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Abstract. This paper describes a neural network architecture for pars-
ing Spanish sentences using a feature based grammar. The architecture
consists of several LSTM neural network models that produce syntac-
tic analysis and semantic role labeling: first determine how to split a
sentence into a binary tree, then assign the rule to be applied for each
pair of branches, finally determine the argument structure of the result-
ing segments. We analyze two variants of this architecture and conclude
that merging the split and rule identification models yields better results
than training them separately. We train and evaluate the performance
of these models against two Spanish corpora: the AnCora corpus and
the IULA treebank. Our best models achieve encouraging results for the
syntactic parsing process: unlabeled score 87.5%, labeled score 81.9% for
AnCora; unlabeled score 93.6%, labeled score 88.9% for IULA; further-
more it achieves 96.2% UAS and 91.3% LAS when transforming back
to IULA dependencies, which is comparable to the state of the art. On
the other hand, although the intrinsic results for the argument struc-
ture identification are promising (90.9% accuracy and 87.1% macro-F1),
when combined with the rest of the steps the performance significantly
drops, so there is plenty of room for improvement in the process.

Keywords: Parsing · Syntactic Analysis · Semantic Role Labeling ·
Spanish · LSTM.

1 Introduction

Syntactic parsing is one of the fundamental processes in the Natural Language
Processing pipeline, and it has been studied in the field since its inception.
The two main paradigms for syntactic analysis are: constituency parsing, where
the sentence is structured as a tree of linguistically motivated segments; and
dependency parsing, where no explicit constituents are detected but each word
is associated to another word that acts as its head. Other approaches, which
could be called deep parsing, try to include more information in the parse trees
in order to bring it closer to a semantic representation. One way of doing this
is enriching the structures of a constituency tree with features that indicate the
relation of each constituent or word to other structures in the tree.
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In this work we present a process for parsing a sentence in Spanish using
a feature based grammar inspired on a simplified version of HPSG [26]. The
parsing process has three steps: first it splits the sentence into segments until it
builds a binarized tree; then it identifies the grammar rule that should be applied
for each pair of branches (siblings) in the tree; and finally it determines which of
the segments should fulfill a semantic role in relation to the detected predicates,
and which role it is. When the process is finished, the final tree contains both
syntactic and semantic role information. In our parsing architecture, the three
steps are fulfilled by neural networks.

The rest of the paper is structured as follows. Section 2 shows some back-
ground and other approaches to this task. Section 3 presents the corpora we base
our work on. Section 4 describes our parsing process in detail and how we train
the neural networks. Section 5 shows the results of our experiments using both
corpora. Finally, section 6 presents some conclusions and other lines of research
that we would like to follow in the future.

2 Related work

Over the last years, neural network models have been applied extensively to
many tasks in NLP, and the parsing process is no exception. When focusing
on constituency parsing, different approaches have been proposed for applying
neural network techniques to this task. For example, [29] uses a recurrent neural
network that combines pairs of words and builds a tree bottom-up in order to
leverage the syntactic-semantic compositionality to improve sentiment analysis
in English sentences.

A rather different approach is followed by [32], which frames the parsing
process as a sequence-to-sequence problem: trying to learn a translation model
between a sentence in natural language and the bracketed representation of its
parse tree. The neural model they use is an encoder-decoder LSTM model with
attention mechanism. They found out that training such a model using only
standard corpus data (the Penn Treebank [21]) did not yield good results, but
if they first pre-trained the model using a larger corpus of sub-standard data
(the result of another parser, or a combination of parsers) the performance of
the final model improved significantly.

One approach that has been studied lately is to use neural models to represent
transition based syntactic parsing. These models consider the parsing process of
a sentence as a sequence of actions that are performed to each word of the
sentence, transversed from left to right. For example, in [14] they describe a
transition based constituency parser that uses neural networks for representing
the state of the stack [13], the sentence buffer and the current derivation history.
Using all that information as input, the objective of the network is to predict
the next action of the parser (shift, reduce, or adding a new non-terminal to the
stack). They report good results for English parsing over the WSJ section of the
Penn Treebank.
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In [19] they combine the transition based approach with sequence-to-sequence
modeling. They train a model that tries to translate an input sentence into a
sequence of actions that a shift-reduce parser should take. They apply the same
idea for a dependency parser [25] and a constituency parser [14], both for English,
obtaining state of the art results. The authors of [33] propose a transition based
approach for constituency parsing where they model the stack using a RNN
or Elman Network, obtaining good results for English and Chinese treebanks,
while in [12] the authors describe a transition based constituency parser that uses
LSTMs for representing word spans instead of partially derived trees, obtaining
good results for parsing English and French.

