
Named Entity Recognition by Character-based
Word Classification using a Domain Specific

Dictionary

Makoto Hiramatsu1, Kei Wakabayashi1, and Jun Harashima2

1 University of Tsukuba, Tsukuba, Ibaraki, 305–8550, Japan, JAPAN
2 Cookpad Inc., Ebisu, Shibuya-ku, Tokyo, 150–6012, JAPAN

Abstract. Named entity recognition is a fundamental task in natural
language processing and has been widely studied. The construction of a
recognizer requires training data that contains annotated named entities.
However, it is expensive to construct such training data for low-resource
domains. In this paper, we propose a recognizer that uses not only train-
ing data but also a domain specific dictionary that is available and easy
to use. Our recognizer first uses character-based distributed representa-
tions to classify words into categories in the dictionary. The recognizer
then uses the output of the classification as an additional feature. We
conducted experiments to recognize named entities in recipe text and
report the results to demonstrate the performance of our method.
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1 Introduction

Named entity recognition (NER) is one of the fundamental tasks in natu-
ral language processing (NLP) [20]. The task is typically formulated as a
sequence labeling problem, for example, estimating the most likely tag se-
quence Y = (y1, y2, . . . , yn) for a given word sequenceX = (x1, x2, . . . , xn).
We can train a recognizer using annotated data that consists of (X,Y ).

However, the construction of such annotated data is labor-intensive
and time-consuming. Although the beginning, inside, and outside (BIO)
format is often used in NER, it is challenging to annotate sentences with
tags, particularly for people who are not familiar with NLP. Furthermore,
there are low-resource domains that do not have a sufficient amount of
data. We focus on the recipe domain as an example of such a domain.

Even in such domains, we can find a variety of dictionaries available.
For example, Nanba et al. [13], constructed a cooking ontology, Harashima
et al. [3] constructed a dictionary for ingredients, and Yamagami et al. [21]



)����	������������

���+���������
���
(�

���+���
	������������

)���������
	������������

�)���������+��� 

Fig. 1. LSTM-CRF based neural network.

built a knowledge base for basic cuisine. These resources can be utilized
for NER.

In this paper, we propose a method to integrate a domain-specific
dictionary into a neural NER using a character-based word classifier. We
demonstrate the effectiveness of the proposed method using experimental
results on the Cooking Ontology dataset [13] as a dictionary. We report
our experimental results on the recipe domain NE corpus [12].

2 Related Work

In recent years, NERmethods that use long short-term memory (LTSM) [4]
and conditional random fields (CRF) [7] have been extensively stud-
ied [8, 9, 19, 15, 10]. This type of neural network is based on Huang
et al. [5]. Note that they used Bidirectional LSTM (Bi-LSTM), which
concatenate two types of LSTM; one is forward LSTM, and another is
backward LSTM. In these studies, the researchers assumed that training
data with sequence label annotation was provided in advance.

In our experiments, we use recipe text as a low-resource domain to
evaluate our proposed method. Although Mori et al. [12] constructed
an r-NE corpus, it consists of only 266 Japanese recipes. To overcome
this problem, Sasada et al. [18] proposed an NE recognizer that is train-
able from partially annotated data. However, as seen in Section 5.4, the
method does not perform better than recent neural network-based meth-
ods.



Preparing training data for NER is time-consuming and difficult. In
addition to the strategy that uses partial annotation, there have been
attempts to make use of available resources. Peters et al. [15, 16] acquired
informative features using language modeling. However, these approaches
require a large amount of unlabeled text for training, which makes it
difficult in a low-resource scenario. To avoid this difficulty, making use of
a task that does not require a large amount of data could be useful.

Whereas it is time-consuming to prepare training data for NER, it
is relatively easy to construct a domain-specific dictionary [1, 13, 21].
Some researchers have used a dictionary as an additional feature [19,
10]. Pham et al. [10] incorporated dictionary matching information as
additional dimensions of a feature vector of a token. In their method, the
representations are zero vectors for words that are not in the dictionary.
Our proposed method overcomes this limitation by extracting character-
based features from a classifier trained on a dictionary.

