
Unsupervised Query-based Document
Recommendation Using Deep Learning

Wael Alkhatib, Steffen Schnitzer, Tim Steuer, and Christoph Rensing

TU Darmstadt, Communication Multimedia Lab,
Rundeturmstr. 10, 64283 Darmstadt, Germany

{wael.alkhatib,christoph.rensing,steffen.schnitzer,tim.steuer}@kom.

tu-darmstadt.de

Abstract. Traditional recommender systems, which aim to recommend
documents, rely on statistical information only (collaborative filtering
approaches) or on meta-information describing the user profile, the doc-
uments as well as their relations. They poorly consider the text semantics
and often suffer from homophily by recommending documents which are
similar to the documents already acquired by the user. In this work, we
propose a unsupervised query-based recommender system for the recom-
mendation of textual documents. The system relies on Deep Semantic
Similarity Model (DSSM) to implicitly measure the semantic similarity
between the user’s interest, represented the user’s history or interests as
a query of keywords, and the available documents. Our approach uses
an automatically generated ontology. This ontology is used to formulate
the queries and to interpret the semantic relatedness between user pref-
erences in the user model and the concepts representing the documents.
The experimental results show that our system significantly outperforms
the baseline in terms of FScore.

Keywords: content-based recommender system; word embbedings; deep
learning; DSSM, ontologies.

1 Introduction

The rapid expansion of the deliverable knowledge on the web along with the rise
of big data keeps users overwhelmed. This triggered the need for intelligent rec-
ommender systems which support personalized decisions through large amounts
of available information according to the user’s interests and preferences. Recom-
mender systems aim to reduce this burden of information overload by predicting
items of interest to a user.

A large number of fundamental works can be found in the area of recom-
mender systems [5]. Many of the prominent approaches are based on collabora-
tive recommenders which use “User Behaviour” for recommending items [11, 23,
26]. This kind of recommender systems suffers from many shortcomings. Firstly,
the cold start problem for new users is hard to tackle since no knowledge is avail-
able about their preferences. Similarly, new items would not be recommended

until rated by a substantial number of users. Additionally, they poorly perform
for individuals who do not consistently agree or disagree with any group of peo-
ple [13]. Finally, there is a lack of transparency, a collaborative system is a black
box, which yields a recommendation without reasoning. Therefore there is little
confidence in the recommendation.

Content-based filtering is prevalent in Information Retrieval, where the mul-
timedia and text content of documents is used to retrieve documents relevant
to a user’s query [19]. Content-based recommenders provide recommendations
by comparing representations of content describing an item to representations
of users’s interests. The advantages over collaborative recommender systems are
user independence, transparency and better handling of the new-items problem.
Transparency can be achieved by a list of content features or descriptions that
caused the recommendation. However, content-based techniques are limited by
the features that are associated either automatically or manually with the item.
Another major challenge is whether the representation captures all the aspects
that influence the user’s preferences or interests. Similarly to collaborative rec-
ommenders, content-based recommenders suffer from the cold start problem for
a new user.

Semantic-based recommender systems have been proposed in order to give
the recommender system better reasoning ability [31]. However, the need for
domain-specific knowledge limits their applicability.

Our method is inspired by the research field of Deep Learning. Recently,
Deep Learning has yielded promising results over different ”Natural Language
Processing” problems, including semantic parsing [34], search query retrieval
[28], sentence modeling and classification [14], name tagging and semantic role
labeling [4], relation extraction and classification [17]. Also in the area of recom-
mender systems, Deep Learning has been successfully used [32, 37, 3, 22]. Deep
Learning is characterized by implicit feature engineering. It is capable of extract-
ing features with better quality than manually hand-crafted features. Microsoft
research developed two promising latent semantic models leveraging deep learn-
ing techniques in order to measure the similarity between two documents. These
two models are Deep Structured Semantic Models (DSSM) [12] and CLSM Con-
volutional Latent Semantic Model (CLSM) [27]. DSSM was designed for infor-
mation retrieval and web search ranking, taking advantage of the availability of a
huge amount of click-through data. Each data instance holds the web page title,
the query and the relevance strength between them. DSSM is a latent semantic
model, with a deep neural network, that projects documents and user queries
into a common low-dimensional space. Therefore, the relevance of a document
given a query is equivalent to the distance between them in that common space.