Another approach that focuses on determining the word spans in the tree is
used in [30], which describes a top-down parser that greedily splits a sentence in
constituents and assigns labels to them, processing the text spans with LSTMs
in order to generate an intermediate representation. This approach is the most
similar we found to the one we use, the main differences are that: they train
parsers for English and French, while we work for Spanish; they use standard
constituency grammars that allow multiple children per rule, while the feature
based grammar we use is strictly binarized; and also we add a further step that
determines the argument structure of the predicates.

In [28] they describe a parser based on LSTMs trained to predict the syn-
tactic distances (concept related to the distance between words in the expected
parse tree) between consecutive words in the sentence. Having the predicted
syntactic distances, they proceed to build the tree in a top-down process split-
ting constituents guided by the relative syntactic distances between words. This
process is faster as it only needs to calculate once the syntactic distances for
the sentence. They achieve good results for English and Chinese parsing. Also
for the English language, [15] proposes a model that calculates the score for
each span inside a sentence and a model that predicts a label for those possible
spans. Then they adapt a CKY-style algorithm to find the tree with optimal
score based on their span model.

Compared to English, there are considerably fewer works that focus on Span-
ish parsing. For constituency parsing, [11] describes two approaches for improv-
ing PCFG parsing in Spanish: one approach involves including morphological
information in the probabilistic model that predicts the rules, the other is a
reranking method that uses a max-margin criterion trained over a set of global
features from the n-best parse trees. The methods are evaluated against the
Cast3LB corpus, a subset of the AnCora [31] corpus, achieving a constituent
F1 of 83.6 (first approach) and 85.1 (second approach) over the test partition.
In [18] they perform experiments in Spanish parsing using a PCFG with latent
annotations. Their best model uses a simplified tagset and achieves 85.47 F1
over the test partition of the Cast3LB corpus.

Further work has been done for dependency parsing in Spanish, beginning
with CoNLL-X shared task [5] on dependency parsing for multiple languages,
including Spanish. The best LAS achieved for Spanish were 82.3 (max span tree
approach) and 81.3 (transition based approach). Later on, [20] describes the
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construction of a dependency grammar and a rule-based dependency parser for
Spanish based on transforming the result of a shallow parser. They achieve 81.13
UAS and 73.88 LAS in AnCora, and 80.93 UAS and 74.33 LAS in SenSem [6].
In [3] they describe a set of experiments using MaltParser [25] to determine how
much corpus size, sentence length or other factors contribute to the dependency
parsing performance in Spanish.

3 Corpora

We use a feature based grammar inspired on a simplified version of HPSG [26].
The feature structure for representing words contains features for head, syntac-
tic valence and PropBank-style [4] argument structure, as shown in figure 1.
The grammar contains rules for: applying specifiers, complements, modifiers or
punctuation symbols to the left or to the right of a head, and for applying co-
ordinations. It also supports the use of clitics (an important feature in Spanish
grammar) and argument sharing in relative clauses.


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〈
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〉
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〈
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〉

CLITICS
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expr
〉
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〈
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〉


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SEM
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ARG0 expr

ARG1 expr

. . .


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
Fig. 1. Feature structure for a lexical entry containing syntactic valence and semantic
arguments structure.

3.1 AnCora Corpus

AnCora [31] is a corpus of Spanish and Catalan text consisting of about half a
million words in approximately 17,000 sentences, most of the text comes from
news articles. All sentences in this corpus are annotated with morphological,
syntactic and argument structure information. A version of this corpus using
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HPSG-style annotations is described in [7–9]. We use this version for our exper-
iments as it contains all the features we want the parser to learn.

The length of AnCora sentences varies widely, being the longest around 150
words. However, sentences this long are rather rare, if we consider sentences up
to 60 words long the distribution of sentence lengths becomes more uniform.
In our process we used all sentences of the corpus up to 60 words long, which
comprise around 97% of the total corpus.