3 Baseline Method
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Fig. 2. Word-level feature extractor proposed by Lample et al. [8]

As described in Section 2, the popular methods use Bi-LSTM (bidirectional-
LSTM) and CRF, which is so called LSTM-CRF. Lample et al. [8] takes
account of not only word-level but also character-level information to ex-
tract features. We show an illustration of the word-level feature extractor
proposed by Lample et al. in Fig. 2. Let X = (x1, x2, . . . , xN ) be an input



word sequence and Ct = (ct,1, ct,2, . . . , ct,M ) be the character sequence of
the t’th word. A word distributed representation corresponding to xt is
defined by vxt , and a character distributed representation corresponding
to Ct,k is defined by vCt,k

. Let VCt = (vCt,1 ,vCt,2 , . . . ,vCt,M
). Then their

model can be represented as

wt
(char) = Bi-LSTM(char)(VCt), (1)

xt = [wt;wt
(char)]. (2)

Then, let VX = (x1,x2, . . . ,xN),

ht = Bi-LSTM(VX)t, (3)

where wt indicates the word representation corresponding to xt.
After extracting the feature vector ht of the sequence, they applied

CRF to predict the tag sequence considering their tag transitions. To use
CRF, ht is transformed by zt = Wht + b, where W is the L×H weight
matrix, L is the number of tags, and H is the size of the hidden state
of word-level Bi-LSTM. Let y = (y1, y2, . . . , yn) be a tag sequence. Using
Z = (z1, z2, . . . , zn), we can calculate the probability of the tag sequence
using

P (y | Z;W,b) =

n∏
i=1

ψi(yi−1, yi,Z)∑
y′∈Y(Z)

n∏
i=1

ψi(y′i−1, y
′
i,Z)

, (4)

where ψi(y
′, y,Z) = exp(W T

y′,yzi + by′,y). W is the L× L weight matrix,
which controls a transition of NE tags. And b is the L dimensional bias
vector corresponding to W. What we want is the optimal tag sequence
ŷ, which is defined by

ŷ = argmax
y′∈Y(Z)

P (y′ | Z;W,b). (5)

We can obtain the optimal tag sequence ŷ by maximizing P using the
Viterbi algorithm.

4 Proposed Method

In this paper, we propose a recognizer that uses not only training data
but also a domain-specific dictionary. As described in Section 1, it is
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Fig. 3. Overview of the character-based word classifier. We use a 3 stacked Bi-LSTM.

)����	������������

���+���������
���
(�

���+���
	������������

)���������
	������������

�)���������+��� 

Fig. 4. Overview of the proposed method. We concatenate the classifier output to a
feature vector from the Bi-LSTM.

expensive to construct training data for a recognizer. We thus make use
of a domain-specific dictionary that contains pairs that consist of a word
and category.

Fig. 4 shows the architecture of our proposed recognizer. Our recog-
nizer can be considered as an extension of Lample et al. [8]. We incorpo-
rate the character-based word classifier which calculates at as follows:

h(classifier)
t = Stacked Bi-LSTM(Ct) (6)

a′t = Wh(classifier)
t + b (7)

at = Softmax(a′t), (8)



Table 1. The statistics of corpora using our experiments. Note that the r-NE corpus
is annotated for NEs with the BIO format. We show character-level information
only for r-NE because it is used to train a recognizer.

Attribute Cookpad Wikipedia r-NE

Doc 1,715,589 1,114,896 436
Sent 12,659,170 18,375,840 3,317
Token 216,248,517 600,890,895 60,542
Type 221,161 2,306,396 3,390
Char token – – 91,560
Char type – – 1,130

This classifier is a neural network that consists of a embedding layer, a
stacked Bi-LSTM layer, and a fully connected layer. Stacked Bi-LSTM is
one kind of neural network which applies Bi-LSTM k times where k > 1.
Classifier takes the character sequence of words as input and predicts
categories of it defined in a dictionary. After passing the word classifier,
our method concatenates the hidden state calculated in Section 3 and the
output of Classifier defined by h′

t = ht ⊕ at. Finally, as in Section 3, our
method transforms h′ by zt = Wh′

t +b′, and the CRF predicts the most
likely tag sequence.

Although our method is simple, it has two advantages: First, our
method is based on character-level distributed representations, which
avoid the mismatching problem between words in the training data and
words in the dictionary. Second, the method can use a dictionary with
arbitrary categories that are not necessarily equal to the NE categories
in the sequence labels. Consequently, our method can be applied in all
scenarios in which there is a small amount of training data that contains
NEs and there is a domain dictionary constructed arbitrarily.

5 Experiments

5.1 Datasets

We used the following four datasets:

r-NE [12] : used to train and test methods. We used 2,558 sentences for
training, 372 for validation, and 387 for testing.

Cooking Ontology [13] : used to train the word classifier. We use 3,825
words for training, 1,000 for validation, and 1,000 for testing.



Table 2. r-NEs and their frequencies.