DSSM can be used in a variety of machine learning tasks such as ranking
and classification. We use it to implicitly embed the text semantic in the rec-
ommendation process. We propose a query-based recommender system named
R-DSSM, which reflects the recommendation as results of a query of the user’s
preferences taking into consideration his previous knowledge and current inter-
est. The proposed model learns hidden latent features using the DSSM structure

to implicitly measure the semantic similarity between a query representing the
user’s interest and the available documents under unsupervised conditions.

Our contributions can be summarized as follows:

– To the best of our knowledge, R-DSSM is the first content-based recom-
mender system that reflects the user’s interests as a query of keywords and
relies on a deep model to learn the semantic similarity between the query
and the available documents under unsupervised conditions.

– R-DSSM assumes unstructured documents and keyword-based user profile.
It minimizes the reliance on explicit representative features of both, the user
and the document profiles.

– It alleviates the cold start problem for new users by using a set of keywords
as an initial user model. Similarly, the cold start problem for new documents
is reduced through the semantic based matching with the user’s interests.
Additionally, it overcomes the problem of data sparsity by using trigram
based word hashing to represent the documents.

The remaining parts of the paper is organized as follows: An overview of
related work is provided in Sect. 2. Our methodology to build content-based
recommender system is introduced in Sect. 3. Section 4 introduces our experi-
mental settings and evaluation outcomes. Finally, Sect. 5 summarizes the paper
and discusses future work.

2 Related Work

With regard to text documents recommendation, we present a variety of methods
that directly relate to our approach. These methods fall into two categories.
Firstly, ontology and rule-based recommender systems which rely on a predefined
user profile, domain ontology and rules as well as rich meta-information about
the documents in order to make a recommendation. Secondly, besides traditional
recommender systems, we concentrate on approaches that leverage deep learning
for recommender systems.

Pujahari and Padmanabhan used decision lists to build a user profile [21].
When a new document arrives, it will be given a rank based on matching against
the rules in the decision lists. Then, documents will be recommended based on
their rank. Rohani et al. proposed a recommender system based on representing
the user’s profile as preferences in a hierarchy of categories and documents [24].
The inner nodes hold the categories and sub-categories while the leaves hold the
documents. A score is associated with each node to represent the interests of a
user in that document or category. To generate recommendations, the system
takes the top 10 categories with the highest scores then it searches for documents
that are similar to the ones in the top 10 categories.

Yu et al. proposed an ontology-based recommender system for context-aware
E-learning [35]. The main constitutive components are three ontologies, namely
Learner Ontology, Learning-Content Ontology and Domain Ontology. The Learner
Ontology represents the learner context e.g., his learning goal, learning interests,

location, and the subjects already mastered. The Learning Content Ontology
defines the properties of contents as well as relationships between them. The
Domain Ontology is built using existing domain ontologies, also the concepts
are ordered in a hierarchy. The system ranks the learning contents according
to the learner’s goal in the learner’s ontology. This ranking is done by project-
ing the learning goal and the learning contents on the Domain Ontology then
measuring the distance between each learning content and the learning goal.

Kumaran and Sankar combined collaborative filtering with semantic repre-
sentation [15]. In their approach, the recommendation process is based on the
learner performance and the rating of each topic by other learners. It consists of
nodes representing the course topics, arcs representing the relationships between
two topics and link labels representing the weight (ranking) between two topics.
Another semantic-net is used to represent the user profile. It contains informa-
tion about performance, knowledge level, etc. The user profile keeps track of the
user actions and records them. The recommendation is done based on the weight
(ranking) between the topics and the learner performance.

Overall, the main limitation of the above studies is the reliance on predefined
ontologies or rules to match a user profile with a document. Moreover, the user
profile and the documents assumed the availability of rich meta-information
which limits the system scalability and applicability over different domains.

