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Abstract. The estimation of the posterior distribution is the core prob-
lem in topic models, unfortunately it is intractable. There are approxima-
tion methods and sampling methods proposed to solve it. However, most
of them do not have any clear theoretical guarantee of neither quality
nor rate of convergence. Online Maximum a Posteriori Estimation (OPE)
is another approach with concise guarantee on quality and convergence
rate, in which we cast the estimation of the posterior distribution into
convex/non-convex optimization problem. In this paper, we propose a
more general and flexible version of OPE, namely Generalized Online
Maximum a Posteriori Estimation (G-OPE), which not only enhances
the flexibility of OPE in different real-world datasets but also preserves
key advantage theoretical characteristics of OPE when comparing to the
state-of-the-art methods. We employ G-OPE as inference method for a
topic proportion of a document within large text corpora. The exper-
imental and theoretical results show that our new approach performs
better than OPE and other state-of-the-art methods.

Key words: Topic models, posterior inference, Online MAP estimation, large-
scale learning, non-convex optimization

1 Introduction

Topic models are widely used in text processing and Latent Dirichlet Allocation
(LDA)[3] is the core of a large family of probabilistic models. LDA provides an
efficient tool to analyze hidden themes in data and helps us recover hidden struc-
tures/evolution in big text collections. The key problem in topic models is to
compute the posterior distribution of a document given other parameters. The
posterior inference problem in topic models is to infer the topic proportion of
documents and topics which are distributions over vocabulary. Large datasets or
streaming environment contain huge number of documents, hence the problem
of estimating topic proportion for an individual document is especially impor-
tant. The quality of learning method for LDA is determined by the quality of the
inference method being employed. Unfortunately, the posterior distribution of a
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document is intractable [3]. There are two main approaches to tackle it. One is
approximating the intractable distribution by tractable distribution, for exam-
ple Variational Bayes inference (VB) [3]. The other is a sampling method, which
draws numerous of samples from target distribution then estimating the inter-
esting quality from these samples. The well-known method is Collapsed Gibbs
Sampling (CGS) [7]. There are also famous methods such as Collapsed Varia-
tional Bayes (CVB) [12,13], CVBO [2], Stochastic Variational Inference (SVI)
[9], etc. To our best knowledge, there are not any mathematical guarantees for
quality and convergence rate in existing approaches. Therefore, in practice we
do not have any ideas about how to stop the methods we are using but trying,
observing and retrying again to reach the best solution.

Another way to solve the posterior distribution is to view it as an optimiza-
tion problem. To infer about topic proportion of a document is to solve the
maximum a posterior of topic proportion given words in this document and all
topics of corpus [14]. This optimization problem is usually non-convex and NP-
hard in practice [11]. There is very few theoretical contributions in non-convex
optimization literature, especially in topic models. Online Maximum a Posteri-
ori Estimation (OPE) [14] which is an online version of Frank-Wolfe algorithm
[8] is a stochastic algorithms to solve such kind of non-convex problem. OPE
is theoretically guaranteed to converge to a local stationary point at a rate of
O(1/T) where T was the number of iterations [14]. Although OPE is easy to
implement, fast convergence and is mathematically guaranteed, it remains some
problems. The weakness of OPE is that it is not well adaptive with different
datasets because of the uniform distribution in its operation. We will exploit
this crucial point to propose a new and more general algorithm based on OPE.
When changing its operations, we have to retain the advantage of the original
algorithms, that is theoretical guarantees.

Our main contribution is following:

— We propose new algorithm Generalized Online Maximum a Posteriori Es-
timation (G-OPE) for solving posterior inference problem in topic models
based on OPE. G-OPE is more general and flexible than OPE, adapts better
in different datasets and preserves the key advantages of original method.

— We employed G-OPE into the existing algorithm Online-OPE [14] to learn
LDA in online settings and streaming environment.

— We conduct experiments to demonstrate that Online-GOPE outperforms
novel methods to learn LDA.

