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Abstract. The exponential growth of research publications provides challenges 

for curators and researchers in finding and assimilating scientific facts described 

in the literature. Therefore, services that sup-port the browsing of articles and the 

identification of key concepts with minimal effort would be beneficial for the 

scientific community. Reference databases store such high value scientific facts 

and key concepts, in the form of annotations. Annotations are statements assigned 

by curators from an evidence in a publication. Yet, if annotated statements are 

linked with the publication’s references (e.g. PubMed identifiers), the evidences 

are rarely stored during the curation process. In this paper, we investigate the 

automatic relocalization of biological evidences, the Gene References Into Func-

tion (GeneRIFs), in scientific articles. GeneRIFs are free text statements ex-

tracted from an article, and potentially reformulated by a curator. De facto, only 

33% of geneRIFs are copy-paste that can be retrieved by the reader with the 

search tool of his reader. For automatically retrieving the other evidences, we use 

an approximate string matching algorithm, based on a finite state automaton and 

a derivative Levenshtein distance. For evaluation, two hundred candidate sen-

tences were evaluated by human experts. We present and compare results for the 

relocalization in both abstracts and fulltexts. With the optimal setting, 76% of the 

evidences are retrieved with a precision of 97%. This data free approach does not 

require any training data nor a priori lexical knowledge. Yet it remarkable how it 

handles with complex language modifications such as reformulations, acronyms 

expansion, or anaphora. In the whole MEDLINE, 350,000 geneRIFs were re-

trieved in abstracts, and 15,000 in fulltexts ; they are currently available for high-

lighting in the Europe PMC literature browser. 

Keywords: Natural Language Processing, Information Retrieval, Approximate 

string matching. 

1 Introduction 

Structured databases have become important resources for integrating and accessing 

scientific facts [1]. Yet, the normalized and integrated content still lags behind the cur-

rent knowledge contained in the literature [2, 3]. Entities’ properties of, such as gene 

functions, are usually characterized in experiments conducted by re-search teams, then 

reported in natural language published in scientific articles. These properties need to be 
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located, extracted and then integrated in normalized annotations by curators of refer-

ence gene databases, in order to be exploited by other researchers or databases. In biol-

ogy, reference databases are the Gene Database maintained by the National Center for 

Biotechnology Information (NCBI) [4], or the UniProt database maintained by the 

Swiss Institute of Bioinformatics [5]. Manual curation of these scientific articles is la-

bor intensive, but produces consistent and high-quality annotations for populating ref-

erence biological databases. In 2007, it was estimated that, despite the fact that the 

mouse genome is now fully sequenced, its functional annotation will not be complete 

in databases before 2047 [6]. 

Statements about gene functions, known as Gene References into Function 

(GeneRIFs), are collected by the NCBI. They are short statements extracted by life 

science experts from scientific articles. GeneRIFs are intended to facilitate access to 

publications documenting experiments on gene functions. Yet, geneRIFs are simply 

linked to an article, but not localized in the fulltext. This loss of information during the 

curation process is harmful, as curators want to learn about new functions as quickly as 

they can, preferably without having to scan all the paper for retrieving the evidence. 

GeneRIFs relocalization can thus be performed by automated approaches in order to 

help curators to keep up with the growing flow of publications. 

Nowadays, machine learning and expert systems are popular for automatic tasks in 

biomedical articles [7, 8]. Yet, both approaches need a critical amount of a priori 

knowledge, respectively learning data and hand-written language rules, before being 

able to manage edit modifications or reformulations. Such a priori knowledge can be 

costly to gather, when it is sometimes simply not available. In contrast, approximate 

string matching provides a data-free approach for estimating the similarity between an 

evidence and a passage. 

In this paper, we investigate the abilities of an approximate string matching algo-

rithm for retrieving evidences (geneRIFs) in scientific publications. This paper is orga-

nized as follows. Section 2 reports related works on approximate string matching in 

biomedical literature, and on geneRIFs retrieval. Section 3 describes the data, the meth-

ods, and the benchmarks used for evaluation. Lastly, section 4 reports evidence retrieval 

results on abstracts, then on fulltexts. 