Recently, researchers have proposed deep learning structures for tackling rec-
ommendation problems. Some studies integrate deep learning with traditional
recommender models [32, 37, 3, 8], while others proposed models which rely solely
on deep learning techniques [6, 33, 10]. Gong and Zhang proposed a hash-tag rec-
ommendation system that solely relies on a convolutional neural network (CNN)
for tags recommendation in microblogs [7]. They transferred the recommenda-
tion task into a multi-class classification problem. Xu et al. presented a tag-aware
personalized recommender systems which uses a deep semantic similarity based
structure in order to compute the similarity between a user and an item, where
both the user and the item are represented by tag annotations [33]. Similarly
other deep learning models: CNN, MLP, RNN, and DSSM were used [36]. The
capability of deep learning to learn the non-linear relationship between users
preferences and documents, as well as to learn the representative features of
document and a user profile are causing a paradigm shift towards deep learning-
based recommendation.

However, the previously studied models which use solely deep learning as a
recommender, still rely on labeled data to train a deep semantic model to learn
the relationship between documents and users preferences. Collecting such la-
belled data is time-consuming and tedious. In addition, the lack of transparency
while using deep learning models in the context of recommending textual doc-
uments hinders the interpretation of why a document is recommended. Finally
and most importantly, diversity, novelty, and serendipity in recommendation are
not intensively addressed since the main goal of the studied models is to provide
similar documents.

In this work, we address the different challenges by introducing R-DSSM:
an unsupervised query-based document recommendation using Deep Learning.
It assumes unstructured documents without meta-information. R-DSSM reflects
the user’s interests as a query of keywords based on the previously read doc-
uments, which provide transparency and interpretability of the recommenda-
tions. The model relies on DSSM to learn the semantic similarity between the
query and the available documents alleviating the sparsity problem by repre-
senting documents based on their word-hashing trigrams of letters. The DSSM
is trained in an unsupervised manner by automatically extracting keywords from
the unstructured documents and let the DSSM learn the similarity between the
original document and the extracted keywords. This is a key point in the pro-
posed solution which makes it domain independent and excludes the need for a
huge amount of click-through data.

3 Methodology

The proposed system constitutes of two main components, namely the User
Model and the Query-based Recommender. In addition, an ontology is used,
which is created automatically once, using a chain of natural language process-
ing techniques and external knowledge bases. The user model represents the
user’s interests as a query of keywords. These concepts are extracted from the
documents that the user has read so far. The Query-based Recommender uses a
DSSM model to learn the semantic similarity between the query representing the
user’s history and the candidate documents. Finally, it provides ranked list of
documents based on the explicit matching between the recommended documents
and the generated query terms.

3.1 Word Embeddings Creation

This module provides the distributed representations of words and documents
contained in the document corpus using FastText and Doc2Vec respectively.

Word and document embeddings can form an excellent universal representa-
tion to optimize the feature space in non-neural models. Word embeddings are
numerical representations of words in a reduced space as a vector of numbers.
They can capture the words semantic and context. This means semantically-
related words are close in the vector space [1]. For word embeddings, a FastText
model is trained using the whole document corpus. FastText is a form of word
embedding capable of learning character n-gram representations in addition to
the word itself, thus it can take subword information into account [2].

For document representation, Doc2Vec model is trained using the whole doc-
ument corpus. Similarly, Doc2Vec is an unsupervised technique to represent
sentences, paragraphs and documents in a reduced features space as a vector
of numerical values [16]. Using Doc2Vec model, documents with similar context
will be close in the vector space.

R-DSSM Architecture

Document
Representaion

Module

Query D1 D2 D3 Dx

Word-Hashing Module

Candidate

Documents

Query Generator

User Model

Ontology

Ranked List of

Documents with

Regard to Q

Semantic-based

Ranking Module

Fig. 1. Block diagram of the query-based recommender.