The rest of this paper is organized as follows. In Section 2, we introduce an
overview of posterior inference with LDA and main ideas of existing methods.
In Section 3, our new algorithm G-OPE is proposed in details. In Section 4, we
conduct experiments with two large datasets with state-of-the-art methods in
two different measures. Finally Section 5 is our conclusion.
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Fig. 1: Latent Dirichlet Allocation

2 Related work

Latent Dirichlet Allocation (LDA) [3] is the basic and famous model in topic
modeling. LDA models a collection of text documents as topics. It represents
each document as a probability distribution 6, over topics, and each topic 3,
as a probability distribution over words. In Fig.1, K is number of topics, M is
number of documents in corpus, N is number of words in each documents. Note
that 8, € Ak, B, € Ay *. The generative process for each document d as
follows

— draw a topic distribution 84 ~ Dir(«)

— For the n* word of d:
o draw topic index zg,|04 ~ Multinomial(04)
o draw word wgn|2an, B ~ Multinomial(B,,,)

The most important problem we need to solve in order to use LDA is to com-
pute the posterior distribution of hidden variable in a given document p(0, z|w, «, 3).
However, it is intractable. There are many ways to handle it. Variational Bayesian
Inference [3] approximates p(z4, 04, d|3, @) by obtaining a lower bound on the
likelihood which is adjustable by variational distributions. CVB and CVBO0 deal
with p(zq4,d|3, @), CGS draws samples from p(z4, w|3, @) to estimate it. Even-
tually, all methods try to estimate the topic proportion 84. In this paper, we
infer topic proportion for a document directly by solving the Maximum a Pos-
teriori Estimation (MAP) of 8, given all words of this documents and model’s
parameters.

the MAP estimation of topic mixture for a given document d:

0" = arg max Pr(d, 0|3, a) = arg max Pr(d|0, 3) Pr(0|«) (1)
Oc Ak 0cAk

Under the assumption about the generative process, problem (1) is equivalent
to the following:

K K
0" = arg max Zdj logzekﬁkj + (a—1) Zlog Oy (2)
el k=1 =1

Within convex/concave optimization, problem (2) is relatively well-studied.
In the case of @ > 1, it can easily be shown that the problem (2) is concave,

YAy ={z € RV|z, > 0,3, zn =1}
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Algorithm 1 OPE: Online Maximum a Posteriori Estimation

Input: document d and model {3, a}
Output: 0 that maximizes f(6) = 3. d;log Y"1, OkBr; + (o — 1) Y1, log 04
Initialize 61 arbitrary in Ax
fort=1,2,..T do
Pick f; uniformly from {3, d;log Y"1, 60;8k;; (o — 1) 34, log 6}
Fy = % 22:1 fn ,
e, := arg maXgca (Fy (0¢), )
0i11:=0: + L’;e"
end for

and therefore it can be solved in polynomial time. Unfortunately, in practice of
LDA, the parameter « is often small, says o < 1, causing problem (2) to be non-
concave. Sontag and Roy showed that problem (2) is NP-hard in the worst case
when parameter a < 1 [11]. Consider problem (2) as a non-convex optimization
problem, the gradient-based method such as Gradient Descent (GD) is ineffective
because of the existence of saddle point, hence we need an effective random
methods to avoid it.

OPE [14] is an iterative algorithm for problem (2). In the literature of it-
erative optimization algorithms, in each iteration, they try to build a tractable
function that approximates true objective function, then optimize approximat-
ing function to reach the next point. The various algorithms have different tech-
niques to build their own approximation. For example, using Jensen’s inequality,
Expectation-Maximization (EM) [5] or Variational Inference (VI) [3] calculate
the Evidence Lower Bound (ELBO) then maximize it. Gradient Descent con-
structs its quadratic approximation in each step and minimizes the quadratic.
OPE solves the problem (2) by constructing an approximate sequence by stochas-
tic way and solve it by Frank-Wolfe update formula [6].

Details of OPE is in Algorithm 1. At each iteration ¢, it draws a sample
function f;(0) and builds the approximate function F}(6) which is the average
of all previous sample function. The most interesting idea behind OPE is that the
objective function is the sum of a likelihood and a prior. In each step, it builds
an approximate function F3(0) by choosing either likelihood or prior with equal
probabilities {0.5,0.5}. That means when inferring about the topic proportion of
a document, we use either the evidence of the document (likelihood) or knowledge
we have known before (prior). This behavior is very natural to human. However,
OPE considers likelihood and prior with the same contributions by using uniform
distribution. In fact, when humans deal with a new sample, one can rely on more
likelihood if we have observed enough evidences, or rely on more prior knowledge
if we have been lack of evidences. This simple idea leads us to build a more general
and flexible version of OPE by using Bernoulli distribution instead of uniform
distribution.
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3 Generalized Online Maximum a Posteriori Estimation

In this section, we introduce our new algorithm, namely Generalized Online
Maximum a Posteriori Estimation (G-OPE) based on OPE. OPE operates by
choosing the likelihood or prior at each step t, then builds the approximation
F}(0) which is the average of all parts draw from previous steps and current step.
In G-OPE, in order to introduce the Bernoulli distribution into the sampling
step, we need to modify the likelihood and prior so that the approximation
function F(0) — f(0) as t — 0.
Denote

K K
91(0) = " d;logy OBy ; 92(8) = (a— 1)) logby
J k=1 k=1

then f(0) = ¢1(0) + g2(0) with ¢g1(0) and ¢2(0) are the likelihood and prior
respectively.

