
Initial explorations on chaotic behaviors of
Recurrent Neural Networks

Bagdat Myrzakhmetov1,2, Zhenisbek Assylbekov1, and Rustem Takhanov1

1 School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
{bagdat.myrzakhmetov, zhassylbekov, rustem.takhanov}@nu.edu.kz

2 National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan

Abstract. In this paper we analyzed the dynamics of Recurrent Neural
Network architectures. We explored the chaotic nature of state-of-the-art
Recurrent Neural Networks: Vanilla Recurrent Network and Recurrent
Highway Networks. Our experiments showed that they exhibit chaotic
behavior in the absence of input data. We also proposed a way of re-
moving chaos from Recurrent Neural Networks. Our findings show that
initialization of the weight matrices during the training plays an im-
portant role, as initialization with the matrices whose norm is smaller
than one will lead to the non-chaotic behavior of the Recurrent Neural
Networks. The advantage of the non-chaotic cells is stable dynamics. At
the end, we tested our chaos-free version of the Recurrent Highway Net-
works (RHN) in a real-world application. In the language modeling task,
chaos-free versions of RHN perform on par with the original version.

Keywords: Chaos Theory · Recurrent Neural Networks · Recurrent
Highway Networks · Language Modeling.

1 Introduction

The dynamics of the Neural Networks has been studied in recent papers ([2, 4]).
Laurent and Brecht ([7]) proposed to design architecture of a Recurrent Neural
Network (RNN) cell in such a way that it is not chaotic. The concept of chaos ([6,
8]) comes from the theory of nonlinear dynamical systems and essentially means
that wide divergence in outcomes of a system is due to small differences in initial
conditions (such as those due to rounding errors in numerical computation).
So, Laurent and Brecht show that the widely-used RNN cells, LSTM ([5]) and
GRU ([3]), are chaotic. Depending on the initialization of the weights, LSTM
and GRU might show a chaotic behavior. The proposed Chaos Free Network
(CFN) architecture is devoid of chaos and is not inferior to LSTM. Recently,
there were two main advancements over ubiquitous LSTM architecture: 1) Zoph
and Le [20] used LSTM to generate a new RNN cell, which they refer to as a
‘Neural Architecture Search’ (NAS) cell; 2) Zilly et al. [1] extended the success
of Highway networks ([12]) to recurrent networks and suggested a new RNN
cell, which they refer to as a ‘Recurrent Highway Network’ (RHN) cell. Both,
NAS and RHN cells significantly outperform the LSTM cell in language modeling

2 Myrzakhmetov et al.

tasks when evaluated on a traditional PTB dataset ([11]). Therefore the following
questions arise: Are these new state of the art architectures chaotic? If so, then
according to Laurent and Brecht [7] there should be non-chaotic alternatives
that do not underperform significantly. And if there are no such analogs, can
chaos be necessary after all? We will try to answer these questions in this paper.

We explored the state of the art Recurrent Highway Networks (RHN, [1])
and vanilla RNN ([16]) for chaotic behavior. Our experiments showed that both
RHN and vanilla RNN, depending on the initialization of the weights, might
show a chaotic behavior. This chaotic behavior may lead to a high degree of
sensitivity to the initial state in the long-term behavior of forward orbits. We
found out that the initialization of the weight matrices heavily affects chaoticity
of Neural Networks.

2 CHAOTIC NATURE OF SIMPLE VANILLA RNN

2.1 Vanilla RNN in 1D case

In this section we consider the dynamics of the Vanilla Recurrent Neural Net-
work. Before analyzing the complex neural network architectures of Recurrent
Highway Network (RHN) and Neural Architecture Search (NAS), we started by
analyzing the simple Recurrent Neural Network (RNN), proposed by Elman in
1990 [16], for chaoticity. So, for the Simple RNN architecture we want to discuss
the nonlinear map f(x) = tanh (Wh+ Ux+ b), where W and U are the weight
matrices. We assume that there is no input data is provided, and the bias term
is zero, so our system will become: f(x) = tanh (Wh).

In this subsection, we consider the simple RNN architecture in 1D case, we
assume that our values h,W ∈ R, i.e. our state and weight are scalars.

Claim 1 A dynamical system induced by Simple RNN:

ht+1 = tanh(Wht), ht,W ∈ R (1)

is non-chaotic when W ∈ (−1, 1).

