
CCG Supertagging Using Morphological and
Dependency Syntax Information

Luyê.n Ngo.c Lê1 and Yannis Haralambous2

1 IMT Atlantique & UMR CNRS 6285 Lab-STICC, CS 83818,
29238 Brest Cedex 3, France

luyen.le@imt-atlantique.fr, ORCID: 0000-0002-2043-0679
2 IMT Atlantique & UMR CNRS 6285 Lab-STICC, CS 83818,

29238 Brest Cedex 3, France,
yannis.haralambous@imt-atlantique.fr, ORCID: 0000-0003-1443-6115

Abstract. After presenting a new CCG supertagging algorithm based
on morphological and dependency syntax information, we use this algo-
rithm to create a CCG French Tree Bank corpus (20,261 sentences) based
on the FTB corpus by Abeillé et al. We then use this corpus, as well as
the Groningen Tree Bank corpus for the English language, to train a new
BiLSTM+CRF neural architecture that uses (a) morphosyntactic input
features and (b) feature correlations as input features. We show experi-
mentally that for an inflected language like French, dependency syntax
information allows significant improvement of the accuracy of the CCG
supertagging task, when using deep learning techniques.

Keywords: CCG Supertagging · Dependency Syntax · FTB Corpus ·
BiLSTM, CRF

1 Introduction

Combinatory Categorial Grammars (CCG) [36] provide a transparent interface
between syntax and underlying semantic representation. They allow access to
a deep semantic structure of the sentence and facilitate recovering of non-local
dependencies involved in the construction such as coordination, extraction, con-
trol, and raising. CCGs have been introduced by Mark Steedman [34, 35] as a
non-transformational grammatical theory relying on combinatory logic. CCGs
are strongly lexicalized in the sense that words are associated with one or more
syntactic types, called lexical categories. These can be basic (e.g., S, NP, PP)
or complex, obtained by using the functors / and \ on basic categories (e.g.,
S/NP, NP\PP etc). Each lexical category has a specific meaning, for example,
NP is the noun or the noun phrase, S\NP represents a verb phrase or an in-
transitive verb that requires a subject (NP) on its left as argument (cf. Figure 1
for an example). The process of assigning lexical categories to words is called
supertagging because, contrarily to POS tags, CCG tags are detailed syntactic
structures.

In this paper we first assign CCG labels to words using syntax dependencies
and POS tags, and then we build complete CCG derivation trees for sentences in

2 Luyê.n Ngo.c Lê and Yannis Haralambous

Intelligent robots will replace human jobs by 2025 .
(intelligent) (robot) (will) (replace) (human) (jobs) (by) (2025) (.)

jj nns md vb jj nns in cd punct
amod nsubj aux root amod dobj prep pobj punct

NP/NP NP (S\NP)/(S\NP) (S\NP)/NP NP/NP NP (NP\NP)/NP NP punct

amod

nsubj

aux

ROOT

amod

dobj

prep

pobj

punct

Fig. 1. A sentence with POS tags, dependencies and CCG lexical categories.

a traditional approach. Afterwards we use this information as input features to
train a neural network, in order to improve the accuracy of a CCG supertagging
task model.

CCG supertagging plays an important role in parsing systems, as a pre-
liminary step to the build of complete CCG derivation trees. In general, this
task can be considered as a sequence labeling problem with input sentence
sinput = (w1, w2, . . . , wn) and the CCG supertags soutput = (t1, t2, . . . tn) as
output. Input features can be words or they can be extracted from words, such
as suffix, capitalization property or characters selection [25, 40, 41, 2, 23]. We will
use morphosyntactic annotations such as lemma, suffix, POS tags and depen-
dency relations [20] to build feature sets. These annotations are extremely useful
in order to add additional information about word as well as long-range depen-
dencies in the sentence (Figure 1). These novel features allow us to improve
accuracy of a supertagging neural network. We also consider adding correlations
between features as additional input features of the network and examine the
results.

