implemented a LSTM (Long Short-Term Memory) 
neural network. Next, we tested these systems on a set of documents for which we 
knew whether they contained weak signals or not, thanks to the previous supervised 
experiment. The results showed that we could learn to make predictions in an 
unsupervised manner, based on unknown weak signals, obtaining an accuracy, which 
is close to the supervised one. This is the fundamental result reported in this paper. 

2   Related Work 

The literature on weak signals is not very large, as this field is about to emerge. A 

groundbreaking paper [Brynielsson, et al., 2012; Cohen et al., 2014] was looking 

mainly to weak signals for detecting deviational behavior to efficiently provide 

preemptive counter measures. The probabilistic model presented here is similar to the 

one used in language modelling (an estimation of posterior probability of certain class 

via chain formula). 

In [Wang et al., 2012] an automatic detection of crime using tweets is presented. 

They use LDA (Latent Dirichlet Allocation) to predict classes of similar words for 

topics related to violence.  

While we can gain a valuable insight from these papers, their scope is limited 

because there is a direct connection between the overt information existing in text and 

speaker’s intention.  

Another emerging field, diachronicity (i.e. the evolution of certain topics in mass 

media over time) is linked to detection of weak signals. We found useful the statistical 

tests presented for epoch detection in [Mihalcea & Nastase, 2012], or temporal 

dynamics in [Wang & McCallum, 2006; Wang et al., 2008; Gerrish and Blei, 2010]. 

In [Hastie et al., 2008; Mustafa, 2012] we found very useful insights from dealing 

with discriminative analysis and SVM (Support Vector Machine) respectively. In 

order to improve our results we had to understand how we could restrict further the 

objective function. In addition [Rocktaeschel, 2016], the principle of an attentive 

neural network is presented.  



 

 

 

 

3   Materials & Methods 

We describe the data set and different machine learning systems used in to predict 

how to find weak signals in news. 

3.1   Data Set 

We started by compiling a corpus of scientific papers and articles (42,916) from 

on-line freely available repositories published between 1960 and 2017.  

Our assumption is that weak signals represent a form of tacit knowledge. As such, 

it may be counterproductive to define a formal guidelines aiming to identify the weak 

signal. Rather, we let the annotator the liberty to mark a whole document as 

containing weak signals or not. In a second round of annotations, we wanted to 

restrict the scope to paragraph rather than whole document. Most of the annotated 

paragraphs have between 100 to 250 words.  

Therefore, we obtained two annotated corpora, which for convenience we refer to 

short and long respectively. The long corpora, LC, refer to full documents as 

training/test corpora. The short corpora, SC, refer to paragraphs.  

There is not a perfect overlap between these two corpora; approximatively 15% of 

paragraphs come from different documents that the ones considered on LC corpora. 

The annotation is binary, YES or NO signaling the existence of weak signals or not 

respectively. In case of SC, all paragraphs, not explicitly classified as “YES” from the 

analyzed documents, were be considered “NO”. However, we double-checked the SC 

“NO” for some of these paragraphs in order to make sure that there are as little as 

possible misclassifications. We have the following distribution: 

Table 1. Size of hand annotated corpora. 

 YES NO 

LC 4,100 14,020 

SC 3,700 14,500 

 

We wanted to have a similar ratio of weak vs. non weak in both corpora for easing 

a fair comparison of the performances for these two corpora. The team consists of 18 

undergrads volunteers. On a given 300 documents the annotators were encouraged to 

discuss their doubts and to defend their position in case of disagreement.  

 

Fig. 1. Towards reaching a stable shared tacit knowledge 



 

 

 

 

In Fig.1, we plot the evolution of the average number of documents on which 

there was a strong disagreement, for samples of 10 documents out of the chosen 300. 

The average disagreement lowered from 1.4 to 1.1 and the divergence decreased from 

.55 to .38. 

It seems that 1.1 is a hard threshold for this task. When we repeated the 

experiment after we had 1,200 of documents annotated as carriers of weak signals, the 

average of disagreement for samples of ten documents, was still 1.1. For making a 

decision decreased for time between these two experiments we measure the average 

time (Fig. 2). 

 

Fig. 2. Average time for making a decision 

These results suggest that this task, in spite of being one driven by tacit 

knowledge, is learnable by algorithmic probabilistic hypothesis space search. The 

annotators developed patterns – they seem to filter out a lot of the content, otherwise 

the time to reach a decision would not have decreased that dramatically, and there is 

gray zone where experience does not help. This behavior tends to help an automatic 

classifier, as it does not have to be very precise in order to obtain a human similar 

performance. 