Fixed point and Bifurcation Analysis One of the main goals of bifurcation
theory [13] is to find the fixed points and the periodic points of maps and then
look for the region of their stability. The fixed points of the mappings are calcu-
lated by solving the equation f(x) = x. For our case, h = tanh(Wh), for W ≤ 1
there is only one solution: h = 0, for other values, there are 3 solutions.

The implicit plot of h = tanh(Wh) is given in Figure 1. Plots of h and
tanh(Wh) for W = 1, 2 are provided in Figure 2a and 2b.

To discuss the stability of the above fixed points, we can use the stability
criterion which say that if |f ′(x)|x=x∗ < 1 then the fixed point x = x∗ is stable,
otherwise it is unstable [13].

In our case, we have fixed points h = 0, h1(W) and h2(W). For the first fixed
point h = 0: |f ′(h)|h=0 = W (1− tanh2(Wh)) = W (1− tanh2(0)) = W (1− 0) =

Initial explorations on chaotic behaviors of Recurrent Neural Networks 3

Fig. 1: Implicit plot of h = tanh(Wh).

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

tanh(h)
h

(a) One solution of h = tanh(h).

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

tanh(2h)
h

(b) Three solutions of h = tanh(2h).

Fig. 2: Solutions of h = tanh(Wh) for W = 1 and W = 2

W . So, by using the above notation, fixed point h = 0 is stable when |W | < 1,
otherwise it is unstable. Hence h = 0 remains as a stable fixed point when
−1 < W < 1.

As W crosses the value 1, the stable fixed point h = 0 becomes an unstable
one. Thus, a qualitative change in the behavior of the fixed point occurs at
W = 1 of the parameter value. So we consider W = 1 as the first bifurcation
point. Also at W = −1, there also occurs a bifurcation.

To analyze the fixed points h1(W) and h2(W), we have to solve the inequality:
|W (1 − tanh2(Wh))| < 1, where h1 ∈ (0, 1) and h2 ∈ (−1, 0). If this inequality
holds, then the fixed points are stable. The solutions of this inequality will be
|W | sech2(Wh) < 1. Most of the values of h1 and h2 are close to 1 and -1. If we
put these values of h into the inequality |W | sech2(Wh) < 1, then this inequality
holds for all W , therefore we do not consider these fixed points.

The bifurcation diagram of the 1D RNN is given in Figure 3.

Since our main aim is to study the long term behavior of the map, so, after
understanding the behavior of the fixed points of f = tanh(Wh), we now consider
the periodic points of period 2 and higher and look into their stability property.
The period 2 points are fixed points of the second order iteration of the map.
So, let us consider the iterated map f2(h).

If we draw the graph of f2(h) = tanh(tanh(h)) for W = 1 with the line x = y,
there will be only one point of intersection, which is h = 0, which is already our
first order fixed point of f . This graph is shown in Figure 4.

4 Myrzakhmetov et al.

-8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3: Bifurcation diagram of the l1D RNN hn+1 = tanh(Whn).

The fixed points of f are also fixed points of f2 as f(h) = h ⇒ f(f(h)) =
f(h)⇒ f2(h) = h.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

tanh(tanh(h))
h

Fig. 4: Solutions of h = tanh(tanh(h)).

The period 2 points of the map are given by the solution of the equation:
f2(h) = f(f(h)) = tanh(W (tanh(Wh))) = h. We find the solutions h ≈ −1,
h = 0 and h ≈ 1 for other values of W (except W = 1).

Let us see how the derivatives of the second iterate function change at the
bifurcation value.

∂
∂h (tanh(W tanh(Wh))) = W 2 sech2(Wh) sech2(W tanh(Wh)).

Now let’s analyze the bifurcation points:
|f ′(h)| = W 2 sech2(Wh) sech2(W tanh(Wh))⇒
|f ′(h)|h=1 = W 2 sech2(W) sech2(W tanh(W)).
The value of the above equation is always less than the absolute values of |1|

for any values of W . So all points of W are stable on the second order periods.
So for all values of W , −1 < W 2 sech2(W) sech2(W tanh(W)) < 1 will be

between -1 and 1.
Also for the second fixed point, we have

Initial explorations on chaotic behaviors of Recurrent Neural Networks 5

|f ′(h)|h=−1 = W 2 sech2(−W) sech2(W tanh(−W)).