In the past few years, Recurrent Neural Networks (RNN) [15] along with
its variants such as Long-Short Term Memory (LSTM) [17, 14] and GRU [8]
have been proven to be effective for many NLP tasks, and especially for se-
quence labeling such as POS tagging, Named Entity Recognition etc. In the
CCG supertagging task, different RNN-based models have been proposed and
have obtained high accuracy results. Following this trend, we base our model on
the Bi-Directional LSTM (BiLSTM) architecture associated with Conditional
Random Fields (CRF) as output layer. Thus, we take advantage of the ability
to remember the information of previous and next words in the sentence with
the BiLSTM network and increase the ability to learn from the relationship of
output labels with CRF.

The main contributions of our work are:

1. the use of morphosyntactic information for the traditional supertagging task;

2. the creation of a CCG Tree Bank for French language using this method;

CCG Supertagging 3

3. the use of a new neural network architecture based on BiLSTM and CRF
for the supertagging task trained on a standard English Tree Bank and on
our French Tree Bank.

As we will see, morphosyntactic information and the new neural network archi-
tecture improve the task performance significantly in the case of French language,
but not significantly in the case of English language.

The remainder of the paper is organized as follows. In the next section we de-
scribe our approach of using POS tags and dependency relations in (traditional)
CCG supertagging. In Section 3, we discuss the state of the art of machine
learning methods for CCG supertagging. In Section 4 we present our new neural
network model architecture. In Section 5, we evaluate our method on an English
and a French corpus, the latter been developed by ourselves using the methods
described in Section 1. Finally, we conclude and discuss open questions.

2 From Dependency Syntax to CCG Derivation Tree

In [1], Abeillé, Clément & Kinyon announce a French Tree Bank based on syntax
constituents. In [7, 6] Candito, Crabbé & Denis convert this Tree Bank into
syntax dependencies. We use information from these two corpora to build a
CCG Tree Bank, as described in this section.

Dependency parsing consists in building a tree rooted at the head of the sen-
tence (usually the verb), the edges of which, called dependencies, connect words
and are labeled by syntactic functions, e.g., subject, object, oblique, determiner,
attribute etc. Dependency syntax trees are obtained by parsers such as Malt-
Parser [30], Stanford Parser [12], MST parser [28], Spacy [19], etc. These tools
also provide POS tags of words.

In order to assign CCG lexical categories to words of a sentence, we start
by calculating its dependency tree. Then, we process words which have unique
lexical categories in the corpus: e.g., nouns have lexical category NP, adjectives
have lexical category NP/NP or NP\NP depending whether they are on the
left or on the right of the noun, etc. Once we have assigned these unique (or
position-dependent, as in adjectives) lexical categories, we move over to verbs.

The main verb of the sentence, which is normally the root of the dependency
tree, may have argument dependencies, labeled suj, obj, a obj, de obj, p obj, i.e.,
correspondences with subject, direct and indirect object, and/or adjunct depen-
dencies labeled mod, ats, etc., representing complementary information such as
number, time, place, and so on. We assign lexical category S\NP to a main verb
having a subject to its left, and then we add a /NP (or a \NP, depending on its
position with respect to the verb) for each direct object or indirect object (in
the order of words in the sentence).

Our next step is to binarize the dependency tree on the basis of information
about dominant sentence structure: In French, most sentences are SVO, as in
“Mon fils (S) achète (V) un cadeau (O)” (My son buys a gift), or SOV as in “Il
(S) le (O) donnera (V) à sa mère (indirect O)” (He will give it to his mother).

4 Luyê.n Ngo.c Lê and Yannis Haralambous

Using this general linguistic property, we can extract and classify the components
of the sentence into: subject, direct object, indirect object, verbs, complement
phrases.

mère “NP”sa “NP/NP”

“NP”

det a_obj

à “NP/NP”

“NP”

“(S\NP)\NP”

donnera
“((S\NP)\NP)/NP”

le “NP”

“S\NP”Il “NP”

“S”

Subject chunk

suj

Object chunk

obj

Verb chunk

root

mod

Object chunk

Backward
Application

Forward
 Application

Forward
 Application

Forward
 Application

Backward
Application

Fig. 2. CCG derivation tree of sentence “He will give it to his mother.”