2 Related work 

In biology, approximate string matching is a popular approach for gene name recogni-

tion [9]. For this specific task, survey studies compare and optimize different algorithms 

in terms of performance and computation time [10]. Approximate string matching was 

also investigated for more general named entity recognition [11], alignment of DNA 

sequences [12], optical character recognition [13], or approximate text search in litera-

ture [14]. 

Dealing with geneRIFs, the Genomics Track in the Text Retrieval Conferences 

(TREC) addressed in 2003 the issue of extracting geneRIFs statements from a scientific 

publication [15]. Participating teams were asked to maximize the lexical overlap be-

tween the geneRIF and a passage, measured by the Dice coefficient. The track overview 
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reported two best approaches. The first team [7] investigated sentences normalization 

thanks to stemming, gene names dictionaries and thesaurus, then trained a Bayesian 

classifier. The second team [16] also trained a Bayesian classifier, but input sentences 

were only abstracts title and last sentences, and features were only normalized gene 

names and verbs. No groups obtained much improvement compared to the baseline, 

which consisted in choosing titles. Yet, the lexical overlap was pointed out as a weak 

measure of equivalence, as geneRIFs can be para-phrases of articles sentences. 

In [17], generated evidences were compared to authentic geneRIFs. For text repre-

sentation, authors produced several features based on sentence position, sentence dis-

course, gene normalization or ontology terms mapping. Furthermore, 3,000 sentences 

were annotated by experts for building training and test sets. Despite these numerous 

efforts, authors concluded that their machine learning approach did not produce results 

comparable to sentence position. 

3 Methods 

In this section, we first focus on data: the geneRIFs dataset, and the corresponding ar-

ticles (abstracts accessed via MEDLINE, and fulltexts accessed via PubMed Central). 

We then deal with the methods: we introduce the Levenshtein distance, and the deriv-

ative distance used on this work. Finally, we detail the evaluation: benchmarks, judge-

ments and metrics 

 

3.1 GeneRIFs 

GeneRIFs are freely available in the NCBI server 

(ftp://ftp.ncbi.nih.gov/gene/GeneRIF/). The whole dataset was acquired on August 

2018, and contained 1.2 million of geneRIFs. 

According the NCBI website, geneRIFs allow any scientist to add the functional anno-

tation of a gene contained in the Gene database. The geneRIFs must be linked to an 

existing gene entry. Three information are mandatory for completing a submission: 

1. A concise phrase describing a function (less than 425 characters in length). 

2. A published paper describing that function, implemented by supplying the PubMed 

identifier (PMID) of a citation in MEDLINE. 

3. The curator’s e-mail address. 

The concise phrase is free text : the geneRIF curator is free to copy-paste, edit or 

reformulate the evidence described in the paper. Moreover, a geneRIF is linked to a 

publication, not to the specific passage that describes the function. Yet, it is stated that 

the title is not accepted. 

Once submitted, the text of the GeneRIF is reviewed for inappropriate content and 

typographical errors, but not otherwise edited. Finally, it is stated that most of the 

GeneRIFs are provided by the staff of the National Library of Medicine's Index Section, 

who have advanced degrees in the life sciences. 
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Here is one example of geneRIF in json format: {“geneID”: 2827861, “PMID”: 

15664975, “text: “Strains with mutations in either the prcA-prtP or the msp region 

showed altered expression of the other locus.  (msp = major outer sheath protein)”}. In 

this example, the geneRIF annotator has copy pasted a sentence from the abstract, and 

has developed the acronym “msp” (which is not developed in the abstract). 

 

3.2 Publications 

All geneRIFs are provided with a PubMed identifier (PMID), which is linked with a 

specific publication contained in the MEDLINE database. Thus, for all papers referred 

in geneRIFs, titles and abstracts are freely accessible via MEDLINE. The open access 

fulltexts can be freely accessed via the PubMed Central database. 