Here also −1 < W 2 sech2(−W) sech2(W tanh(−W)) < 1 is for any values of W .
This means that these two fixed points of f2 are stable fixed points for all values
of W and they will not become unstable. Periodic points of period 2 will not
occur.

Lyapunov Exponent analysis As said before, a chaotic system is sensitive
to initial conditions. Lyapunov exponent is the rate at which nearby trajecto-
ries diverge from each other with time ([15]) and a measure for identifying the
chaoticity of the system ([14]). Now let’s consider two iterations of our map
starting from two values of x which are very close to each other, i.e. with the
very small difference δ: x0 and x0 + δx0. Under the rule of the map let these
points be shifted to x1, ..., xn and x1 +δx1, ..., xn+δxn. If we expand f(x) about
xn we have δxn = f ′(xn−1)δxn−1 assuming that δxn is sufficiently small. Hence
the divergence of the two trajectories after n steps, δxn, is related to their initial

separation, δx0, by
∣∣∣ δxn

δx0

∣∣∣ =
∏n−1
i=0

∣∣∣f ′(xi)∣∣∣.
We expect that this will vary exponentially at large n,

∣∣∣ δxn

δx0

∣∣∣ = eλn. So the

Lyapunov exponent is defined by λ = limn→∞
1
n

∑n−1
i=0 ln

∣∣∣f ′(xi)∣∣∣.
Obviously, if λ > 0, neighboring trajectories separate from each other at

large n, which corresponds to chaos. However, if trajectories converge to a fixed
point or a limit cycle they will get closer together, which corresponds to λ < 0.
Hence, we can determine whether or not the system is chaotic by the sign (+ or
-) of the Lyapunov exponent. Below, we have given the calculated values of the
Lyapunov exponent for some values of the parameter W in case of the Simple
RNN map. We have considered iteration size of 100000 to get the values.

In our case, f(h) = tanh(Wh) and f ′(h) = W (1− tanh2(Wh)).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Ly
ap

un
ov

 E
xp

on
en

t

Fig. 5: Lyapunov coefficient versus W value.

In Figure 5 we have shown the values of Lyapunov Exponent versus the
weight value W . From this Figure we can see that the values of -1.1 and 1.1 of

6 Myrzakhmetov et al.

W the Lyapunov Exponents become positive, showing the beginning of a chaotic
region. Also this Figure 5 further supports the first two bifurcation points as -
1.0 and 1.0 where the Lyapunov Exponent is almost zero. Interestingly, after
attaining the chaotic region at W = 1.0 and W = −1.0, we see the negative
Lyapunov exponent values. They signify that within the chaotic region also, at
certain values of the parameter, there are regular behaviors. This is supported
also by the bifurcation diagram which we have drawn in Figure 3 in the previous
section. (After some values of W , it will stabilize).

2.2 Multidimensional case for Vanilla RNN

Now, consider the high dimension cases. For vanilla RNN:

h(t+1) = tanh (Wht), ht ∈ Rd (2)

Claim 2 If ||W || < 1, then for (2) we have the following statement: for any h0
we have lim(n→inf)ht = 0.

Proof. ||ht+1|| = || tanh (Wht)|| ≤ ||Wht|| ≤ ||W ||||ht||. Therefore, ||ht|| ≤
||W ||t||h0|| → 0, t→ inf.

Claim 3 There exists W with ||W || > 1, such that induced dynamical system
(2) is chaotic (means that there should be at least 1 nontrivial attractor, i.e.
attractor which is not a point).

When do we have these Claims 2 and 3? Let ||h|| be a norm on Rd such that
|| tanh (h)|| ≤ ||h||. Examples of such norm are:

a) ||h||p = (
∑d
i=1 h

p
i)

1/p is a lp norm. For any such norm let us define corre-
sponding matrix norm as ||W ||p = maxh:||h||p=1

||Wh||p.
Now, we tested the weight matrix, the norm of which is greater than 1. Lets

consider the weight matrix W =

[
−1 −4
−3 −2

]
. If we plot the graph of h(1) vs. t and

h(2) vs. t, then we get the graphs shown in Figures 6a and 6b.
In the above example, all norms are larger than one (Frobenius norm, nuclear

norm (trace norm), max norm, l1 norm, l2 norm).