After a preliminary round of trial annotation of several hundred of documents, 

we decided to create a taxonomy that sprung naturally from this experiment based on 

the a several components: technology; innovation in services; trend shift; behavioural 

change; major actor move; breakthrough discovery; top research; wild card.  

 

Fig. 3. Weak signal taxonomy distribution 



 

 

 

 

The intention in using these labels was to try to capture the annotator intuition on 

why a certain document/paragraph is considered as carrier of weak signals. This 

taxonomy helps us to see if there are indeed any subjective differences that may affect 

the learning process. It came as a surprise that the annotators did not want to use often 

the wild card taxonomy. The number of documents that received just one category is 

relatively high and quasi constant (50%). The number of documents that received 

more than three categories is non-significant, less than 3%.  

In Fig. 4, we draw the dynamics of reaching consensus among annotators. 

 

Fig. 4. Reaching consensus over taxonomies 

 

Fig. 5. Control Group Judgment 

We wanted to check whether this consensus was reached due to an increasingly 

strong and commonly shared tacit knowledge, i.e. due to acquiring an expertise, or 

due to accepting a dominant view. A control group checked the validity of the 

agreement what we found we have found that the results strongly suggest the first 

alternative – acquiring an expertise.  

Finally, all these experiments strongly suggest that we have a tacit knowledge 

about weak signals that is shared at least 80% of the time. However, there will be a 

10% individual hard kernel that constitutes a potential disagreement area. Maybe this 

is exactly the prediction on the immediate future. 



 

 

 

 

3.2   Machine Learning 

We present a series of learning approaches, which we tried systematically. The 

experience and insight gained from previous steps guided our decision in designing 

the next step.  

3.2.1. Baseline 

In a supervised approach, finding the pieces of news containing weak signals is a 

binary classification task. A first approach is to use tf-idf weights to compute the 

similarity between a document and the documents in one of the two classes. This 

provides us with a weak baseline. However, it is an informative one. It tells how 

much of the weak signals are judged to be expressed via some special words or 

patterns. Anticipating, it turns out that this is not the case at all. This baseline has 

negligible accuracy, far distanced from the best results we obtained eventually. This 

preliminary finding confirmed that the task is not trivial at all and that many clues 

based on which the human judges the correct answer are not necessarily expressed by 

clearly defined overt phrases. 

As such, we can use a couple of off the shelf approaches that will provide a set of 

baselines for this task. We looked at two libraries, which implement quadratic 

discriminative analysis, QDA (Quadratic Discriminant Analysis) from SCIKIT 

library, and SVM, linear SVM form WEKA (Waikato Environment for Knowledge 

Analysis) library, respectively. See also the equations 1 and 2. 

 

 

 

 

 

 

The reasons behind our choice have to do with the type of data we employ here. 

The fact that the tf-idf obtained a very low score does not immediately imply that 

maximizing the prior probability P(word|weak signal) is inefficient.  

At this point, we have to understand whether the projection of the data into a 

bidimensional space will lead to conelike structures, that is, that the data can 

separated by a quadratic function.  On the other hand, if the difference between the 

SVM and QDA is large enough this will show that QDA suffers from the masking 

effect. 

We run both QDA and SVM in a cross-validation setting, 10 folds 1/8 ratio for 

train/test and 1/8 ratio for development/train.  

 

Table 2. QDA, SVM for SC. 

 Weak Signal No Signal 

QDAcr 0.412 0.877 

SVMcr 0.663 0.913 

QDAts 0.403 0.865 

SVMts 0.610 0.905 



 

 

 

 

That is we used a tenth of the corpus for test and development respectively. For 

test we used 500 weak-signals and 500 no-signals. In Table 2 we present the results 

for QDA and SVM for SC, and in Table 3 the results for LC for cross validation.  

The tf-idf scored 0.18 for and 0.12 respectively. As we can see both QDA and 

SVM scored significantly better than that. In addition, indeed there is a non-random 

difference between QDA and SVM results. 

Table 3. QDA, SVM for LC. 

