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Abstract. Images have a prominent role in the communication of news.
In this paper, we classify news images into subject categories and focus
on the specific case where we have only a limited amount of annotated
training images. For this task, we learn text-enriched image representa-
tions or embeddings from a large dataset of news texts and their images.
Once trained, the encoder will convert any image to its text-enriched
representations. The text-enriched image embeddings are then used in
an image classification model. We compare our model with a baseline
using only standard image features in their classification. In this way we
prove that we can construct better news image classifiers by using cor-
responding textual information during training. In our experiments we
have trained classifiers with different amounts of annotated examples. We
found that our text-enriched image classifier outperforms the image-only
baseline model. The difference in performance is even more pronounced
when the size of the annotated training dataset is smaller. We discuss the
environments in which our model performs best and which parameters
have an impact on the classification results.

Keywords: Multimodal classification, Neural networks, News documents,
Limited training data

1 Introduction

People want access to accurate, clear and visually attractive information on their
smartphones, tablets, computers, etc. Images gain in importance in the transfer
of information to users and become an interesting source of information for data
mining purposes. Web news companies receive a lot of images that could be used
in news articles, but these are often not accompanied by text and even less by
subject categories. We need technology to make sense of these images and filter
out the most relevant ones. Classification of the images in subject categories is
a first step in their processing, and the main topic of this paper. The within-
class variability for these categories is huge and challenges traditional image



classification methods. Moreover, these categories are not mutually exclusive
(e.g., an article might cover both sports and politics).

The Web is a large source of visual information, but only a small part of it is
annotated with subject categories by humans. Because many classification tasks
experience the problem of training with a limited number of annotated data, our
aim is to build a classification model for news images that uses only a limited
amount of labeled supervision.

We propose a method for learning better image representations or embed-
dings by exploiting naturally co-occurring text and then learn an image classifier
on top using a limited amount of training data. We find on the Web a large
amount of online news articles that contain both images and text, the latter in
the form of the article text and/or a caption attached to an image. We incorpo-
rate this textual knowledge by training a neural encoder that learns a mapping
from an image-only domain to a text-enriched image domain. The encoder is
trained with a large collection of news images and co-occurring text fragments.
In this way we build representations of images that are informed by text. We
then use these text-enriched image representations as input of a classifier that
will assign subject categories to the images and which is trained on labeled image
data. Because we want to exploit the textual information co-occurring with the
images, but still want to train a model that can classify images based only on
image features, we have constructed our model in two parts. The first part is the
neural encoder which is trained on the large image-text dataset and which at
test time builds a text-enriched representation of any input image. The second
part of the model acts as the actual classifier. This network takes a text-enriched
image representation as input and produces a prediction for the membership of
each of the subject classes for that image. This subnetwork is trained on labeled
images.

We will compare the quality of the proposed model to an image classifier
model that relies on pure image features, neglecting the text-enrichment of the
representations. As an extra reference, we constructed a second text informed
model (named ‘biview’) which is an extension of the the proposed text-enriched
image model. The quality of these models will be discussed in different settings
(amount of labeled/unlabeled training data, different subject categories).

2 Related work

Automated classification or categorization of Web content has a long-standing
tradition with the goal to enhance the performance of a Web search [5, 13].
However, content classification is mostly restricted to the classification of tex-
tual documents where support vector machines form an established technique.
The amount of visual data in the form of images and video distributed via the
World Wide Web rapidly increases, hence the need for accurate image classifiers.
Most of the existing models for classification of visual data rely on labeled train-
ing data (e.g., [16]). The availability of large scale benchmark datasets such as
ImageNet [6] has boosted the use of data-driven methods based on deep learn-



ing. Classifiers trained on these benchmarks are used directly to classify Web
images/video (e.g. [12, 14]). They can as well be used as a way to obtain a pow-
erful image representation on top of which a final classifier can be trained [15],
or as initialization of (part of) another neural network (finetuning) [21]. Such
transfer learning techniques drastically reduce the amount of application-specific
annotations needed compared to training models from scratch. Nevertheless, for
subject categories with large within class variability, the amount of annotations
required often remains well beyond what is practically viable, urging us to look
into alternative methods, exploiting context or unlabeled data.