Denote

G1(0) :=g1(0)/p; G2(0) := ¢g2(0)/(1—p). G1(0) and G2(0) are the adjusted
likelihood and prior respectively.

G-OPE is detailed in Algorithm 2. In Algorithm 2, f(8) is the true objective
function we need to maximize. At step ¢, f;(0) is the sample function we draw
from set of adjusted likelihood and prior, F;(0) is the approximate function
we build. T" is number of iterations for whole algorithm. Because G-OPE is
stochastic, in theory we consider T — oo.

We use Bernoulli distribution with parameter p to replace for uniform dis-
tribution in OPE. For each iteration (¢t = 1,2,..,T), we pick f;(0) as Bernoulli
random variable with probability p from {G1(0), G2(0)}. In statistic theory, as
t increases (at least 20) and it is better to choose p not close to 0 or 1.

Pr(fi(0) = G1(0)) =p; Pr(fi(0) =G2(0)) =1—p

Consider ¢ independent Bernoulli trials with {Pr(f, = G1) =p; Pr(fn, = G2) =
1—p} Vh =1..t, we build a stochastic approximate sequence

t
1
Fro= hz_:lfh, Vt=1,2,..T

Fy(0) is the average of all sample functions drawn until current step. So it is
guaranteed to converge to f(0) as t — oo, which will be shown in Theorem 1.
The parameter p controls how much likelihood part and prior part contribute to
the objective function. We can utilize this point to choose the most suitable p in
each circumstance. OPE is a special case of G-OPE when Bernoulli parameter
p = 0.5. So OPE is not flexible in many datasets. G-OPE adapts well with
different datasets, we will show it in the experiment section. In the rest of this
section, we will show that G-OPE preserves the key advantage of OPE which is
the guarantee of the quality and convergence rate. This character is unknown
for the existing methods in posterior estimation in topic models.
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Algorithm 2 G-OPE: Generalized Online maximum a Posteriori Estimation

Input: document d and model {3, a}, parameter p € (0, 1)
Output: 0 that maximizes f(6) = 3 d;log Y 1, OkBr; + (o — 1) Y1, log 04
Initialize @1 arbitrary in Ax
fort=1,2,..T do
Pick f; as Bernoulli distribution from {G1(0),G2(6)} where
{Pr(fe(0) = G1(0)) =p; Pr(f:(0) =G2(0)) =1—p}
Fi(0) := § Xy fn(6)
e 1= arg MaXec Ay (Ft/ (0¢), )
Oi11: =6+ et;j&
end for

Theorem 1 (Convergence of G-OPE algorithm). Consider the objective
function f(0) in Eq.2, given fized d, 3, a,p. For G-OPE, with probability 1, the
followings hold:

1. For any 0 € Ak, Fi(0) converges to f(0) ast — +oo.

2. 0; converges to a local mazimal/stationary point of f(6) at a rate of O(1/t).

Proof:

The proof of the rate of convergence is similar to results in [14]. We claim
that G-OPE also converges to a local maximum/stationary point. Before the
proof, we remind some notations: B(n, p) is the Bernoulli distribution, N (u, 0?)
is normal distribution. E(X) and D(X) are expectation and ariance of random
variable X respectively.

The objective function f(6) is a non-convex. The criterion used for the con-
vergence analysis is importance in non-convex optimization. For unconstrained
problems, the gradient norm ||V f(0)|| is typically used to measure convergence,
because ||V f(0)]] — 0 captures convergence to a stationary point. However, this
criterion can not be used for constrained problems. Instead, we use the ”Frank-
Wolfe gap” criterion [10].