The Tibidabo Treebank[24] is another annotated corpus in Spanish that was
built using sentences originally from AnCora. The approach to build this corpus
was different, as the annotations in AnCora were not used, but a subset of
AnCora sentences were parsed using a Spanish HPSG grammar [22] and their
correct analyses were manually selected. However, the version of this corpus
that is available for download is a conversion to dependency format, so a further
transformation is needed to get all the features we need. As this corpus is smaller
and has shorter sentences than the original AnCora, we decided not to use it.

3.2 IULA Treebank

The IULA Treebank [23] is a corpus of Spanish sentences annotated in a de-
pendency grammar style, containing about 590,000 words in 42,000 sentences.
Like Tibidabo, the corpus was originally parsed using a HPSG grammar and
manually selecting the best parse tree, and the version of this corpus available
for download is a transformation into dependency format as well. Because of
this, we transformed this corpus back into a format akin to the feature based
grammar we use.

Compared to AnCora, the IULA treebank generally contains shorter sen-
tences: the longest sentence in IULA has 33 words, while AnCora has sentences
longer than a hundred words. It contains a lot of technical language, as it was
built using sentences from documents about law, economy, genomics, medicine,
and environment. One problem with this corpus is that, unlike AnCora, it does
not provide readily available argument structure information. So in this case we
did not train neither evaluate the model for argument structure features.

4 Implementation of the parser

4.1 Parsing process

Our parsing process consists in a series of steps that incrementally build the
parse tree: splitting a sentence into a binary tree, finding out the rules that
apply to the nodes of the tree, and finally determining what nodes should be
labeled with argument structure categories.

Let us walk through the proposed parsing process using the following sample
sentence:

[ CiU ha pactado dinero para el delta del Ebro ]
( CiU has agreed to money for the Ebro delta )
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Step 1: Splitter In the first stage, the process will take the whole sentence and
split it in two sequences of words. The resulting subsequences are expected to
be constituents of the sentence. In this case it should split the subject and the
predicate. The result will look like the following:

[ CiU ] [ ha pactado dinero para el delta del Ebro ]

This process is repeated for each subsequence with two or more words. In
this case, [ CiU ] has only one word, so only the second subsequence will be split.
The process should separate the last constituent that affects the verb, resulting
in the following:

[ ha pactado dinero ] [ para el delta del Ebro ]

Now both subsequences have more than one word, so they should be split
further in smaller subsequences. For example the left one would be:

[ ha pactado ] [ dinero ]

This top-down process is iterated until there are no more subsequences left to
split, effectively transforming the original sentence into a binary tree of words.
The binary tree after step 1 for this example is shown in figure 2.

CiU |

| |

| dinero para |

ha pactado el |

delta |

del Ebro

Fig. 2. Tree for “CiU ha pactado dinero para el delta del Ebro” (“CiU has agreed to
money for the Ebro delta”) after step 1.

Step 2: Rules After the tree is created, the second stage transverses all pairs
of branches and tries to find the most suitable rule that describes the relation
between those branches. For example:

[ ha pactado ] [ dinero ] → head comp

[ CiU ] [ ha pactado dinero para el delta del Ebro ] → spec head

After this stage is completed, the tree looks as shown in figure 3.
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spec head

CiU head mod

head comp head comp

head comp dinero para spec head

ha pactado el head mod

delta head comp

del Ebro

Fig. 3. Tree for “CiU ha pactado dinero para el delta del Ebro” (“CiU has agreed to
money for the Ebro delta”) after step 2.

Step 3: Arguments Once the tree is created and the syntactic features are in
place, the third step tries to determine which of the syntactic arguments of the
verbs, nouns and adjectives should also be set as semantic arguments.

Given the rules determined after step 2 for each pair of branches in the tree,
we can infer the head for each constituent. This third step considers each head
and each target argument that belongs to that head. In our example:

[ CiUSPEC ha pactadoHEAD dinero para el delta del Ebro” ] → arg0

[ CiU ha pactadoHEAD dineroCOMP para el delta del Ebro” ] → arg1

A simplified version of the final tree for our example, after the three stages
have been completed, is shown in figure 4. This final version of the tree contains
the information about the arguments of each predicate and the semantic roles
they have according to the argument structure.

4.2 Neural networks architecture

In our experiments, each of the steps is fulfilled by a neural network. The central
layers of the models in all cases are bidirectional LSTM layers [17], which are
very useful for processing entire sequences of words and creating a model for the
whole sequence that can be used by further layers.