Abstracts from MEDLINE. MEDLINE is a bibliographic database of life sciences. In 

January 2018, it contained 27 million records of scientific papers from more than 5,500 

selected journals in the domains of biology and health. MEDLINE is maintained by the 

United States National Library of Medicine (NLM), and is accessible via the NLM 

search engine (PubMed), or freely downloadable via services and FTP. 

A MEDLINE record contains the title and the abstract, and also metadata such as 

authors’ information, journal’s information, the publication date, or keywords (Medical 

Subject Headings) added by the NLM’s indexers. All MEDLINE records are uniquely 

identified by a PMID. 

Fulltexts from PubMed Central. PubMed Central is a free fulltext database of pub-

licly accessible literature published in life sciences. In January 2018, it contained 4.6 

million records. Yet, only a subset of 1.4 million of publications is Open Access and 

linked with a PMID. 444,000 geneRIFs are linked with a paper contained in PubMed 

Central. Out of these 444,000, only 153,000 (35%) are linked with a paper contained in 

the Open Access subset. 

The BioMed platform. For accessing papers, we used BioMed, a local resource for 

literature access and enrichment. BioMed provides access to Open Access abstracts and 

fulltexts, thanks to a synchronized mirror of MEDLINE and PubMed Central. It also 

provides some text services such as information extraction [18], question answering 

[19, 20], or sentence splitting. BioMed is currently used in the workflow of protein 

curators at the Swiss Institute of Bioinformatics [21]. 

  

 

3.3 Algorithm 

The Levenshtein distance. The Levenshtein distance [22] quantifies the similarity be-

tween two strings ; for this purpose, it computes the number of single-characters oper-

ations required to transform one string into the other. The available operations are: 
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• d: deletion of a character 

• s : substitution of a character with another  

• i: insertion of a character 

For instance, three operations are requested for transforming the string “kitten” into the 

string “sitting”: (1) substitution of “k” with “s”, (2) substitution of “e” with “i”, (3) 

insertion of “g”. The number of operations is seen as the distance: the less operations 

are requested, the most similar strings are. An exact match results in a distance of zero. 

Finally, each operation can be weighted in order to tune the algorithm for a specific 

task. 

The Evidence Retrieval distance. Our approach for retrieving a geneRIF in a given 

paper is sentence-centric. First, the abstract (or fulltext when it is available) is split into 

sentences, thanks to local services provided by the BioMed platform. Then, all sen-

tences are compared with the geneRIF using a derivative Levenshtein distance. There 

are different available implementations of the Levenshtein algorithm, including recur-

sive, or iterative with matrix [23]. For this study, we have used a library from the Com-

prehensive Perl Archive Network (Text::Fuzzy). 
Preliminary analysis revealed some limitations in the default Levenshtein distance 

for evidence retrieval. First, the deletion of characters is actually not an issue: a lot of 
geneRIFs curators choose to cut several words from a sentence when producing the 
statement (such as “We show that” or “These results indicate that”). We have thus de-
cided to ignore deletion operations. Second, the Levenshtein distance has no normali-
zation according to the string length: a number of ten operations is obviously better for 
a thirty words evidence than for a five words one. We have thus introduced a normali-
zation with the total number of characters in the geneRIF. We finally obtained a deriv-
ative Levenshtein distance, called Evidence Retrieval (ER) distance, as given below:  
 

𝐸𝑅 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑡𝑟1, 𝑠𝑡𝑟2) =  
𝑆 + 𝐼

𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑡𝑟2)
 

In this formula, str1 is a candidate sentence, str2 is the evidence to retrieve,  S and I are 

the total number of substitutions and insertions required to transform str1 into str2 (de-

letions are not counted), and length(str2) is the number of characters in str2. The ER 

distance between a geneRIF and a candidate sentence can be seen as the percentage of 

characters in the geneRIF that required to be introduced or substituted in the sentence. 