The algorithm we propose for transforming a dependency tree into a binary
tree consists is subdivided into two steps:

1. we extract chunks from the dependency tree based on syntactic information
and dependency labels between words. For example, the subject chunk is
obtained by finding a word that has a dependency labeled suj, the verb chunk
corresponds to the root of the dependency structure, direct or indirect object
chunks are obtained as words with links directed to the root verb and having
labels obj or p obj, etc.;

2. we build a binary tree for each chunk, and then combine the binary trees
in inverse order of the dominant sentence structure. For example if SVO is
the dominant structure, we start by building the binary tree of the object
chunk, then combine it with the binary tree of the verb chunk, and finally
we obtain the binary tree of the subject chunk.

In Fig. 2, the reader can see four chunk groups in the dependency tree, displayed
as regions of the binarized tree.

By applying this approach to the complete set of 21,550 dependency trees of
the FTB corpus, we have obtained a bank of CCG derivation trees for 94,02 % of
the sentences. This new corpus is available (together with the code implementing

CCG Supertagging 5

the algorithm described above) as a resource in the frame of the verifiability,
reproducibility, and working description policy of CICLING 2019 conference.

3 Machine Learning and Supertagging

One of the first applications of machine learning to CCG supertagging is the
development of a statistical parser by Clark & Curran [10]. They proceed in two
main steps: supertagging and combining of lexical categories. Their supertagging
approach is based on the log-linear model by using the lexical category set in a
local five-word context to obtain a distribution. The model’s features are words
POS tags included in the five-word window, plus the two previously assigned
lexical categories (to the left). They applied their method on the CCG Bank
corpus [18] with 92.6% of accuracy for words and (only) 36.8% of accuracy for
complete sentences (that is the percentage of sentences of which all words are
tagged correctly).

Like many others supervised methods, CCG supertagging requires a suffi-
ciently large amount of labeled training data to achieve a good result. Mike &
Mark [26] have introduced a semi-supervised approach to improve a CCG parser
with unlabeled data. They have constructed a model for the prediction of CCG
lexical categories, based on vector-space embeddings. Features are words and
some other information (e.g., POS tagging, chunking, named-entity recognition,
etc.) in the context window. Their experiments used the neural network model
of Collobert [11] in association with conditional random fields (CRF) [38].

Using RNN for CCG supertaging has been proven to provide better results
with a similar set of features and window size in the work of Xu [42]. However,
the conventional RNN is often difficult to train and there still exist problems
such as gradient vanishing and exploding, in the layers over long sequences [4,
31]. Therefore, LSTM networks—a special variant of RNN which is capable of
learning long-term dependencies—were proposed to overcome these RNN limi-
tations. In particular, Bi-directional LSTM network models have been created
with the ability to store two-way information, and the majority of literature in
the area [25, 40, 41, 2, 23] uses this model with different training procedures and
achieves high accuracy.

The performance of BiLSTM networks models has been improved by com-
bining them with a CRF model for the sequence labeling task [21, 36, 27]. Using
a BiLSTM-CRF model similar to the one in [21], the authors of [22] have shown
the efficiency of CRF by achieving a higher accuracy in CCG supertagging and
multi-tagging tasks.

In most of the above works, similarly to many sequence labeling tasks, the
model inputs are words and their features are extracted directly from words.
However, we claim that lexical categories assignment to words can use morpho-
logical and dependency syntax to enrich the feature set. In the following section,
we present a neural network model based on BiLSTM-CRF architecture with
moprhosyntactic features.

6 Luyê.n Ngo.c Lê and Yannis Haralambous

4 Neural Network Model

4.1 Input Features

We will use the following input features for words in sentences:

– the word per se (word);
– the word lemma (lemma);
– the POS tag of the word (postag);
– the dependency relation (deprel) of the word with its parent in the depen-

dency tree (and the tag “root” for the head of the dependency tree, which
has no parent).