3 CHAOTIC BEHAVIOR OF RHN

After exploring the vanilla RNN, we considered the dynamics of the state of the
art RNN architectures. Recurrent Highway Network (RHN) was proposed by
Zilly et al. [1] and introduced a new theoretical analysis based on the Gers̆gorins
circle theorem [17]. This theorem helps to clarify many optimization issues and
modeling. Their approach allows transition depths to be larger than one.

The main idea behind increasing the depth of the step-to-step recurrent state
transition is to allow the RNN tick for several time steps per step of the sequence

Initial explorations on chaotic behaviors of Recurrent Neural Networks 7

(a) h(1) vs t (b) h(2) vs t

Fig. 6: State vs. time graphs for 2D case when the norm is larger than one

([18, 19]). By using this technique we can adapt the recurrence depth to the
problem.

RHN architecture is given in the following form: the Highway layer compu-
tation is defined as:

y = h� t+ x� c (3)

where
t := σ(Wtx+Rts+ bt); (4)

h := tanh(Whx+Rhs+ bh); (5)

And then the RHN layer is defined as:

sn+1 = t� (h− sn) + sn. (6)

� denotes Hadamard product.

3.1 RHN chaoticity in 1D

In this subsection we analyze the dynamics of the Recurrent Highway Network
(RHN) in 1D case. First, we can start with the analysis of fixed points and check
the region of their stability.

If we assume that no input is provided, then the induced form of the RHN
will become:

t := σ(Rts); (7)

h := tanh(Rhs); (8)

sn+1 = t� (h− sn) + sn. (9)

If we put everything together, we will get the following equation:

sn+1 = σ(Rtsn)� (tanh(Rhsn)− sn) + sn. (10)

For the Recurrent Highway Networks we have the following claim.

8 Myrzakhmetov et al.

Claim 4 A dynamical system induced by RHN in Equation 10 shows non-chaotic
behavior when W ∈ (−1, 1), as thus follows from the properties of Vanilla RNN.

Proof. To find the fixed points, we have to solve the equation: x = f(x), so for
the Equation 10 we will have:

s = σ(Rts)� (tanh(Rhs)− s) + s⇒
0 = σ(Rts)� (tanh(Rhs)− s)⇒
0 = σ(Rts) and 0 = (tanh(Rhs)− s)

0 = σ(Rts) ⇒ no solutions exists, as the values of sigmoid function lies between
0 and 1. So we will consider only the second part.

0 = tanh(Rhs)− s⇒
s = tanh(Rhs)

This equation s = tanh(Rhs) is the case for the simple RNN. We already
considered the fixed point analysis of the simple RNN in section 2.1. So the fixed
points of the Recurrent Highway Networks are the same as the vanilla RNN and
the fixed point analysis of the Vanilla RNN can be applied for the RHN. This
proves our Claim 4.

3.2 RHN chaoticity in 2D

Claim 5 There exists W : ||W || > 1 such that a dynamical system induced by
RHN in Equation 10 is chaotic.

We performed experiments to check the chaotic behavior of the RHN in 2D.
We show that in the absence of the input data RHN can lead to dynamical
systems sn+1 = Φ(sn) that are chaotic ([6]). Again, we assume that there is no
input data is provided. Then the dynamical system induced by a two-dimensional

RHN with weight matrices: Rt =

[
0 1
1 0

]
and Rh =

[
−5 −8
8 5

]
and zero bias for

the model. s can be initialized with any values. If we assume that no input data
is provided and all bias terms are zero, then the induced RHN architecture will
become as in Equations 7, 8 and 9.

Now we plot the RHN state values s
(1)
n vs. s

(2)
n for n = 100000 iterations.

The resulting plot is shown in Figure 7. Most trajectories converge toward the
depicted attractor. We can get above pictures for any initial values of s (we can
initialize with zeros or any values) and for any number of highway layers (we
tried 1, 5, 10 highway layers). This picture shows the strange attractor as in
LSTM and GRU given in Laurent and Brecht [7].