3.2 Ontology Generation

To build a comprehensive ontology we combine the different lexical databases
WordNet, YAGO and ConceptNet to build a basic ontology. WordNet [20] is a
large semantic network organizing words in synonym sets (synsets). All words
and phrases in a synset describe a certain context. Most notably, WordNet is an
ontology containing different kinds of semantic relations between nouns, namely
synonymy, hyponymy, meronymy, antonymy and morphological relations. YAGO
[18]) is a lexical database which was built by extracting relations from Wikipedia,
WordNet, and GeoNames. At the time of writing it contains almost 17 million
taxonomic relations as well as various other relation types such as ”happened
on date” and ”lives in”. ConceptNet [29] provides many non-taxonomic relations
such as ”has property”, ”is used for” and ”located near”. It contains approxi-
mately 28 million relations and is available in 304 languages in total. Using the
different lexical databases we construct our basic ontology.

Since the lexical databases are static and have small coverage of concepts for
particular domains, we expand this initial ontology by extracting additional rela-
tions. We crawl new semantic relations fromWikipedia. We use a lexico-syntactic
pattern-based approach, specifically, we use the six Hearst [9] patterns to detect
taxonomic relations. We enrich the first ontology with around 113,000 new tax-

onomic relations. Ambiguous patterns might return correct as well as incorrect
results, for that, we keep the relations found at least 3 times to guarantee a higher
precision of the extracted relations. The ontology is further extended using the
FastText model. We add any concept with a high cosine similarity to a concept
already in the ontology as a potential synonym. We set a hard threshold of 0.9
for the cosine similarity which reflects words with similar context or meaning
in order to minimize the number of incorrectly selected concepts as synonyms.
The threshold is selected based on an ontology enrichment approach using the
synonym relation proposed by Alkhatib et al. [1].

3.3 User Model

The user model should provide information about the user’s interests and prefer-
ences. The user model is built by analyzing the documents in the user’s history.
Figure 2 illustrates the process of building the user model: First, the noun-
phrases (NPs) are extracted from the documents in the user’s history using lin-
guistic filters. A combination of 3 linguistic filters is used to extract multi-word
NPs from the corpus.

– Noun Noun+
– Adj Noun+
– (Adj|Noun) + Noun

Then, we identify the concepts that reflect the interests of a user by applying
a corpus-oriented technique i.e. Term Frequency/Inverse Document Frequency
(TF-IDF) on these phrases. Noun phrases with high TF-IDF weights indicate
concepts which are specific for single or few documents. Terms with low TF-
IDF would represent the general interest of the user. The combination of these
concepts should be representative of the main topics covered by the user. In the
third step, the candidate concepts are checked against our ontology. Concepts
which are not found in the ontology or do not have semantic relation with other
concepts will be excluded in this phase to filter out any noun phrases that might
not present concepts.

The user model should be capable of reflecting the long-term and short-term
user’s interest. By using the full history during the concept extraction, we can
highlight the long-term interest, while using the most recent documents will help
identifying the recent short-term interest of a user. In our evaluation scenario,
we are considering the full history for building a query from the user model.

3.4 Query-based Recommender System

The proposed recommender system transfers the recommendation process to
the information retrieval space. Contrary to traditional recommender with poor
usage of semantics, our recommender adapts the state-of-the-art semantic sim-
ilarity model of DSSM to measure the similarity between the query and the
candidate documents. Figure 1 illustrates the process of generating recommen-
dations, which consists of the following four steps:

User History

as Documents

TF-IDF Filter
Semantic

 Filter

Documents

Concepts
Filtered

Concepts

Ontology

Fig. 2. The workflow of building a user model.

Query Generator The input of this module, is a set of concepts generated by
the User Model. The Query Generator generates a set of queries in such a way
that each query partially reflects the user’s interests.

The semantic relations between the concepts should be taken into consider-
ation when creating a query. On one hand, the presence of multiple synonyms
in the same query could clarify and emphasis the meaning. On the other hand,
the presence of a hypernym and its hyponyms i.e. (V ehivhle ←→ Car) would
reduce the query clearness. The Query Generator randomly selects a subset of
the concepts of the User Model and excludes all hypernyms of other concepts in
the same subset to form a query.