Each one of these features provides predictive information about the CCG su-
pertag label. Therefore, our input sentence will be s = {x1, x2, ...xn} where each
xi is a vector of the features xi = [wordi, lemmai,postagi,depreli].

Before describing our model, let us briefly review, in the following section,
pre-existant models with which we will compare it.

4.2 Basic Bi-Directional LSTM and CRF Models

Unidirectional LSTM Model As mentioned earlier, the shortcomings of
standard RNNs in practice involve gradient vanishing and an explosion prob-
lem when dealing with long term dependencies. LSTMs are designed to cope
with these gradient problems. Basically, a conventional RNN is defined as fol-
lows: the input x = (x1, x2, . . . , xT) feeds the network, and the network com-
putes the hidden vector sequence h = (h1, h2, . . . , hT), and the output sequence,
y = (y1, y2, . . . , yT), from t = 1, . . . , T where T is the number of time steps as in
the following formulas:

ht = f(Uxt +Wht−1 + bh) (1)

yt = g(V ht + by), (2)

where U , W , V denote weight matrices that are computed in training time,
b denotes bias vectors and f(z), g(z) are activation functions.

Based on the basic architecture of a RNN, an LSTM layer is formed from
a set of memory blocks [17, 16]. Each block contains one or more recurrently
connected memory cells and three gate units: input, output and forget gate.
More specifically, activation computation in a memory cell at time step t is
defined by the following formulas:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (4)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo) (5)

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (6)

ht = ot � tanh(ct), (7)

where it, ft, ot, ct correspond to input gate, forget gate, output gate and cell vec-
tors, σ is the logistic sigmoid function, tanh is the hyperbolic tangent function,
W terms denote weight matrices, and b terms denote bias vectors.

CCG Supertagging 7

Bidirectional LSTM Model In order to assign a supertag to a word, we need
to use the word’s information and its relations to the previous and next word
in the sentence. Two-way information access from past to future and vice versa
gives global information in a sequence. However, the LSTM cell only retrieves
information from the past using input and output of the previous LSTM cell.
In other words, an LSTM cell does not receive any information from the LSTM
cell following it. Therefore, a Bi-Directional LSTM (BiLSTM) model has been
proposed in [33, 3] to overcome this problem, as follows:

Bi-LSTMsequence(x1:n) = LSTMbackward(xn:1) ◦ LSTMforward(x1:n). (8)

In general architectures, one may have one forward LSTM layer and one
backward LSTM layer for the complete sequence and run them in reverse time.
The features of the two layers are concatenated at the level of the output layers.
Thus, information from both the past and the future is transmitted to each
memory LSTM cell. The hidden state is computed as follows:

ht = f(W←−
h

←−
ht +W−→

h

−→
ht), (9)

where
←−
ht is backward hidden sequence,

−→
ht is the forward hidden sequence.

CRF Model BiLSTM networks are used to build efficient predictive models
of the output sequence based on the features of the input sequence. However,
they can not consider the correlation between output labels and their neighbor-
hoods. In our case, CCG supertags, by nature, always have correlations with
the previous or next labels, for example, an output CCG supertag of a word is
NP/NP (usually an article), which allows us to predict the fact that the next
CCG supertag is NP.

In order to enhance the ability to predict next labels from current label in
an output sequence, two approaches can be used:

1. building a tag distribution for each training step and using an heuristic search
algorithm to find optimal tag sequences [39];

2. focusing on the context with sentence-level information instead of only word-
level information. The leading work of this approach is the CRF model of [24].

We use the second approach in the output layer of our model. The combination
of BiLSTM network and CRF network can improve the efficiency of the model
by strengthening the relationship between the output labels through the CRF
layer, based on the input features through the BiLSTM layer.