Now we studied time series analysis of this system. If we plot s1 vs. n we can
notice that the values of s1 will jump from one place to another in the chaotic
manner. There is no convergence. This is given in Figure 8a. This is also true
for s2 vs. n (given in Figure 8b). Then, if we plot the graph s1 vs. s2, we can
get the strange attractor as shown in Figure 7.

Initial explorations on chaotic behaviors of Recurrent Neural Networks 9

Fig. 7: Strange attractor of chaotic behavior of RHN for the weight matrices:
Rt=[[0,1],[1,0]] and Rh=[[-5,-8],[8,5]]

(a) s(1) vs n (b) s(2) vs n

Fig. 8: State vs. time graphs for 2D case RHN

10 Myrzakhmetov et al.

Next we tested chaoticity of the RHN by using the Lyapunov instability
of Bernoulli shift [8] as in section 2.1. We consider the two points which are
initially very close to each other, with δx0 “infinitesimally small” differences:
δx0 := |x′0−x0|. Then we iterate these two points through our induced RHN map
sn+1 = Φ(sn), in Equation 9, 100 times and calculated the Euclidean distance
between |ŝn−sn| these points. The graph is given in Figure 9. From this graph we
can see that after some iteration, two trajectories diverge exponentially despite
the fact that initially these two points are highly localized, with the distance no
more than 10−7.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 9: |ŝn − sn| for 2 trajectories: x0 and x0 + δx0

Also we tested the weight matrices

Rt =

[
−2 6
0 −6

]
and Rh =

[
−5 −8
8 5

]
. The norm of these matrices are larger

than one. If we plot the graph of s1 vs. s2 with n = 100000, then we again
explore the strange attractor as shown in Figure 10a. Here again, for any initial
value of s and for any number of highway layers we will get this picture.

After exploring the chaotic behavior in RHN, we now tried to build chaos-
free Neural Networks. For RHN, we again use our Claim 2 which was applied
in vanilla RNN. Here, if we initialize the weights with matrices whose norm is
smaller than one, then again we can have the non-chaotic behavior in RHN.

In the above cases, the norm of the weight matrices are larger than one and
we explored the chaotic behavior. Now, let’s analyze the case when the norm of
the matrices are smaller than 1. For example, we can test these weight matrices:

Rt =

[
0 0.5

0.5 0

]
and Rh =

[
−0.5 −0.8
0.8 0.5

]
.

The norm of these two matrices are smaller than one. If we explore the values
of s1 and s2 for n→ inf, then, both values of s will go to zero. We also plotted
the graph of s1 vs. s2. The plot is given in Figure 10b. From this, we can see

Initial explorations on chaotic behaviors of Recurrent Neural Networks 11

(a) Strange attractor of chaotic behavior
of RHN for the weight matrices: Rt =
[[-2,6], [0,-6]] and Rh = [[-5,-8], [8,5]]

(b) Attractor for weight matrices: Rt =
[[0, 0.5], [0.5, 0]] and Rh=[[-0.5, -0.8], [0.8,
0.5]]

Fig. 10: Strange and regular attractor of chaotic and non-chaotic RHN for 2D
case

that we can get non-chaotic RHN when we initialize the weight matrices with
the values whose norm is smaller than one.

4 EXPERIMENTS

In this section, we tested our non-chaotic neural cells in real-world applications.
Our aim is to identify, how non-chaotic version will affect on the performance. Is a
non-chaotic behaviour good in a real-world application? Do we need a chaoticity?
Or is it good to have a chaotic systems? To answer these questions, we performed
experiments.

We examined Recurrent Highway Networks on the language modeling task.
We use Penn Tree Bank (PTB) [11] corpus, which was pre-processed by Mikolov
et al. [10]. First we reproduced the initial results from Zilly et al. [1] without
weighting (WT) of input and output mappings and got the 68.355 perplexity on
the validation set and 65.506 perplexity on the test set. These results are similar
to the results in the paper (In the paper it was 67.9 and 65.4).

Then we tested our chaos-free version. We initialized the weight matrix in a
way, such that their Frobenius norm do not exceed 1. We use TensorFlow ([9]) to
perform our experiments. We first created a matrix whose norm is smaller than
one and feed it during the initialization. We used the same hyper-parameters as
in Zilly et al. [1] during the training. On PTB dataset, our non-chaotic neural
cells showed 68.715 perplexity on the validation set and 66.290 perplexity on the
test set. Full results and results of Chaos Free Network (CFN) [7] are given in
Table 1. From this, we can see that the chaos free version of RHN showed similar
results as the chaotic version and that chaos-free initialization will not lead to a
decrease in performance.