Denoted
K K
q1(0) = Zdj logZGkﬂkj ; 92(0) = (a—1) Zlog@k
J k=1 k=1
and
G1(0) == g1(0)/p ; G2(0) == g2(0)/1 —p
f(0) = g1(6) + 92(0) = p.G1(0) + (1 — p)G2(6)
Pick f;(0) as Bernoulli distribution from {G;(6),G2(0)} where
Pr(f.(0) = G1(0)) =p; Pr(fi(0) =G2(0))=1-p

Let a; and t — a; be the number of times that we have already picked G1(8)
and G2(0) respectively after ¢ iterations. We have a; ~ B(t,p) and E(a:) =
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t.p; D(a;) =t.p.(1—p). Then S; = a; —t.p — N(0,t.p(1 —p)) when t — co. So
Si/t — 0 as t — oo with probability 1. We have

1
Ft = z(atGl + (t — at)Gz)

S
Fi—f= Tt(Gl — Ga) (3)
!/ ! S ! !
F{ - —jt( 1—GY)

From Eq.3, we conclude that the F; — fas t — +o0o with probability 1. Due to
the proof in [14], 8; — 0 with the rate of O(1/t).

Consider
(B0, S0 = (R0 — 100, <20 + (700, 20
v : o €Oy
= §<G1(9t) —G5(0y),er — 60:) + (f'(0¢), € - )

Note that g1(8), g2(6) are Lipschitz continuous on Ag, so is — f(8). Hence there
exists a constant L such that (f/(2),y—2z) < f(y) — f(2) + Llly — 2||*Vy, 2 € Ak.

e, — 0

. )= (f(0¢),0041 — ;) < f(Bi41) — f(0:) + L[|Or1 — 6,

= Oui) ~ 10 + e — 0

<fl(0t)a

Since e; and 6; belong to Ak, [(G}(0;) — G5(0,),e; — 6;)] and ||e; — 0;* are
bounded above for any t.
Therefore, there exits a constant ¢; > 0 such that

|5t

€t — 0t> < e — —|—f(0t+1) - f(et)

t

ClL
t2

Summing both sides of Eq.4 for all ¢ we have

zi

1 ¢ |Sh ! caL
E Fh 0h eh — eh S Z + f 9t+1) 01 Z (5)
h=1 h=1 h=1

Ast — 400, f(6;) — f(0") due to the continuity of f(0). As a result, Eq.5
implies

+
8

(Fh(Bn). e = 6n) <ch il s ro) - o) +Z“L (©)

i
o
S| =

Applying proof in [14] and based on the law of large numbers, we have

EA : - +oo 1 -
Yo 25 converges in probability. Moreover, the term ) ;= 7z is bounded
above.
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So 34 L(F}(61), e, — 0)) is bounded above.

Because e; = arg maxgeca, (F} (0;),x), so (F!(8,),e; — ;) > 0.

If exists to > 0,c3 > O such as (F{(6;),e,—6,) > c3Vt > to then > ;2| +(F/(0;), e;—
;) > 327, <. And because 3 ;2 1 is not bounded above, so 3125 L (F}.(05), en—
6;,) — oo, which contradicts with the clause we claimed.

Therefore, (F/(0:),e: — 0;) — 0 as t — oo.
St
t
= (f'(0:),er — 6;) + (

(F{(8:),e: — 8:) = (f'(0:) + —(G1(0:) — G5(0:)), e — 0;)

(@00~ c4000), 0~ 0,
Because 5t — 0 then (f'(6;), e; — ;) — 0. Apply Frank-Wolfe gap criterion, *
is stationary/local maximum of f, which completes the proof H.

Besides, in the non-convex optimization field, the idea of how to build the
approximate function in G-OPE can be utilized in the case of objective function
f which is the sum of two parts f = g+ h. In each step, choose g or h in Bernoulli
distribution with parameter p, and adjust p to adapt with different circumstance.
Randomness can help algorithms jump out of local minimum /maximum. There-
fore, to design new stochastic algorithms, we begin with a deterministic version,
add a sequence of approximation in the G-OPE style, working with each approx-
imation at each iteration by deterministic update formula. This is an open idea
for our future works.

4 Experiments

In this section, we will investigate the performance of G-OPE in real world
datasets. G-OPE can play as the core inference step when learning LDA, we will
investigate the performance of G-OPE through the performance of Online-OPE
[14] when changing its core inference method. So we derived Online-GOPE. We
conducted two experiments. The first one is the effect of parameter p in G-OPE
when learning LDA and the second is in comparison Online-GOPE with the
current state-of-the-art methods.

4.1 Datasets and Settings

The datasets for our investigation are New York Times and Pubmed ° These are
very large datasets. The number of documents is large and the size of vocabulary
is large also. Details of datasets are presented in Table 1.