4.3 Our Model for Feature Set Enrichment and CCG Supertagging

In the model we propose (see Fig. 3), each input is a set of features: word, lemma,
POS tag and dependency relation. These features are vectorized with a fixed size
by using the embedding matrix in the embedding layer. In the next layer, the

8 Luyê.n Ngo.c Lê and Yannis Haralambous

BILSTM

CRF

Output
Layer

CRF
Layer

2nd Output
BiLSTM Layer

2nd BiLSTM
Layer

2nd
Concatenation

Layer

1st Output
BiLSTM

Layer

1st
BiLSTM

Layer

1st
Concatenation

Layer

Embedding
Layer

BILSTM BILSTM BILSTM BILSTM BILSTM

BILSTM

Henri eats two apples

NNS VBS CD NNSHenri eat two apple

nsuj root nummod dobj

Henri eats two apples

Input
 Layer

NP (S\NP)/NP NP/NP NP

Word
Lemma Pos-tag

Deprel

Fig. 3. Architecture of the BiLSTM network with a CRF layer on the outputs.

correlation between pairs of features is calculated by combining them. Then, we
use a BiLSTM network to memorize and learn the relations with other words in
the context of the sentence for these pairs of features. After that, all features are
concatenated to become the input of the second BiLSTM network layer. Finally,
CCG supertag labels are obtained in the output of the CRF network layer, the
input of which is the output of the 2nd output BiLSTM layer.

5 Evaluation

5.1 Dataset and Preprocessing

We use the two different corpora to experiment our model, one in English and
one in French. The first corpus is the Groningen Meaning Bank (GMB) corpus
[5] which has been built for deeper semantic analysis on a discourse scope. The
second one is our CCG Corpus for French which we extracted from the French
Tree Bank (FTP) corpus [1] by using the dependency analysis of the sentence
(see Section 2).

CCG Supertagging 9

In order to obtain a standard dataset for training process, we extract all
sentences with annotations for each word such as lemma, POS tag, dependency
relation and CCG label, for each corpus. As the GMB corpus does not contain
dependency relations, we have used the Stanford Parser [12] to add it a posteriori.

We compare the structures of the two corpora in Table 1. In particular, there
is a difference in the distribution of sentences according to their length (see also
Fig. 4). In the GMB corpus, the distribution of the number of short sentences
and long sentences is relatively similar. This is quite different in the FTB corpus
where there are more short sentences, and where long sentences spread over a
wider range. This difference of the distribution rate in the datasets can affect
the training process outcomes of the two corpora.

Statistic #Sentences #Words #
Word
tokens

#
Lemma
tokens

#
POS
labels

#Deprels #
CCG
labels

GMB 23,451 1,037,739 32,073 26,987 43 56 636

FTB 18,724 570,054 28,748 18,762 29 27 73

Table 1: Statistics on the two corpora.

0 20 40 60 80 100 120
0

500

1,000

1,500

Sentence Length

N
u
m

b
er

o
f

S
en

te
n
ce

s GMB Corpus

FTB Corpus

Fig. 4. Histogram of sentence length in the corpora.

5.2 Training procedure

We implement our neural network by using the Keras deep learning library [9].
The datasets are divided into three sets: training set, validation set and test set
with the proportion

(0.8 ∗ (training set) + 0.2 ∗ (validation set)) ∗ 0.8 + 0.2 ∗ (test set).

Validation sets are used to measure performance at each epoch. Final evaluation
on the test set is based on the best accuracy results in the validation sets.

10 Luyê.n Ngo.c Lê and Yannis Haralambous

Pre-trained Word Embeddings In order to work with numeric data in the
neural network, we use pre-trained word embeddings to transform words or lem-
mas of the corpora into numeric vectors. More specifically, we use Glove [32] (a
200-dimensional embedding trained on 6 billion words collected from Wikipedia)
for the GMP corpus, and Word2vec [29] (the French version by Fauconnier [13],
also with 200 dimensions, and trained on 1.6 billion words collected from the
web) for the FTB corpus. For out-of-vocabulary words, we assign embeddings
by random samples. Based on the distribution by length of sentences (Fig. 4), we
assign a fixed length of 120 words to all sentences, so that the input dimension
is [120, 200] for each sentence input. Finally, the other features are transformed
to numeric vectors by using a one-hot encoding matrix with size depending on
their number in the dictionary.