An ER distance of zero means that the geneRIF is contained in the sentence, but that 

the sentence may contain some supplementary characters that were not chosen by the 

curator. 

 

3.4 Evaluation 

Test sets. For evaluation purposes, we designed two test datasets of 100 geneRIFs. The 

first test set was sampled in the set of the 444,000 geneRIFs linked to publications 

available in MEDLINE. The task evaluated with this first test set was evidence retrieval 
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in abstracts. The second test set was sampled in the set of 153,000 geneRIFs linked to 

publications contained in the PMC Open-Access subset. The task evaluated with this 

second test set was evidence retrieval in fulltexts. 

For all geneRIFs in the benchmarks, ER distances were computed between the 

geneRIF and all publication’s sentences. Then, only the sentence with the smallest ER 

distance was selected: we call it the candidate sentence. Results were analyzed accord-

ing intervals and thresholds of ER distance values. 

Equivalence judgements. Two experts evaluated the equivalence between the 

geneRIFs and the candidate sentences. Experts were bioinformaticians, one having an 

advanced degree in information sciences, the other one in biology. They were asked to 

judge the equivalence between a geneRIF and a candidate sentence, according to three 

possible values: 

• 100%: the candidate sentence contains all the annotatable in-formation contained in 

the geneRIF. The expert thinks that a curator could make an annotation only with 

this sentence. 

• 50%: the candidate sentence contains some annotatable in-formation contained in 

the geneRIF. The expert thinks that this sentence could help a curator, but also that 

other useful information are contained in other sentences. 

• 0%: the candidate sentence contains no annotatable information contained in the 

geneRIF. The expert thinks that this sentence would be of no help for a curator. 

The pairs (geneRIF, candidate sentence) were presented to the experts in a random or-

der. ER distances were hidden from experts. For each candidate sentence, the final 

equivalence is the average judgement of both experts. For instance, if one expert gave 

a 100% equivalence and the other one 50%, the final retained equivalence for this can-

didate sentence is 75%. Moreover, for each candidate sentence, an Inter-Annotator (IA) 

Agreement was computed. The IA Agreement is 100% minus the absolute difference 

between both judgements. For instance, if one expert gave a 100% equivalence and the 

other one 50%, the final IA Agreement for this candidate sentence is 50%. 

4 Results & Discussion 

First of all, we present some preliminary results and statistics on geneRIFs and papers’ 

sentences. Next, we focus on evidence retrieval in abstracts, then on evidence retrieval 

in fulltexts. For each benchmark, we present some interesting examples of candidate 

sentences and edit modifications handled by our approach. 

 

4.1 Preliminary results 

GeneRIFs’ length. We used regular expressions in order to compute and compare the 

lengths of geneRIFs, and the lengths of sentences in an abstract or a fulltext. Lengths 
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were computed with samples of 20,000 geneRIFs, 4,000 abstracts and 400 fulltexts. 

Mean and quartiles are showed in Table 1. 

Table 1. Length of geneRIFs, and sentences in abstracts and fulltexts. 

 

 Mean 1st q. Median 3rd q. 

GeneRIFs 21 14 20 27 

Abstracts sentences 24 16 22 29 

Fulltexts sentences 20 9 18 33 

In terms of length, GeneRIFs are quite similar to sentences from abstracts. For fulltexts, 

mean and median are similar to geneRIFs, but the distribution is sparser: there seems 

to be more short and long sentences in fulltext. Finally, we observe a mean of ten sen-

tences per abstract, versus five hundred per fulltext. This strengthens our sentence-cen-

tric approach. The sparser distribution in fulltexts could be explained by the fact that 

abstracts sentences aim at summarizing the fulltext content. Fulltext sentences are thus 

more likely to be short or long (such as long explanations). In this perspective, 

geneRIFs seem to be more factual evidences than detailed explanations. 