NE Description # of Examples

F Food 6,282
T Tool 1,956
D Duration 409
Q Quantity 404
Ac Action by the chef 6,963
Af Action by foods 1,251
Sf State of foods 1,758
St State of tools 216

Table 3. Word categories, frequencies, and results on classification.

Category # of Examples Prec. Recall Fscore

Ingredient-seafood (example: salmon) 452 0.60 0.62 0.61
Ingredient-meat (example: pork) 350 0.88 0.83 0.85
Ingredient-vegetable (example: lettuce) 935 0.75 0.79 0.77
Ingredient-other (example: bread) 725 0.75 0.71 0.73
Condiment (example: salt) 907 0.81 0.84 0.83
Kitchen tool (example: knife) 633 0.79 0.74 0.76
Movement (example: cut) 928 0.94 0.99 0.96
Other 896 0.70 0.66 0.68

Cookpad [2] : used to train word embeddings. Cookpad corpus contains
1.7M recipe texts.

Wikipedia : used to train word embeddings. There were various types
of topics in this corpus. We downloaded the raw data of this corpus
from the Wikipedia dump3. Wikipedia corpus contains 1.1M articles.

As in Table. 2 and Table. 3, the categories in the cooking ontology
were different from the tags in the r-NE corpus. However, as described
in Section 4, our method flexibly incorporated such information into its
network.

5.2 Methods

We compared the following methods in our experiments:

Sasada et al. [18] is a pointwise tagger. They use Logistic Regression
as the tagger.

3 https://dumps.wikimedia.org/jawiki/



Table 4. Results on NER (averaged over five times except for Sasada et al. [18] because
KyTea [14], the text analysis toolkit used in their experiments, does not have the option
to specify a random seed).

Method Decoder Embedding Prec. Recall Fscore

Sasada et al. – – 82.34 80.18 81.20
Sasada et al. DP – 82.94 82.82 82.80
Lample et al. CRF Uniform 82.59 (± 0.94) 88.19 (± 0.25) 85.24 (± 0.46)
Lample et al. CRF Cookpad 84.54 (± 1.22) 88.47 (± 0.69) 86.40 (± 0.89)
Lample et al. CRF Wikipedia 85.31 (± 0.67) 88.22 (± 0.65) 86.68 (± 0.47)
Proposed CRF Uniform 82.81 (± 0.88) 88.40 (± 0.41) 85.46 (± 0.58)
Proposed CRF Cookpad 85.08 (± 1.30) 88.46 (± 0.18) 86.68 (± 0.71)
Proposed CRF Wikipedia 85.63 (± 0.52) 88.87 (± 0.37) 87.18 (± 0.34)

Table 5. Results on NER (averaged over five times except for Sasada et al. [18] because
KyTea [14], the text analysis toolkit used in their experiments, does not have the option
to specify a random seed).

Method Decoder Embedding Prec. Recall Fscore

Sasada et al. [18] – – 82.34 80.18 81.20
Sasada et al. [18] DP – 82.94 82.82 82.80
Lample et al. [8] CRF Uniform 82.59 (± 0.94) 88.19 (± 0.25) 85.24 (± 0.46)
Lample et al. [8] CRF Cookpad 84.54 (± 1.22) 88.47 (± 0.69) 86.40 (± 0.89)
Lample et al. [8] CRF Wikipedia 85.31 (± 0.67) 88.22 (± 0.65) 86.68 (± 0.47)
Dictionary CRF Uniform 82.36 (± 1.25) 88.28 (± 0.25) 85.18 (± 0.71)
Dictionary CRF Cookpad 83.91 (± 1.21) 88.60 (± 0.41) 86.16 (± 0.72)
Dictionary CRF Wikipedia 85.44 (± 1.04) 87.67 (± 0.25) 86.50 (± 0.56)
Proposed CRF Uniform 82.81 (± 0.88) 88.40 (± 0.41) 85.46 (± 0.58)
Proposed CRF Cookpad 85.08 (± 1.30) 88.46 (± 0.18) 86.68 (± 0.71)
Proposed CRF Wikipedia 85.63 (± 0.52) 88.87 (± 0.37) 87.18 (± 0.34)

Sasada et al. [18]+DP is an extension of LR, which optimizes LR’s
prediction using dynamic programming. This method achieved state-
of-the-art performance for the r-NE task.

Lample et al. [8] is an LSTM-CRF tagger described in Section 2.

Dictionary is an LSTM-CRF based naive baseline that uses a dictio-
nary. A dictionary feature is added to Lample’s feature in the form of
a one-hot vector.