Parameters and Hyperparameters We fix the number of training examples
(batch size) as 32 for each forward or backward propagation. Each training
process runs 20 times to evaluate and compare outcomes (epoch). In addition,
we have experimented with the number of different hidden states, such as 64,
128, 256, 512 to find a configuration that is optimally consistent with the model.
We decided to carry on the experiment with 128 hidden states because this
choice optimally balances accuracy and performance.

Optimization algorithm Choosing an optimizer is a crucial part of the model
building process. Our model uses the Root Mean Square Prop (RMSprop) opti-
mizer [37] which proceeds by keeping an exponentially weighted average of the
squares from past gradients. To increase convergence, the learning rate is divided
by this average:

vdw := βvdw + (1− β) · dw2 (10)

vdb := βvdb + (1− β) · db2 (11)

W := W − α dw√
vdw+ε (12)

b := b− α db√
vdw+ε , (13)

where vdw vdb are the exponentially weighted averages from past squares of
gradients, dw2 and db2 are cost gradient related to the current layer weight,
W and b denote weight and bias, α is the learning rate from 0.9 to 0.0001
(α = 0.01 is the default setting), β is an hyperparameter to be tuned and ε is
very small to avoid dividing by zero.

5.3 Experimental Results

In order to evaluate the proposed input features and the model, we conduct two
sorts of comparison:

1. we compare the outcomes of different feature sets such as [word], [word, suf-
fix], [word, suffix, cap(italization)], [word, lemma, suffix, cap], [word, lemma,

CCG Supertagging 11

postag, suffix, cap], [word, lemma, postag, deprel, suffix, cap], [lemma, postag,
deprel], [lemma, postag], [lemma];

2. we compare the outcomes of different neural network architectures such as
BiLSTM [25], standard BiLSTM CRF [21], Double-BiLSTM CRF [22], and
ours.

Evaluation on our test set is shown on Table 5.3 for the French FTB corpus and
on Table 3 for the English GMB corpus.

According to our architecture and since we use correlations of features as
additional features, our model requires at least two features in the input data.
Therefore, we can not produce results on input data with a single feature like
[word] or [lemma]. Nevertheless we compare the outcome of other models on our
input features, including single input features.

Feature set BiLSTM
BiLSTM

CRF

Double
BiLSTM

CRF

Our
model

word 78.60 78.76 77.14 -

word, suffix 78.97 78.80 76.58 78.90

word, suffix, cap 78.56 78.97 75.96 84.43

word, lemma, suffix, cap 79.16 79.67 78.78 78.49

word, lemma, postag, suffix, cap 81.28 81.84 81.24 81.50

word, lemma, postag, deprel, suffix, cap 83.23 83.95 83.56 84.06

word, lemma, postag, deprel 83.43 83.98 83.70 85.05

lemma,postag,deprel 83.00 83.05 83.15 82.40

lemma,postag 80.20 80.37 81.40 80.05

lemma 77.61 77.83 76.66 -

Table 2: 1-best tagging accuracy comparison results on the test set in the French
FTB Corpus.

Let us first start with the French corpus. In Table we have displayed methods
from the literature in italics: word, suffix and cap(italization) as input features,
BiLSTM, BiLSTM+CRF and Double BiLSTM+CRF as architectures. As the
reader can see, by applying pre-existing methods we obtain a maximum accuracy
of 75.96%. By using our input features with pre-existing architectures we obtain a
maximum accuracy of 83.98%. By using our architecture with input features used
by others we get an accuracy of 84.43%. Both of these results are significantly
better than those in previous works. Finally, by combining our input features
with our model we manage to gain another 1% and achieve a topmost accuracy
of 85.05%.

It is interesting to notice that, even though the lemma feature carries less
information than the word feature (as expected), the combination of lemma and
POS tag features provides better results than the word feature, and that these
results are systematically increased by 2% when dependency relations are added
as well.