GeneRIFs’ words presence in abstracts. We then studied what proportions of 

geneRIFs words can be found in abstracts. In Figure 1, 440 sampled geneRIFs are plot-

ted according to their proportion of words present in the corresponding abstract. 

 

 

Fig. 1. GeneRIFs words present in abstracts. 

50% of geneRIFs have all their words contained in the abstract, including 33% that are 

found in exact match. The next 25% have between 90% and 100% of their words in the 

abstract, while the proportion quickly drops for the last 25%. This leads to several as-

sumptions. First, a huge proportion of geneRIFs seems to be extracted from the ab-

stracts. Second, simple exact match already retrieves one third of the evidences, which 

seems to be a fair baseline. The second third has above 95% of words present in the 

abstract; these evidences could be retrieved by approximate string matching. Finally, 
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the last third could be less reachable by our approach (at least for abstracts), as fewer 

words are present. 

 

4.2 Evidence retrieval in abstracts 

We now present the results of evidence retrieval in abstracts. For one hundred 

geneRIFs, two experts were asked to judge the equivalence of the best candidate sen-

tence extracted from the corresponding abstract. 

Equivalence according to distance intervals. Equivalences and IA Agreements are 

given in Fig. 2, according to ER distance intervals. 

 

 

Fig. 2. Equivalence according to distance intervals. 

It is remarkable how the equivalence curve quickly drops. We can split the curve into 

three parts (boundaries are vertical blue lines): 

─ for values between 0 and 0.2, equivalence is above 95% (even 100% for [0, 0.05] 

values) 

─ then, between 0.2 and 0.35, equivalence drops from 84% to 35% and 25% 

─ finally, for distances bigger than 0.35, equivalence falls to 0%. 

It is also remarkable how the IA Agreement curve behaves according to these three 

parts. For the first and last ones, the agreement is very high (above 90%, and even 100% 

for 100% or 0% equivalence), while the central part seems to be more uncertain for 

judges. 

Thus, the ER distance shows high abilities to produce two distinct sets of true posi-

tives (100% equivalence) and true negatives (0% equivalence), with 100% agreement 

in both cases. Between both is a set of more uncertainty for middle ER distances, with 

smaller equivalence values and less agreement between judges. 
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Equivalence according to distance thresholds. We know consider equivalence ac-

cording to proportion of retrieved geneRIFs. We did not focus anymore on ER distance 

intervals but on ER distance thresholds, in order to know what proportion of geneRIFs 

are retrieved in abstracts with a given threshold. Results are given in Fig. 3. 

 
 

Fig. 3. Equivalence and set proportion for abstracts. 

Considering the previous first part, 68% of geneRIFs are retrieved with an equiva-

lence mean of 99% with an ER distance threshold of 0.2. With a threshold of 0.25, 76% 

of geneRIFs are retrieved with an equivalence mean of 97%. Considering the drop in 

Figure 2, these thresholds are to be considered for delivering an optimal output. 

Interesting examples. We now present some remarkable retrieved evidences. 

 

Words addition or deletion. Beyond copy-pastes, the geneRIFs curators are likely to 

delete some unnecessary words, or to add words in order to bring some precision that 

is not explicit in the sentence. 

GeneRIF: “PfSir2a fine-tunes ribosomal RNA gene transcription.” Abstract sen-

tence (ER distance 0): “Here we investigate the nucleolar function of PfSir2a and 

demonstrate that PfSir2a fine-tunes ribosomal RNA gene transcription.” In this case, 

the geneRIF curator chose to cut the evidence introduction. 

GeneRIF: “Transgenic flies, expressing the human ERRa-G allele, constitutively 

over-express Cyp12d1, Cyp6g2 and Cyp9c1.” Abstract sentence (ER distance 0.05): 

“Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed 

Cyp12d1, Cyp6g2 and Cyp9c1.” In this case, the geneRIF curator simply adds “human” 

in order to add context and to specify the related organism. 