For our parsing process, we created the following models:

– Step 1: Splitter model A three-layered stacked LSTM network that re-
turns the probability of each word in the sentence to be the limit of the
split.
Input: Sequence of words.
Output: Probability for each word.

– Step 2: Rule model Two parallel LSTM layers that process two sequences
of words and return the probability for each possible rule.
Input: Two sequences of words.
Output: Label indicating the rule to use (head spec, spec head, head comp,
comp head, head comp sem, head mod, mod head, clitic head, head rel,
head punct, punct head, coord left, coord right).
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spec head

1 CiU head mod

head comp head comp

head comp 2 dinero para spec head

ha


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SYN


HEAD v

VAL

[
SPEC 1

COMP 2

]
SEM

[
ARG0 1

ARG1 2

]
TEXT pactado


el head mod

delta head comp

del Ebro

Fig. 4. Simplified tree for “CiU ha pactado dinero para el delta del Ebro” (“CiU has
agreed to money for the Ebro delta”) after step 3.

– Step 3: Argument model A network that takes a constituent and the
information about the head of the constituent and the target argument to
categorize (also belonging to the constituent).
Input: One word (the head, which is the predicate), two sequences of words
(the whole constituent, and the target argument), and the syntactic valence
of the target argument.
Output: Label indicating the arg type (none, arg0, arg1, arg2, arg3, arg4,
argm, argc).

In later experiments, we merged the networks 1 and 2 into a single network
which is in charge of splitting a sequence of words and determining the most
likely rule to apply to the two resulting segments:

– Splitter-Rule model A three-layered stacked LSTM network that trans-
verses the sentence and returns, for each word, the probability of it to be
the limit of the split and the most likely rule to be used in that split.
Input: Sequence of words.
Output: Split probability and rule to use for each word.

This combined model has the advantage of being much faster than using the
other two models, and in theory it could also leverage the information used for
both tasks (splitting and determining rule) in order to improve the performance.
We will present the results obtained on both architectures.

We also tried building a network that would combine the three steps. How-
ever, the information used by the argument detection step is different than the
one used for the other networks (it considers more context). The initial exper-
iments we performed trying to merge the three networks achieved good results
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for the first two steps, but underperformed significantly for the arguments step,
so we did not consider this approach in these experiments.

4.3 Training details

The neural network models were implemented in the keras library [10] over
tensorflow [1]. In all models the words are represented by word embeddings
trained from a six billion words Spanish corpus [2] using the gensim library [27].
The word embeddings set has 1,146,242 vectors of dimension 300. In order to
handle out of vocabulary words, we create an unknown token for each POS tag
(considering morphological information) and use the vector corresponding to the
most frequent word for that POS.

The AnCora HPSG corpus was split in training-development-test partitions
with sizes 80%-10%-10%. The IULA treebank has standard train-test partitions,
but we further split the train sentences in training-development sets with sizes
80%-20%.

When training the neural networks, we used the early stopping technique,
so we took a validation set of 10% to 20% of each training set, depending on
the experiment. We trained several configurations (varying the number of layers,
units and activation functions) for each of the models, optimizing against the
corresponding development sets. We will only report the results on the best
performing models for each set of experiments.

5 Experiments

We evaluated the trained models against the test partitions of AnCora HPSG and
IULA. In the case of IULA, we also evaluated the conversion back to dependency
trees against the original corpus in order to compare our results against the state
of the art.

5.1 Intrinsic evaluation by step

Table 1. Performance for independent Splitter and Rule models, and combined
Splitter-Rule model. Average accuracy for split and rule prediction is shown. For the
combined model, also accuracy for predicting both values at the same time is shown.

Independent models Combined model

Corpus Split Acc. Rule Acc. Split Acc. Rule Acc. Both Acc.

AnCora Dev 85.30 95.68 94.18 95.85 92.44
AnCora Test 85.19 95.66 94.17 95.82 92.37

IULA Dev 93.27 96.73 96.61 96.76 94.85
IULA Test 92.74 96.78 96.56 96.88 94.85
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Splitter, Rule and combined Splitter-Rule models Table 1 shows a sum-
mary of the performance results for the independent Splitter and Rule models,
and the combined Splitter-Rule model. The first two columns show the per-
formance for step 1 and step 2 achieved by the independent models. The best
independent split models achieve 85.19% and 92.74% on average over AnCora
and IULA. However, as we will see in the next section, due to the nature of the
sentences and the sizes of the constituents, the performance of the whole step 1
process is higher than these intrinsic values.