12 Myrzakhmetov et al.

Table 1: Perplexity on the PTB set.
Model Validation Perplexity Test Perplexity

Variational RHN + WT [1] 68.355 65.506
Non-chaotically initialized RHN 68.715 66.290
CFN (2 layers)+dropout [7] 79.7 74.9

5 Conclusion and future work

In this paper we analyzed the dynamics of the Recurrent Neural Networks. Our
analyses showed that the vanilla RNN and the most recent RHN architecture
exhibit a chaotic behavior in the absence of input data. We found out that,
depending on the initialization of the weight matrices, we can have non-chaotic
systems. Our experiments showed that the initialization of the weights with
the matrices whose norm is less than one can lead to non-chaotic behavior. The
advantage of non-chaotic cells is stable dynamics. We also performed experiments
with non-chaotic RHN cells. Our experiments on language modeling with the
PTB dataset showed similar results as an RHN cell with chaos by using the
same hyper-parameters. In the future, we are going to test non-chaotic RHN cells
for other tasks: speech processing, image processing. Also for NAS architecture,
at this moment, generating the architecture is an expensive process for us, as
there are not enough resources. We will test our chaos-free initialization for NAS
architectures again.

Acknowledgement

This work has been funded by the Committee of Science of the Ministry of Edu-
cation and Science of the Republic of Kazakhstan, contract #346/018-2018/33-
28, IRN AP05133700. The work of Bagdat Myrzakhmetov partially has been
funded by the Committee of Science of the Ministry of Education and Science of
the Republic of Kazakhstan under the research grant AP05134272. The authors
would like to thank Professor Anastasios Bountis for his valuable feedback.

References

1. J. G. Zilly, R. K. Srivastava, J. Koutńık, and J. Schmidhuber. Recurrent Highway
Networks. In International Conference on Machine Learning, 4189–4198 (2017).

2. D. Sussillo and O. Barak. Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks. Neural computation, 25(3):626–649
(2013).

3. K. Cho, B. Van Merrinboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

4. R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, 1310–1318 (2013).

Initial explorations on chaotic behaviors of Recurrent Neural Networks 13

5. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780 (1997).

6. S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. Westview press (2014).

7. T. Laurent and J. von Brecht. A recurrent neural network without chaos. arXiv
preprint arXiv:1612.06212 (2017).

8. E. Ott. Chaos in dynamical systems. Cambridge university press (2002).
9. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard and M. Kudlur. Tensorflow: a system for large-scale machine
learning. In OSDI Vol. 16, pp. 265–283 (2016, November).

10. T. Mikolov, and M. Karafiát, L. Burget, J. Černockỳ and S. Khudanpur. Recur-
rent neural network based language model. In Eleventh Annual Conference of the
International Speech Communication Association (2010).

11. M. P. Marcus, M. A. Marcinkiewicz and B. Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2), pp.313–
330 (1993).

12. R. K. Srivastava, K. Greff and J. Schmidhuber. Training very deep networks. In
Advances in neural information processing systems (NIPS), pp. 2377–2385 (2015).

13. Y. A. Kuznetsov. Elements of applied bifurcation theory. (Vol. 112). Springer
Science & Business Media (2013).

14. A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano. Determining Lyapunov
exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), pp.285–317
(1985).

15. A. M. Lyapunov. The general problem of the stability of motion. International
journal of control, 55(3), pp.531–534 (1992).

16. J. L. Elman. Finding structure in time. Cognitive science, 14(2), pp.179-211
(1990).

17. S. Gers̆gorin (S. Gerschgorin). Über die Abgrenzung der Eigenwerte einer Matrix
Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques
et na, no. 6, 749–754 (1932).

18. R. K. Srivastava, B. R. Steunebrink and J. Schmidhuber. First experiments with
POWERPLAY. Neural networks: the official journal of the International Neural
Network Society, 41, pp.130-136 (2013).

19. A. Graves. Adaptive computation time for recurrent neural networks. arXiv
preprint arXiv:1603.08983 (2016).

20. B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578 (2016).