 

Acronyms expansion. Authors often use acronyms, which are developed only the first 

time they mention them in the article (e.g. “EC” for “Endothelial cells”). Thus, 

geneRIFs curators are likely to develop the acronyms used in the extracted evidence. 

Moreover, Greek letters are often used in gene names, while geneRIF curator can prefer 
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full letter names (e.g. “alpha” instead of “α”). These kinds of modifications can be han-

dled by pattern substitutions and numerous rules, especially for acronym expansions 

[24]. In contrast, approximate string matching can handle with these modifications 

without linguistic knowledge. 

GeneRIF: “interaction of alpha6beta1 in embryonic stem cells (ECCs) with laminin-

1 activates alpha6beta1/CD151 signaling which programs ESCs toward the endothelial 

cells lineage fate” Abstract sentence (ER distance 0.28): “Thus, interaction of α6β1 in 

ESCs with LN1 activates α6β1/CD151 signaling which programs ESCs toward the EC 

lineage fate.” In this case, the geneRIF curator developed two Greek letters, and three 

acronyms. Even if the ER distance is quite high, it is remarkable how approximate 

string matching dealt with so many substitutions and selected the good sentence. 

 

Anaphora resolution. As evidences can deal with just mentioned patterns in the argu-

mentative flow, authors are likely to use pronouns (e.g. “it”) or anaphora instead of 

writing repetitions. 

GeneRIF: “Under hypoxia reoxygenation or ischemia and reperfusion, StAR and 

CYP11A1 protein and gene expression was reduced without apparent relation to TSPO 

changes”. Abstract sentence (ER distance 0.20): “Under the same conditions, StAR and 

CYP11A1 protein and gene expression was reduced without apparent relation to TSPO 

changes”. In this case, the author did not repeat the experiment conditions in his sen-

tence; highlighting the evidence in the paper allows a curator to quickly check in the 

neighborhood of the sentence the sentence if the reported conditions are the same. 

 

4.3 Evidence retrieval in fulltexts 

We now present the results of evidence retrieval in fulltexts. 

Equivalence according to distance intervals. Equivalences and IA Agreements are 

given in Fig. 4, according to ER distance intervals. 

 

 

Fig. 4. Equivalence according to distance intervals. 
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Equivalence curves share the same shape for fulltexts than previously for abstracts: 

─ for values between 0 and 0.1, equivalence is 100% 

─ then, between 0.1 and 0.35, equivalence slowly drops from 90% to 25% 

─ finally, for distances bigger than 0.35, equivalence falls to 13%. 

As for abstracts, the IA Agreement is 100% when equivalence is maximum or mini-

mum. Yet, for the central part, we observe more uncertainty for judges in order to de-

termine if the sentence are equivalent or not. 

Equivalence according to distance thresholds. Results linking ER distance thresh-

olds and proportions of retrieved geneRIFs in fulltexts are given in Fig. 5. 

 

Fig. 5. Equivalence and set proportion for abstracts. 

Considering the previous first part, only 4% of geneRIFs are retrieved in fulltext with 

an equivalence of 100% with an ER distance threshold of 0.1. Going up to a threshold 

of 0.15, 9% of geneRIFs are retrieved with an equivalence mean of 90%. Considering 

the drop observed in Figure 4, these thresholds seem to be considered for delivering an 

optimal output. Bigger values for thresholds could be risky in a non-reviewed produc-

tion. 

It is difficult to evaluate the complementarity of evidence retrieval in fulltexts and 

abstracts. Further analyses reveal that for the five true positives in fulltexts with an ER 

distance inferior to 0.1, four were also true positives in abstracts (with an average ER 

distance of 0.03), while only one was a true negative in the abstract (with an ER distance 

of 0.32). GeneRIFs curators tend to preferably choose their evidence in abstracts. For 

geneRIFs that were missed in abstracts, a small portion could be retrieved in fulltext. 