For the independent rule models, the average accuracy achieved for the An-
Cora and IULA test sets was 95.66% and 96.78% respectively. Table 2 shows
the summary of the performance for each class for these models. Notice that the
hardest class to predict in all cases was comp head (a complement applied to the
left of a head), which is also a class with very few examples in the corpora.

The last three columns in table 1 also show that the combined splitter-rule
model outperforms the independent models, particularly for the split step, as the
average accuracy for this step increases from 85.19% to 94.17% for AnCora, and
from 92.74% to 95.56% for IULA. The performance for the rule identification
step also increases, but the difference is not significant. One reason this could be
happening is that the combined model could be able to leverage the information
of both tasks in order to improve them.

Table 2. Rules model performance.

Ancora Dev Ancora Test IULA Dev IULA Test

Rule Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

head spec 86.93 81.40 84.08 85.53 80.45 82.91 90.47 93.72 96.02 90.26 94.07 92.12
spec head 98.39 99.19 98.79 98.22 99.01 98.61 98.43 99.03 98.73 98.46 99.06 98.76
head comp 89.36 89.27 89.31 89.34 89.82 89.58 96.02 96.49 96.25 96.00 96.50 96.25
head comp sem 98.71 98.85 98.78 98.60 95.58 98.59 - - - - - -
comp head 84.54 78.25 81.27 83.14 79.30 81.17 80.85 49.14 61.13 85.88 48.67 62.13
head mod 93.12 93.60 93.36 93.62 93.79 93.71 94.99 93.53 94.25 95.03 93.61 94.32
mod head 94.91 93.44 94.17 95.34 93.19 94.25 93.97 93.56 93.76 94.63 93.75 94.19
head rel 95.87 96.15 96.01 95.79 96.09 95.94 88.36 95.64 91.85 90.24 95.76 92.91
clitic head 99.87 99.74 99.81 99.71 99.71 99.71 99.87 99.93 99.90 99.68 99.68 99.68
head punct 99.54 100. 99.77 99.73 100. 99.86 100. 99.99 99.99 99.96 100. 99.98
punct head 95.51 96.86 96.18 96.16 96.53 96.34 99.22 98.83 99.02 100. 99.66 99.83
coord left 98.21 96.55 97.37 96.86 96.07 96.46 99.65 99.65 99.65 99.48 99.78 99.63
coord right 92.22 90.81 91.51 91.49 91.05 91.27 97.60 98.90 98.25 97.50 99.26 98.37

Macro Avg 94.40 93.39 93.88 94.12 93.12 93.72 94.95 93.20 94.07 95.59 93.32 94.01

Arguments model For step 3, the best performing model on the AnCora
development set has 90.71% accuracy and 85.58% macro-F1, and it is similar
over the test set with 90.98% accuracy and 87.13% macro-F1. These results
look very promising, for example comparing this to CoNLL-2009 shared task
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on SRL [16], where the best results for Spanish were 83.31% on the joint task
and 80.46% on the SRL-only task. Our intrinsic step evaluation should be more
similar to the SRL-only task. However, even if the corpus used for the challenge
and the corpus we used are both derived from AnCora, we have to take in
consideration that there are differences in the transformation processes of the
corpora that might make this comparison not direct. Further analysis would be
needed to understand how similar the semantic role information in both corpora
is. Furthermore, as we will see in the following section, the final performance of
the SRL process drops significantly when considering all the steps together.

5.2 Full process

Table 3 shows the results for the full process over the development and test
sets of AnCora. As expected for this kind of process, the performance varies
significantly with the sentence size (shorter sentences are easier to analyze), so
we report values for sentences up to 20, 40 or 60 words long. The first two
columns show F1 score for unlabeled span identification (the results of the split
step) and labeled span identification (split step plus rule step). The final two
columns show the F1 score for syntactic and semantic features. The syntactic
features are generated with a deterministic process from the spans and rules,
while the semantic features are the result of using the argument identification
step of the process.

Table 3. Performance for the full process over AnCora development and test sets.