12 Luyê.n Ngo.c Lê and Yannis Haralambous

Feature set BiLSTM
BiLSTM

CRF

Double
BiLSTM

CRF

Our
Model

word 92.83 92.49 91.16 -

word, suffix 93.08 92.93 91.57 92.92

word, suffix, cap 93.30 93.20 91.48 94.31

word, lemma, suffix, cap 93.33 93.26 91.78 93.38

word, lemma, postag, suffix, cap 93.29 93.02 93.25 92.44

word, lemma, postag, deprel, suffix, cap 93.45 93.18 93.15 92.46

word, lemma, postag, deprel 93.35 93.18 93.24 92.90

lemma, postag, deprel 93.25 93.13 92.98 93.26

lemma, postag 93.21 93.12 92.98 92.95

lemma 90.56 90.13 89.86 -

Table 3: 1-best tagging accuracy comparison results on the test set in English
GMB Corpus.

The accuracy results for the English GMB corpus are displayed on Table 3.
Here differences are less significant, and the results all lie in the 92–94% range,
with a single exception: the case of the lemma feature, where we lose about 2% of
accuracy. Nevertheless, when we add the POS tag feature to the lemma feature,
we get a slightly better result than the word feature (the difference is about
1%). The best result is an accuracy of 94.31%, obtained by our model, but not
with our morphosyntactic features but rather with the legacy word, suffix and
cap(italization) features.

A general conclusion could be that morphosyntactic information brings a real
advantage for neuronal supertagging of French (a language the verbs of which
are highly inflected). It would be interesting to test the model with even more
inflected languages such as German, Russian or Greek.

6 Conclusion

We have presented a new CCG supertagging task based on morphological and
dependency syntax information, which has allowed us to create a CCG ver-
sion of the French Tree Bank corpus FTB. We used this corpus to train a new
BiLSTM+CRF neural architecture that uses new, morphosyntactic, input fea-
tures as well as feature correlations as separate input features. We have exper-
imentally shown that, at least for an inflected language as French, dependency
syntax information is useful for improving the accuracy of the CCG supertagging
task when using deep learning techniques.

Both the CCG French Tree Bank corpus we have developed as the code we
used for the traditional and for the deep learning supertaggers are available in
the frame of the verifiability, reproducibility, and working description policy of
the CICLING 2019 conference.

CCG Supertagging 13

References

1. Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for French. In: Tree-
banks: Building and Using Parsed Corpora, pp. 165–187. Kluwer (2003)

2. Ambati, B.R., Deoskar, T., Steedman, M.: Shift-reduce CCG parsing using neural
network models. In: Proceedings of NAACL 2016. pp. 447–453 (2016)

3. Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Bidirectional dynamics
for protein secondary structure prediction. In: Sequence Learning, LNCS, vol. 1828,
pp. 80–104. Springer (2000)

4. Bengio, Y., Frasconi, P., Simard, P.: The problem of learning long-term dependen-
cies in recurrent networks. In: IEEE International Conference on Neural Networks
1993. pp. 1183–1188. IEEE (1993)

5. Bos, J., Basile, V., Evang, K., Venhuizen, N., Bjerva, J.: The Groningen Meaning
Bank. In: Ide, N., Pustejovsky, J. (eds.) Handbook of Linguistic Annotation, vol. 2,
pp. 463–496. Springer (2017)

6. Candito, M., Crabbé, B., Denis, P.: Statistical French dependency parsing: tree-
bank conversion and first results. In: Proceedings of LREC 2010. pp. 1840–1847
(2010)

7. Candito, M., Crabbé, B., Denis, P., Guérin, F.: Analyse syntaxique du français:
des constituants aux dépendances. In: Proceedings of TALN 2009 (2009)

8. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: Encoder-decoder approaches, arXiv:1409.1259

9. Chollet, F.: Deep Learning with Python. Manning Publications (2018)

10. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics 33(4), 493–552 (2007)