 Weak Signal No Signal 

QDAcr 0.38 0.901 

SVMcr 0.472 0.946 

QDAts 0.365 0.890 

SVMts 0.455 0.930 

 

To understand better the nature of this difference we ran a series of experiments 

alternating the ratio of weak signals in the training corpus. We found no significant 

differences from Table 2 and 3. This shows that probably we cannot improve these 

results by adding more training. Given that SVM is a constraint over a large boundary 

for ||Ein-Eout|| and that the differences from QDA are large, equation 1 follows that it 

is possible to search for a better model even further. That is, particularly for this task, 

we could find a better estimation, as the worst-case scenario seems not to characterize 

this corpus. Because, we cannot directly compute the number of dichotomies, and 

therefore, the exact VC (Vapnik-Chervonenkis) dimension is unknown, based on the 

Tables 2, 3 it is intuitively tempting to consider that the VC bound is indeed too loose 

for this task. That is, we can do better in estimating the posterior probability. The 

right question is whether we have enough data to train a more detailed classifier. We 

may guess that deep learning methods may be up to the task. 

3.2.2. Deep Learning Approach 

We describe here two experiments carried out using deep learning methods. The 

first method uses a simple gradient descent model with CR (Cross Entropy Loss) or 

log loss, function. The second is a LSTM neural network. The cross entropy is 

described by equations (3). 

  (3) 

    LSTM 
H = [Xt ht-1] ȋt = σ(WiH+bi)   

ft = σ(WfH+bi) ot = σ(W0H+b0) 

 

We organized the experiments in the following manner: we made a test corpus of 

1,500 documents, 1000 non signals and 500 signals. The rest of the corpus was sent to 

the deep learning algorithm. Each document was represented as a vector via word 

embedding. We used a batch of 100 vectors, selected randomly, at one training cycle 

over a couple of thousands of cycles. In order to both (i) have a better assessment of 

the accuracy and (ii) analyze the influence of signal vs. non signal ratio in training we 

ran the algorithm three times. The number of test non-signal was 1,000 and the 



 

 

 

 

number of test weak-signal was 500. We varied the ration weak-signal/no-signal in 

one batch of 100 random input example to train. CR_n/m, represents a system with 

cross entropy loss function that has 2,000 cycles with a batch of 100 containing m 

random weak-signal and n random no-signal from training corpus. We tested for n/m 

in {5/5, 3/7} (rows in tables below). For example, LS_5/5 represents the system of 

LSTM with 100 batches made of 50 weak and 50 no signals, randomly chosen from 

training set. 

Table 4 and 5 show the results. The columns represent the accuracy for each of the 

three runs for weak and no signals respectively. 

Table 4. CR, LS for SC. 

 

Table 5. CR, LS for LC. 

 

As expected, the results are usually better on SC than on LC. However, the most 

important thing was that both approaches produces consistent results for each run, 

there were no big jumps/drops in accuracy at any particular experiment. 

We notice a great improvement over the SVM performances, which prove that the 

data was enough to compute accurate Softmax estimation. It also shows that for this 

particular problem, the VC bound is too loose indeed. 

In order to evaluate the dependency of the deep learning algorithm on the number 

of examples, we ran a second round of experiments considering for training only q 

half, two thirds, 3 quarts and 7/8 of the initial training data. It turns out that there is no 

statistically significant difference once we feed more than 3 quarts of the data. This 

means that it is unlikely that these results will be further improved by providing more 

data alone. 

3.3   Unsupervised Learning 

We present a methodology of learning weak signals in an unsupervised way. In the 

previous section, we obtained very good results via training examples. The annotated 

data, in spite of coming by a long time consuming process, may still contain errors, 

may still be subjectively biased by guidelines. A better way is to induce the training 

data and then fed it to the deep learning algorithm. Concisely, we are going to 

consider a set of topics that were introduced by weak signals before they become very 

important topics that everybody talks about.  

 1W 1N 2W 2N 3W 3N  

CR_5/5 0.75 0.85 0.74 0.86 0.79 0.86 

LS_5/5 0.75 0.89 0.73 0.92 0.75 0.87 

CR_3/7 0.88 0.93 0.86 0.93 0.85 0.92 

LS_3/7 0.86 0.94 0.86 0.95 0.88 0.95 

 1W 1N 2W 2N 3W 3N  

CR_5/5 0.75 0.85 0.74 0.86 0.79 0.86 

LS_5/5 0.75 0.89 0.73 0.92 0.75 0.87 

CR_3/7 0.88 0.93 0.86 0.93 0.85 0.92 

LS_3/7 0.86 0.94 0.86 0.95 0.88 0.95 



 

 

 

 

 

Fig. 6. 3Dprinting N-gram distribution 

For example, self-driving cars, 3D printing, Higgs boson, etc. We know this set of 

topics as a side effect of the annotation process explained in Section 3. We use the 

Google N-gram to observe the diachronic evolution of a particular topic. As expected, 

these topics have a boom, which has a very particular steeply ascending plot starting 

after a certain year. 