Document Representation Module This module represents a document as
a set of topics. Firstly, the noun phrases are extracted. Then using the FastText
representation of the noun phrases, a naive approach to cluster the noun phrases
is applied: Using a soft cosine similarity threshold of 0.5 between word-pairs, the
vectors which are similar to each other are clustered together into one set. At this
point, each set is considered to be representing one topic of the document. This
was assumed because the vectors in the set are representing all the noun phrases
(concepts) that are semantically similar. Topics with only one noun phrase are
excluded. By this we filter out all noun phrases that do not represent relevant
topics i.e author name, typos, etc..

Deep Semantic Similarity Model (DSSM) Using the Word-Hashing Mod-
ule the query extracted from the user model and the candidate documents are
represented as vectors of trigrams of letters. In the last step, the DSSM model
is used to obtain a ranked list of the candidate documents for each query. Our
proposed model is based-on a modified version of the DSSM structure in [12] as
shown in Figure 3. The proposed structure is a fully connected neural network
with two non-linear projection layers. The input for the model are the terms of

the extended query and the representations of the available documents generated
in the previous step. The model has a preprocessing input layer that converts
the input queries and documents into Word-Hashing vectors. Word-Hashing is
a technique to represent a document as a vector of trigrams. The output of the
DSSM is a vector with 120 features that represents the semantics of the input.
To measure the similarity, a cosine-similarity layer is attached on top of the
DSSM. The output of this layer is a rank for each document regrading the se-
mantic similarity to the query. The negative query-document pairs are generated
by matching the original query with a random feature vector as an irrelevant
document.

26K

400

120

26K

400

120

26K

400

120

26K

400

120

Q D1 D2 Dn

P(D1|Q) P(D2|Q) P(Dn|Q)

R(D1|Q) R(D2|Q) R(Dn|Q)

Word hashing

Non-linear

projection

Relevance measured

by cosine similarity

Posterior probability

computed by softmax

Semantic features

Fig. 3. The proposed DSSM model structure.

Unsupervised Training of the DSSM: The DSSM should be trained with
set of documents and their corresponding queries. In order to train the DSSM
in an unsupervised way, we automatically extract the keywords representing
a document and generate the corresponding queries to train the DSSM on on
query-document pairs.

Figure 4 illustrates the workflow of the keywords extraction module. The
process starts with extracting a set of keywords using Rapid Automatic Keyword
Extraction (RAKE) algorithm, an unsupervised document-oriented keywords
extractor [25]. RAKE weights represent the importance of each noun phrase with
respect to the whole document. Only keywords which consist of two or more
nouns are selected as candidate keywords. Single words might represent very
common or high-level concepts which are less probable to represent a document.
Using our ontology, we remove all nouns that do not represent concepts such as
person name, university name, cities, countries, etc. This is done by matching
the extracted keywords with concepts in the ontology. The resulted list might
still include concepts that do not represent the main topics of the document. In
order to get rid of those concepts, we pass all extracted concepts through word
embeddings filter to filter out all concepts that do not have a strong semantic

relation with other ones. Using the extracted keywords we generate a set of eight
queries for each document.

Then we train the DSSM based on them and their corresponding documents
as the positive training examples. The negative query-document pairs are gen-
erated by selecting documents with low cosine similarity to the document corre-
sponding to the query using Doc2Vec as a document representation.

The number of queries per document was fixed to 8 after an intensive evalu-
ation of their effect on the training loss. A range between 2 and 15 queries was
evaluated and the loss showed no significant improvement after using more than
eight queries.

Keywords Extractor

(RAKE)
Concepts Filtering

Filtering Based on

Word Embeddings

Filtered Keywords

Ontology

Fig. 4. The workflow of keywords extraction module for DSSM training.

Explicit Semantic-based Ranking Module (ESR) The output of the DSSM
is a ranked list of documents. As mentioned, multiple queries are used and thus
we have multiple lists of ranked documents. These will be combined based on
a majority vote over the different queries. All the documents recommend by
only one query will be filtered out. The remaining list might still include docu-
ments which are irrelevant or partially related to the basic query. Therefore, the
recommended documents are re-ranked based on matching the main keywords
in these documents against the set of terms from our basic queries using word
embeddings and a hard cosine similarity threshold of 0.9.