11. Collobert, R.: Deep learning for efficient discriminative parsing. In: Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics.
pp. 224–232 (2011)

12. De Marneffe, M.C., MacCartney, B., Manning, C.D., et al.: Generating typed de-
pendency parses from phrase structure parses. In: Proceedings of LREC 2006.
vol. 6, pp. 449–454 (2006)

13. Fauconnier, J.P.: French word embeddings (2015), http://fauconnier.github.io

14. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction
with LSTM. In: Proceedings of ICANN 99. IET (1999)

15. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by
backpropagation through structure. Neural Networks 1, 347–352 (1996)

16. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks 18(5-6), 602–610
(2005)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

18. Hockenmaier, J., Steedman, M.: CCGbank: a corpus of CCG derivations and de-
pendency structures extracted from the Penn Treebank. Computational Linguistics
33(3), 355–396 (2007)

19. Honnibal, M., Johnson, M.: An improved non-monotonic transition system for
dependency parsing. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. pp. 1373–1378 (2015)

20. Honnibal, M., Kummerfeld, J.K., Curran, J.R.: Morphological analysis can improve
a CCG parser for english. In: Proceedings of Coling 2010. pp. 445–453 (2010)

14 Luyê.n Ngo.c Lê and Yannis Haralambous

21. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging,
arXiv:1508.01991

22. Kadari, R., Zhang, Y., Zhang, W., Liu, T.: CCG supertagging via Bidirectional
LSTM-CRF neural architecture. Neurocomputing 283, 31–37 (2018)

23. Kadari, R., Zhang, Y., Zhang, W., Liu, T.: CCG supertagging with bidirectional
long short-term memory networks. Natural Language Engineering 24(1), 77–90
(2018)

24. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of ICML 2001.
pp. 282–289 (2001)

25. Lewis, M., Lee, K., Zettlemoyer, L.: LSTM CCG parsing. In: Proceedings of
NAACL 2016. pp. 221–231 (2016)

26. Lewis, M., Steedman, M.: Improved CCG parsing with semi-supervised supertag-
ging. Transactions of the ACL 2, 327–338 (2014)

27. Ma, X., Hovy, E.: End-to-End Sequence Labeling via Bi-directional LSTM-CNNS-
CRF, arXiv:1603.01354

28. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency pars-
ing using spanning tree algorithms. In: Proceedings of EMNLP 2005. pp. 523–530
(2005)

29. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: Proceedings of
NIPS’13. pp. 3111–3119 (2013)

30. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for de-
pendency parsing. In: Proceedings of LREC 2006. pp. 2216–2219 (2006)

31. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: International Conference on Machine Learning. pp. 1310–1318 (2013)

32. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of EMNLP 2014. pp. 1532–1543 (2014)

33. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing 45(11), 2673–2681 (1997)

34. Steedman, M.: Surface structure and interpretation. MIT press (1996)
35. Steedman, M.: The syntactic process. MIT press (2000)
36. Steedman, M., Baldridge, J.: Combinatory categorial grammar. In: Non-

Transformational Syntax: Formal and explicit models of grammar. pp. 181–224.
Wiley-Blackwell (2011)

37. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learn-
ing 4(2), 26–31 (2012)

38. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th annual meeting
of the association for computational linguistics. pp. 384–394 (2010)

39. Vaswani, A., Bisk, Y., Sagae, K., Musa, R.: Supertagging with LSTMs. In: Pro-
ceedings of NAACL 2016. pp. 232–237 (2016)

40. Wu, H., Zhang, J., Zong, C.: A dynamic window neural network for CCG supertag-
ging. In: Proceedings of AAAI-17. pp. 3337–3343 (2017)

41. Xu, W.: LSTM shift-reduce CCG parsing. In: Proceedings of EMNLP 2016. pp.
1754–1764 (2016)

42. Xu, W., Auli, M., Clark, S.: CCG supertagging with a recurrent neural network.
In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics. vol. 2, pp. 250–255 (2015)