This booming trend can be captured via statistical tests. It is very easy to detect the 

booming period due to its clearly defined shape, but what we are actually after is the 

pre boom period. We take the Welch and ratio tests and we detect the pre boom 

statistically correlated period. In this period both the Welch and ratio test, indicate 

that something is going on, but there is no boom yet. That is, a non-random variation 

into the distribution of previous years is caught, but there is no confirmed boom yet. 

We assume that this is the period when that particular topic was rather described 

using weak signals. In a few years, after the boom, the description is far from “weak 

signal”, it is a confirmed trend.  See Fig. 7, where we marked the pre boom period we 

automatically found for Higgs boson. 

 

Fig. 7. Pre boom period for Higgs boson 

The pre boom period is characterized by a positive ratio test followed by a period 

of relatively stability, thus negative Welch test. 

 

Fig. 8. Machine learning pre boom 



 

 

 

 

A human interpretation of this behavior is that there are initial excitements about a 

certain achievement, which make people talk more often that before about it, so the 

old flat distribution changes. Then there is a period of relatively silence, and then 

there is the boom. Interestingly also machine learning was found as important topic, 

with a clear definite pre boom and boom period 

For the four topics mentioned above, we plot in Table 7 the pre boom periods we 

found. 

Table 7. Pre boom period. 

Topics Pre boom period 
machine learning 1978-1990 

3D printing 1960-1995 

Higgs boson 1981 - 1988 

Self-driving 1960-1998 

 

Once we know the pre boom period we consider only articles from that period. 

There should be something in these articles that a human annotator would call weak 

signals.  In this way we compile the signal corpus. To compile the non-signal corpus, 

which corresponds to the negative learning, we take the documents from pre boom 

period and any other articles from the pre boom period that do not exhibit any unusual 

distribution. We kept the same ratio between the number of signal vs. non signal 

documents as the one for the corpus described in Section 3. 

By feeding into the deep learning algorithm the vectors representing these 

documents, our intuition, is that the more topics and the more documents we have 

from the pre boom period the higher accuracy we obtain. So we are going to test the 

accuracy of (i) the unsupervised learning and (ii) the dependency of accuracy on those 

parameters: number of topics, the detection accuracy of the pre boom period and the 

number of documents considered as weak signals. We test now on randomly chosen 

1,500 documents out of which 500 are signals, and none of them contains any 

references to the topics we used to collect the training corpus. We obtain the 

following results (Table 8): 

Table 8. Unsupervised Weak Signal Prediction. 

 Weak Signal No Signal 

CR 0.45 0.89 

LSTM 0.44 0.93 

 

 

Fig. 9. Dependency on pre boom accuracy 



 

 

 

 

The results considering 10 topics are very good. They are well above the tf-idf 

baseline and they are close to the performances of the SVM. We artificially varied the 

pre boom period in order to include more from the pre boom period, by increasing the 

boundaries by 10% to 30%. We notice a major deterioration in results; the accuracy 

was dropped to 0.3. By including more documents, the results did not go up in a 

statistical significant way. These findings suggest that pre boom epoch accurate 

detection plays a very important role, and that probably few thousands of documents, 

cumulatively; represent a sufficient statistics for this task. Little is gained by adding 

any other information, either in a supervised way or not. 

Finally, we considered the following experiment to complete the picture. We tried 

to predict whether there will be a boom only in the distribution of the individual 

topics in the pre boom. That is, by just looking at the pre boom period we try to 

predict whether that respective topic will materialize in a fully-fledged trend. We 

considered the mean difference between the pre boom period and the pre boom period 

with an empirical threshold, the intuition being that a topic exhibiting a large 

difference; it is likely to witness a boom. The accuracy was less than .08, showing 

that the analysis of individual topics will tell us something about trends only when it 

is too late. 

6   Conclusions  

This study is an experiment on weak signals prediction. The possibility of trend 

prediction based on weak signals is very exciting and it has many applications. Our 

study shows that even when we do not know what the weak signals are, we are still 

able to use them in predicting future trends via deep learning methods with 

unsupervised learning. A carefully analysis of the experiments we carried out 

systematically from tf-idf to LSTM provide us with insights on choosing one type of 

learning over other possible candidates.  

Next, we would like to experiment with other deep learning algorithms. A starting 

point is to understand better how we could narrow down the search for weak signals. 

The results suggest that we can have a major improvement of several points if we 

could pin point a paragraph instead of a document as source of weak signals. 

Therefore, our next effort is to narrow down the search for pre boom period at the 

paragraph level, rather than document level. 
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