4 Evaluation

The experiments carried out aim to study the effectiveness of using R-DSSM
for content-based recommendation of documents by analyzing three different
aspects, namely the input representation, the network structure and the perfor-
mance against the baseline. A set of 100,000 ACM papers, published in different
ACM conferences [30], was used in order to perform an offline evaluation of
the query-based recommender. The research papers have been collected from 51

ACM conferences covering different research areas including Network Security,
Software Architecture, Database, Machine Learning, Education etc. The Doc2Vec
and FastText models used were trained using the Wikipedia and the previously
mentioned ACM papers.

4.1 R-DSSM Structure Analysis

Tow major aspects were analyzed with regard to the R-DSSM structure, namely
the number of hidden non-liner projection layers and the input encoders of the
word-hashing trigrams. The R-DSSM structure was optimized by minimizing
the cosine-similarity based loss over the training and validation sets. Two dif-
ferent encoders were used to represent the weighted word-hashing trigrams. The
first one is Term Count (TC) as a document-oriented technique and the sec-
ond is TF-IDF as corpus-oriented technique. In all experiments, we use ReLu as
default activation function for neurons and applied batch normalization. Adam
Optimizer was used as the optimizer. Additionally, we have used initial learning
rate of 0.0001 and trained our model with a batch size of 256 over 150 epochs.

Table 1. Training and validation loss corresponding to the different configurations.

DSSM Layers Encoding Using TC Encoding Using TF-IDF

L1 L2 L3 Training Loss Validation Loss Training Loss Validation Loss

400 120 - 1.0 24.5 0.1 0.6

1000 500 - 0.8 25.0 0.09 2.0

2000 1500 1000 1.5 38.1 0.15 3.1

2000 1500 500 1.3 23.0 0.08 2.7

Table 1 presents the cosine-similarity based loss of the R-DSSM over four
different structures and two types of encoders. Using TF-IDF for encoding the
weighted word-hashing representation of the query and documents reduces the
loss over the training and testing sets compared to using TC. This can be justified
by the fact that TF-IDF reflects the importance of the different trigrams for a
specific document with regard to the whole corpus. Accordingly, using a more
shallow structure of two layers with 400 and 120 neurons respectively performed
better compared to more complex structures which essentially related to the
amount of training samples that can support optimizing the DSSM as well as
the number of trigrams representing the vocabulary. Consequently, in all further
experiments the first structure will be used with TF-IDF as the encoding method.

4.2 Detailed Analysis of R-DSSM

In order to analyze the effect of the training set size on the capability of the
DSSM to learn a semantic model over the different subject areas, the following
experiment has been applied. A subset of 6600 papers was selected to train the

0

5

10

15

20

25

30

35

Testing

0
200
400
600
800

1000
1200
1400
1600
1800

Training

Fig. 5. Distribution of training and testing papers over the different subject areas.

model, while 120 papers were used for testing. Figure. 5 illustrates the distri-
bution of the papers over the different subject areas. The papers in the testing
set were manually grouped using their keywords under 8 subject areas. For each
paper, the R-DSSM evaluated based on recommending papers covering same
subject areas out of the used 6600 for building the model.

Figure. 6 illustrates the precision@k over the different subject areas. The R-
DSSM performance for papers with subject area of Parallelism is significantly
high, while it is lower for papers under other subject areas with less training sam-
ples. The performance of the model for Distributed Software Systems (DSS) area
is significantly low. DSS is at the core of the vast majority of applications rang-
ing from big data centres, embedded systems to networking and cloud systems
which requires more data to train a model for learning the semantic similarity
under this field.