Proposed is the proposed method that uses the character-level word
classifier described in Section 4.



5.3 Pre-trained Word Embeddings

In NLP, a popular approach is to make use of pre-trained word embed-
dings to initialize parameters in neural networks. In this paper, three
strategies are used to initialize word vectors:

Uniform initializes word vectors by sampling from
the uniform distribution over [ −3

dim ,
3

dim ].

Wikipedia initializes word vectors using those trained on the
Wikipedia corpus. Word vectors not in pre-trained word
vectors are initialized by Uniform.

Cookpad initializes word vectors using those trained on the
Cookpad corpus. Word vectors not in pre-trained word vectors
are initialized by Uniform.

We use train word embeddings with skip-gram with negative sampling
(SGNS) [11]. As the hyperparameter of SGNS, we set 100 as the dimension
of the word vector, 5 for the size of the context window, and 5 for the size
of negative examples, and use default parameters defined in Gensim [17]
for other parameters.

In our proposed network, we set 50 dimensions for character-level
distributed representations and 2 × 50 for character-level Bi-LSTM as a
word classifier. The word feature extracted by the word classifier is con-
catenated with the word-level representation and fed into the word-level
Bi-LSTM to obtain the entire word features. To train neural networks,
we use the Adam optimizer [6] with mini-batch size 10 and clip gradient
with threshold 5.0.

5.4 Experimental Results and Discussion

Table. 3 shows the performance of our word classifier. Our classifier suc-
cessfully classified words with a certain degree of accuracy. We show the
results of comparing each recognizer in Table. 5 In our experiments, (i)
pre-trained word vectors played an essential role in improving
the performance of NER and (ii) our classifier enhanced the per-
formance of the Lample’s method. Interestingly, we obtained the best
result when pre-trained word vectors were trained on the Wikipedia cor-
pus, which is not a domain-specific corpus. This suggests that our method
to have successfully combined universal knowledge from pre-trained word



Table 6. Results on named entity recognition (for each NE, averaged over five times).

NE Precision Recall Fscore

Ac 91.77 (± 1.02) 95.23 (± 0.42) 93.46 (± 0.33)
Af 78.87 (± 3.68) 78.12 (± 1.19) 78.46 (± 2.22)
D 96.63 (± 1.71) 93.88 (± 2.88) 95.23 (± 2.16)
F 85.84 (± 0.94) 89.01 (± 0.65) 87.39 (± 0.59)
Q 58.70 (± 3.81) 70.00 (± 3.19) 63.69 (± 1.82)
Sf 75.12 (± 4.40) 78.17 (± 1.95) 76.52 (± 2.04)
St 66.03 (± 5.64) 52.63 (± 4.70) 58.46 (± 4.52)
T 82.53 (± 2.30) 89.09 (± 1.26) 85.66 (± 1.21)

vectors and domain-specific knowledge from the classifier trained on a
domain-specific dictionary.

We show the label-wise results of prediction in Table. 6. In this result,
we can see that the proposed model successfully predicted tags of Ac, D,
F, and T. However, prediction performances for Af, Q, Sf, and St were
limited because there is no entry for these categories in our dictionary.

Fig. 5. Prediction results for an example

Example Yoji de to me te
Translation Cocktail stick DAT clip
Ground Truth B-T O B-Ac O O
Baseline B-Sf O B-Ac O O
Proposed method B-T O B-Ac O O

Fig. 6. Prediction results for another example

Example Denshi renji ( 500 W ) de
Translation Microwave ( 500 W ) DAT
Ground Truth B-T I-T O B-St I-St O O
Baseline B-T I-T O B-T I-T O O
Peoposed method B-T I-T O B-St I-St O O

Fig. 5 and Fig. 6 show prediction results for the baseline and our meth-
ods. Note that the abbreviation DAT means dative. In the first example,
the word classifier taught the model that cocktail stick was a kitchen
tool, which made the proposed method successfully recognize it as a tool.
In the second example, the word classifier taught the model that 500W
is not a kitchen tool. Then, the proposed method avoided the baseline’s
failure and estimate the correct NE tag sequence.



6 Conclusion

We proposed a recognizer that is trainable from not only annotated NEs
but also a list of examples for some categories related to NE tags. The
proposed method uses the output of a character-based word classifier.
Thanks to this character-based modeling, the proposed method considers
sub-word information to extract dictionary features for words not in the
dictionary.

Our experiment demonstrates that our method achieves state-of-the-
art performance on the r-NE task. This implies that the proposed method
successfully extracts an informative feature to improve the performance
of NER.
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