To evaluate the performance of learning methods in LDA, we used Log Predic-
tive Probability (LPP) and Normalized Pointwise Mutual Information (NPMI)

® The datasets were taken from http://archive.ics.uci.edu/ml/
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Table 1: Two data sets for our experiments

Data sets No.Documents|No.Terms|No.Train|No.Test
New York Times 300000 141444 | 290000 {10000
Pubmed 330000 100000 | 320000 {10000

measures. These measures is commonly used in topic models. Predictive Proba-
bility [9] measures the predictiveness and generalization of a model to new data,
while NPMI [1,4] evaluates semantics quality of an individual topic in these
models.

Some common parameters is set follow: the number of topics is K = 100,
the hyper-parameters in LDA model is a = % =0.01,n = % = 0.01. For each
inference method, the number of iterations is 7' = 50. We compare the online
learning algorithms together and the mini-batch size is S = |C;| = 5000. For the
other state-of-the-art methods, the forgetting ratex = 0.9, we fixed 7 = 1. These
chosen parameters is best for online learning LDA in many previous works.

As algorithms we compares are stochastic, so to avoid randomness, we run
each method five times, and report the average results.

The script of experiments is that: for the first experiment, we run Online-
GOPE with different values of parameter p then choose the best one. In the
second experiment, we compare Online-GOPE obtained with the best parameter
p to some methods in learning LDA such as VB, CVB, CGS, OPE.

4.2 The effect of parameter p

In this experiment, we investigate how important the value of parameter p is.
Because p € (0,1), and p is good if it is not close to 0 and 1. So we choose p
respectively in {0.1,0.15,...,0.9}, then run Online-GOPE in two datasets. We
report the performance of Online-GOPE in Fig.2 and Fig.3. We can easly ob-
serve that p affects very much in the performance in terms of both measures. In
Fig.2, Online-GOPE reaches the best performance on New York Times for LPP
measure at p = 0.35 and for NPMI measure at p = 0.75. In Fig.3, Online-GOPE
reaches the best performance on Pubmed for LPP measure at p = 0.4, for NPMI
measure at p = 0.45.

This results support our idea about the contributions of likelihood part and
prior part of topic proportion inference for a document. The different dataset
has the suitable value of p. If we want to get the best performance on the
generalization or on semantics quality of topics, we have different p to choose.
Therefore G-OPE is very flexible in the real world dataset.

The good values of p depend on how much likelihood part and prior part
possess in total. The likelihood depends on the length of the documents. In our
datasets, the average length of a document in New York Times is 329 while
the average length of a document in Pubmed is 65. That explains why we have
different best values of p for each dataset.
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Fig.2: Online-GOPE with different values of p on New York Times
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Fig. 3: Online-GOPE with different values of p on Pubmed

Comparison of G-OPE with novel algorithms

In this experiment, we compare Online-GOPE with the best value of p in previous
experiment to the original Online-OPE and other methods: Online-VB, Online-
CVB, Online-CGS. All of these algorithms try to learn the topics over the words
B or variational parameters A. The difference among these algorithms is the
inner inference procedures.
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Fig. 4: Online-GOPE compares with Online-OPE, Online-VB, Online-CVB and
Online-CGS. Higher is better.

The results is shown in Fig.4. With suitable parameter p, we obtained G-OPE
which was better than OPE, VB, CVB, and CGS on LLP measure. For NPMI
measure, all algorithms perform the same, but G-OPE is one of the tops. This
results show that Online-GOPE performs better than not only original OPE, but
also the current novel methods. G-OPE works well because of the right choose
of controlled parameter p.

5 Conclusion

We have discussed how posterior inference for individual texts in topic models
can be done efficiently with our method. In theory, G-OPE remains the guaran-
tee on quality and convergence rate of original OPE algorithm which is the most
important character among existing state-of-the-art inference methods. In prac-
tice, the parameter p of Bernoulli distribution in our method is a flexible way to
deal with different datasets. Besides, the spiritual idea in building approxima-



12

Xuan Bui,Tu Vu, Khoat Than and Ryutaro Ichise

tion functions from G-OPE can be easily extended to a wide class of maximum
a posteriori estimation or non-convex problems. By exploiting G-OPE carefully,
we have derived an efficient method Online-GOPE for learning LDA from data
streams or large corpora. As a result, it is the good candidate to help us to work
with text streams and big data.
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