4.3 Comparison against the Baseline

In order to evaluate the query-based recommender system against the baseline,
we used 6600 papers with at least 3 references for each paper from the ACM
papers used in the experiments. The recommender system is evaluated by con-
firming whether the referenced papers are in the top 3 recommended documents.
Based on 3-folds cross-validation, we compare our proposed model against two
baselines, namely a collaborative recommender and K Nearest Neighbors (KNN)
as a recommendation model with Doc2Vec for document representation. The
KNN model retrieves candidate documents based on the cosine-similarity be-
tween the Doc2Vec representation of documents.

For the collaborative system, different variations of the user’s history were
evaluated and the best performance is reported here. The user’s history, for
both R-DSSM and Doc2Vec+KNN, considered to be the paper to recommend

Fig. 6. Precision of R-DSSM over the different subject areas.

its references while for the collaborative system the history are the other papers
published by the same author.

Table 2. Comparison of R-DSSM against the baseline.

Recommender System Precision Recall F-Score

The proposed recommender 0.3674 0.4469 0.4033
Doc2Vec+KNN 0.2140 0.1453 0.1731
Collaborative 0.0731 0.0902 0.0808

Table 2 shows a comparison between R-DSSM and the baseline based on
the top 3 recommended papers. The R-DSSM overcomes both systems, the
Doc2Vec+KNN and the collaborative, with F-Score equal to almost the dou-
ble of the Doc2Vec+KNN and significantly better compared to the collaborative
system in terms to F-Score.

4.4 Explicit Semantic-based Ranking Module (ESR) Effect

We further analyze the impact of explicitly matching the candidate recommen-
dations with the original query in order to re-rank the recommended papers.
Table 3 proves that the explicit matching clearly improves the ranking of the

Table 3. Comparison of R-DSSM with and without ERS.

Recommender System Precision Recall F-Score

Without ESR 0.3674 0.4469 0.4033
With ESR 0.6140 0.7473 0.6738

recommended papers, however, it reduces the model ability to provide not just
similar papers but also papers with novel knowledge.

5 Conclusion

In this paper we have proposed an unsupervised query-based recommender sys-
tem. The system relies on DSSM to implicitly measure the semantic relatedness
between a query representing the user’s preferences and the textual documents
available for recommendation. The query-based recommender significantly out-
performed the baseline. In addition, the system is featureless and relies on un-
structured documents without meta-information. While the proposed model is
very general and easy to use it might be better in specific use-cases to augment
the user model with additional contextual information. For example, the entire
input document or other contextual data, such as the author of a piece of text or
the date on which it was written could be used. Other semantic representations
of the documents and the queries, instead of word hashing, might improve the
model performance. Using the proposed system, novel and personalized recom-
mendation can be provided by manipulating the query extracted from the user
model to include more general or specific concepts.

References

1. Alkhatib, W., Herrmann, L.A., Rensing, C.: Onto. kom-towards a minimally su-
pervised ontology learning system based on word embeddings and convolutional
neural networks. In: KEOD. pp. 17–26 (2017)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606 (2016)

3. Chu, W.T., Tsai, Y.L.: A hybrid recommendation system considering visual in-
formation for predicting favorite restaurants. World Wide Web 20(6), 1313–1331
(2017)

4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. Journal of Machine Learning
Research 12(Aug), 2493–2537 (2011)

5. Drachsler, H., Verbert, K., Santos, O.C., Manouselis, N.: Panorama of recom-
mender systems to support learning. In: Recommender systems handbook, pp.
421–451. Springer (2015)

6. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In: Proceedings of the 24th
International Conference on World Wide Web. pp. 278–288. International World
Wide Web Conferences Steering Committee (2015)

7. Gong, Y., Zhang, Q.: Hashtag recommendation using attention-based convolutional
neural network. In: IJCAI. pp. 2782–2788 (2016)

8. He, R., McAuley, J.: Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: proceedings of the 25th interna-
tional conference on world wide web. pp. 507–517. International World Wide Web
Conferences Steering Committee (2016)

9. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Proceedings of the 14th conference on Computational linguistics-Volume 2. pp.
539–545. Association for Computational Linguistics (1992)

10. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

11. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating
choices in a virtual community of use. In: Proceedings of the SIGCHI conference
on Human factors in computing systems. pp. 194–201. ACM Press/Addison-Wesley
Publishing Co. (1995)

12. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: Proceedings of
the 22nd ACM international conference on Conference on information & knowledge
management. pp. 2333–2338. ACM (2013)

13. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an
introduction. Cambridge University Press (2010)

14. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

15. Kumaran, V.S., Sankar, A.: Recommendation system for adaptive e-learning using
semantic net. International Journal of Computer Applications 63(7) (2013)

16. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning. pp. 1188–1196 (2014)

17. Liu, C., Sun, W., Chao, W., Che, W.: Convolution neural network for relation ex-
traction. In: International Conference on Advanced Data Mining and Applications.
pp. 231–242. Springer (2013)

18. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: A knowledge base from multilin-
gual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research.
CIDR Conference (2014)

19. Melville, P., Sindhwani, V.: Recommender systems. In: Encyclopedia of machine
learning, pp. 829–838. Springer (2011)

20. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

21. Pujahari, A., Padmanabhan, V.: An approach to content based recommender sys-
tems using decision list based classification with k-dnf rule set. In: Information
Technology (ICIT), 2014 International Conference on. pp. 260–263. IEEE (2014)

22. Rassweiler Filho, R.J., Wehrmann, J., Barros, R.C.: Leveraging deep visual features
for content-based movie recommender systems. In: Neural Networks (IJCNN), 2017
International Joint Conference on. pp. 604–611. IEEE (2017)

23. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM
conference on Computer supported cooperative work. pp. 175–186. ACM (1994)

24. Rohani, V.A., Kasirun, Z.M., Ratnavelu, K.: An enhanced content-based recom-
mender system for academic social networks. In: Big Data and Cloud Computing
(BdCloud), 2014 IEEE Fourth International Conference on. pp. 424–431. IEEE
(2014)

25. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from
individual documents. Text Mining: Applications and Theory pp. 1–20 (2010)

26. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating
”word of mouth”. In: Proceedings of the SIGCHI conference on Human factors
in computing systems. pp. 210–217. ACM Press/Addison-Wesley Publishing Co.
(1995)

27. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with
convolutional-pooling structure for information retrieval. In: Proceedings of the
23rd ACM International Conference on Conference on Information and Knowledge
Management. pp. 101–110. ACM (2014)

28. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: Learning semantic representations
using convolutional neural networks for web search. In: Proceedings of the 23rd
International Conference on World Wide Web. pp. 373–374. ACM (2014)

29. Speer, R., Havasi, C.: Representing general relational knowledge in conceptnet 5.
In: LREC. pp. 3679–3686 (2012)

30. Sugiyama, K., Kan, M.Y.: A comprehensive evaluation of scholarly paper recom-
mendation using potential citation papers. International Journal on Digital Li-
braries 16(2), 91–109 (2015)

31. Trewin, S.: Knowledge-based recommender systems. Encyclopedia of library and
information science 69(Supplement 32), 180 (2000)

32. Wang, H., Shi, X., Yeung, D.Y.: Relational stacked denoising autoencoder for tag
recommendation. In: AAAI. pp. 3052–3058 (2015)

33. Xu, Z., Chen, C., Lukasiewicz, T., Miao, Y., Meng, X.: Tag-aware personalized
recommendation using a deep-semantic similarity model with negative sampling.
In: Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. pp. 1921–1924. ACM (2016)

34. Yih, W.t., He, X., Meek, C.: Semantic parsing for single-relation question answer-
ing. In: ACL (2). pp. 643–648. Citeseer (2014)

35. Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-based semantic rec-
ommendation for context-aware e-learning. Ubiquitous Intelligence and Computing
pp. 898–907 (2007)

36. Zhang, S., Yao, L., Sun, A.: Deep learning based recommender system: A survey
and new perspectives. arXiv preprint arXiv:1707.07435 (2017)

37. Zhuang, F., Zhang, Z., Qian, M., Shi, C., Xie, X., He, Q.: Representation learning
via dual-autoencoder for recommendation. Neural Networks 90, 83–89 (2017)