Corpus Length Unlabeled F1 Labeled F1 Syntactic F1 Semantic F1

Independent Models

AnCora Dev
≤20 89.30 82.62 82.01 73.36
≤40 83.50 76.90 78.48 67.32
≤60 81.24 74.62 77.19 63.41

AnCora Test
≤20 88.74 82.82 82.64 74.47
≤40 83.12 76.72 78.61 66.06
≤60 81.46 75.03 77.69 63.06

Combined Models

AnCora Dev
≤20 93.03 86.54 86.62 78.69
≤40 89.17 83.31 84.69 74.97
≤60 87.44 81.71 83.65 71.22

AnCora Test
≤20 92.54 86.92 86.40 79.09
≤40 88.81 83.24 84.52 74.17
≤60 87.47 81.87 83.70 70.92

Table 4 shows the results for the IULA corpus. In this case, only the unla-
beled and labeled span identification are reported, as we did not have semantic
argument information for this corpus.

In order to compare our results with other Spanish parsers that have worked
with this corpus, we needed to transform it back to its original dependency
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Table 4. Performance for the full process over IULA development and test sets.

Corpus Length Unlabeled F1 Labeled F1

Independent Models

IULA Dev
≤20 92.54 87.36
≤33 91.73 86.50

IULA Test
≤20 92.35 87.04
≤33 91.47 86.15

Combined Models

IULA Dev
≤20 94.30 89.74
≤33 93.74 89.20

IULA Test
≤20 94.10 89.46
≤33 93.56 88.96

format. We used a deterministic heuristic process for that, mapping specifiers,
complements, modifiers and other features into their corresponding dependency
label (SPEC, SUBJ, COMP, DO, MOD, etc.) and using information from the context
of the tree to decide which was the most suitable label. We know this mapping
is far from perfect because we could not find a match for some of the original
labels of IULA, so our conversion process will have a lower performance than it
would have with a correct mapping. Nonetheless, using this transformation to
dependency format our parsing process achieves 96.20% UAS and 91.26% LAS
over the IULA test set, which is in line with the results of the MaltParser [25]
trained for Spanish over IULA (93.14% LAS1).

6 Discussion

6.1 Conclusions

We presented an architecture for parsing Spanish sentences in a feature based
grammar format that includes both syntactic and semantic role information.
The parsing process uses LSTM neural networks for splitting sentence into a
binary tree, finding the grammar rules to apply and determining the semantic
arguments. Our best models achieve 87.5% unlabeled F1 and 81.9% labeled F1
for the AnCora test partition, and 93.6% unlabeled F1 and 88.9% labeled F1
for the IULA test partition. These results were achieved using a neural network
that merged the splitting and rule steps of the process, as we found out this
greatly improves the performance of these steps. The performance of our method
compared to a dependency parser for Spanish is not yet in the state of the art
(91.3% versus 93.1%), but we consider that a better process for identifying the
dependency labels would make this gap narrower.

For the semantic argument detection step, the intrinsic evaluation yielded
90.9% accuracy and 87.1% macro-F1 over the AnCora test set. However, its
performance dropped to 70.9% when considering the extrinsic evaluation of the

1 http://www.iula.upf.edu/recurs01 mpars uk.htm
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whole process. This could mean that, although the syntactic steps correctly
identify many features, the detected features do not contain all the information
the semantic argument process needs in order to correctly determine the labels.

6.2 Future work

The parsing process we use is strictly greedy in all steps: we take the most likely
split according to the splitter model, then the most likely rule according to
the rule model, and finally the most likely argument according to the argument
network. However, as the outputs of all the networks are probability distributions
(over words or over labels) it is possible to consider multiple outputs of the
parsing process and assign them probabilities. This could be used to feed a beam
search style algorithm that could get better results by re-ranking candidates
using other statistical models.

It might also be interesting to include argument structure information in
the IULA corpus in order to train a complete model for it. One way of doing
this is using the argument detection network over the gold IULA segments and
manually correcting the outputs.

We would also like to try this parsing architecture on other languages, but
a corpus with at least syntactic and semantic argument information is needed
in order to reproduce the whole process. One first step would be doing this for
English, as there are many linguistic resources for this language.

Finally, we could try to combine the three steps of the process into one neural
network that considers the context of the whole sentence (or some constituents)
at the same time in order to leverage all the information and improve the argu-
ment detection step.
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