Another aspect to consider is that the abstract is a summary of fulltext. Thus, when 

the geneRIFs are created from an abstract sentence, there is probably a passage in the 

fulltext where the evidence comes from, probably differently formulated, and more de-

tailed. This could explain why ER distances are larger in fulltexts than in abstracts. In 
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other words, the approximate string matching would retrieve fulltext sentences that 

were summarized in the abstract and used as geneRIFs. 

Yet, for approximately one quarter of geneRIFs, our approach is not able to retrieve 

the evidence neither in the abstract nor in the fulltext. In the below section, we present 

some of these missed geneRIFs. 

Interesting examples. We now present some remarkable retrieved evidences. 

 

Reformulated evidences. GeneRIF: “Three FNR proteins (ANR, PP_3233, and 

PP_3287) respond to O2 differently.” Fulltext sentence (ER distance 0.15): “Thus, the 

response of ANR was similar to that reported previously for E. coli FNR, further con-

firming the similarities between these two proteins, but PP_3233 and PP_3287 were 

less responsive with both O2 and nitric oxide compared with ANR (25).” In this case, 

the sentence contains the same information than the geneRIF, and was selected by our 

algorithm even if the interaction was interpreted and reformulated into “respond to O2 

differently”. 

GeneRIF: "These data support the role of proconvertase PCSK5 in the processing of 

ovarian inhibin subunits during folliculogenesis." Fulltext sentence (ER distance 0.18): 

"We demonstrate that the spatial and temporal expression of the proconvertase PCSK5 

overlaps with the expression and processing of mature inhibin subunits in the ovary 

during follicle expansion." In this case, a good sentence was retrieved, while “we 

demonstrate that the […] expression of the proconvertase PCSK5 overlaps…” was re-

formulated into “These data support the role of proconvertase PCDK5 in…“. 

 

4.4 Missed geneRIFs 

Here are some examples of missed geneRIFs. 

GeneRIFs: “Observational study and genome-wide association study of gene-dis-

ease association.” “Clinical trial of gene-disease association and gene-environment in-

teraction” “Observational study of gene-disease association, gene-environment interac-

tion, and pharmacogenomic / toxicogenomic.” 

These three examples taken in the abstracts benchmark are more descriptions of the 

studies than facts REWRITE. Thus, it is not surprising that no good sentence was re-

trieved in the articles. 

In other geneRIFs that were not successfully retrieved, we observed several long 

geneRIFs with multiple sentences, probably gathering facts from different parts of the 

article. At last, some geneRIFs are statements inferred by the curator, thus are beyond 

the scope of statistical or linguistic systems. 

5 Conclusion 

We investigated approximate string matching for the task of retrieving evidences ex-

pressed in geneRIFs in their corresponding papers. We defined an Evidence Retrieval 

distance derived from the Levenshtein distance. When selecting the abstract sentence 
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having the smallest distance value, this approach can retrieve 76% of evidences with a 

very high precision (97%). While 33% of geneRIFs are just copy-pastes, it is remarka-

ble how this approach can handle with complex editing modifications, including refor-

mulations, acronym expansions, or anaphora resolutions. Beyond evidence retrieving, 

approximate string matching could be used in fulltext for retrieving sentences that con-

tain the information summarized in an abstract. 

It is worth reminding that, in contrast with machine learning or rule-based ap-

proaches, which need a substantial amount of training data or a priori knowledge, such 

classic approaches are on the shelf, and are still very effective for concrete text mining 

applications. 

In 2017, within the Elixir Excelerate project, which aims at ensuring the delivery of 

world-leading life-science data services, the whole geneRIFs dataset was treated. 

337,000 were retrieved in abstracts, and 13,770 in fulltexts. These retrieved geneRIFs 

were then used in order to fill the Europe PMC database [25,1], maintained by the Eu-

ropean Bioinformatics Institute (EBI). These geneRIFs are now available for highlight-

ing when a user reads an article. We hope that this will help the curators to navigate in 

the literature in their daily workflow, thus facilitating to bridge the gap between infor-

mation contained in literature and in databases. 
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