There are some works that integrate context when classifying Web visual
content. Examples are the work of Guermazi et al. [10], who exploit textual
descriptions, anchor texts and URLs, or Song et al. [18], who use title, description
and keywords of Web videos. Yet neither of them propose methods for building
joint representations or embeddings of image content and its context, as we
do. Huang et al. [11] compute multimodal embeddings of social media images
by exploiting image, text and links between images, but these authors focus
on object classification and not on the classification into (much more diverse)
subject categories. Finally, Chatbri et al. [4] propose automated MOOC video
classification using transcripts and images.

We witness a recent interest in using large amounts of unlabeled or weakly
labeled data to learn embeddings or representations of words and phrases in
order to address the problem of lack of annotated training data in a classifi-
cation task. Tang et al. [19] leverage large amounts of weakly supervised data
(i.e., tweets weakly classified by emoticons) to learn sentiment embeddings of
n-grams of words, which in a second step are then used as features in a classi-
fication task. Deriu et al. [7] leverage large amounts of weakly supervised data
in a multilayer convolutional network in order to classify the opinions in mul-
tilingual tweets, and evidence the importance of pre-training the network using
the weakly supervised data (i.e., again tweets weakly classified by emoticons).
On the visual side, various unsupervised image representations based on egomo-
tion [22], spatial [9] or temporal [20] structural information have been proposed,
based on which classifiers can later be trained in a supervised manner using a
limited amount of training data. In this paper we follow a similar philosophy,
but instead of training text representations with the supervision of other weakly
labeled texts or training visual representations with structural information, we
propose to improve image representations using the weak supervision of their
textual context.

3 Methods

In this paper we propose three architectures for the actual news image classi-
fication. The first architecture uses the text-enriched image representations ob-
tained by the encoder to classify images. The second architecture builds on the
idea of the previous model and combines the text-enriched representations with
the original pure-image representations in the classification. The third model



is a baseline architecture that only relies on pure-image representations for the
classification in subject categories. All models use some form of preprocessing
discussed below.

3.1 Image preprocessing

An initial representation of the visual data is generated by a VGG-16 network,
a deep convolutional network described in [17], configured with 16 weight layers.
13 of these layers are convolutional layers, all of which are configured with 3× 3
receptive fields, and 3 of them are fully connected layers. In this network, the
input image is sent through 5 convolutional and pooling blocks. After these
blocks, the network consists of 3 fully connected layers. The used network was
pre-trained on ImageNet [1] by classifying given images into 1000 different object
categories of ImageNet.
A first step is to rescale all the images to the input size of the network. To
obtain the initial image representations, the last layer of the pre-trained network
is removed. The output of the network is now a 4096-dimensional vector. These
output vectors, they are rescaled to the real [0, 1]-interval. This is done to make
the image and text representational vectors as similar as possible which will be
easier to deal with when training the models. The image representational vectors
will serve as the purely-image feature based representations for the images in the
dataset and as input for the encoder that generates text-enriched representations.

3.2 Text preprocessing

A first preprocessing step is tokenization. In this phase, the text is transformed
into an ordered list of words (tokens) using the NLTK word tokenizer [2]. Then,
for all training documents, a set of the top 4096 most discriminating tokens
(empirically determined) is calculated using a Chi-Square analysis [8]. All texts
are reduced so that they only contain words from this set of key tokens, while
maintaining their order. As a last step, in all texts that contain more than
20 tokens we drop all but the first 20 of them. This will only be the case for
long articles surrounding an image where typically the first paragraph contains
a concise summary of the whole article. Smaller texts are padded with empty
tokens until they have reached 20 in total. Now all texts are of the same length,
which is required by the architecture of the neural network that generates the
textual representations. Similar to the preprocessing of the images, the texts
are finally transformed to 4096-dimensional vectors. These initial embedding
representations for the texts are produced by an LSTM-based neural network.

3.3 Text-enriched image classifier

The text-enriched model consists of two parts, which are trained separately. First
an encoder is trained on a dataset of corresponding visual and textual representa-
tions. Second, an actual classifier is trained on labeled images. As a consequence



Fig. 1. Full architecture of the enriched image classifier. The network is trained in
2 phases with different datasets. At test-time, the network can be seen as 1 larger
4-layered network.

of using this 2-phased process, the data pool for the encoder can be considerably
larger than the one for the classifier itself. This is interesting since, in a lot of
problems, only a small portion of the available data is (qualitatively) annotated.
In this model, unannotated data is still useful to train a better encoder.

Encoder The encoder has a 2-layered, symmetrical structure (visible in figure
1). The input of the encoder is a 4096-dimensional vector Xenc, correspond-
ing to the initial image representation. The data passes through two fully con-
nected layers whose transformation matrices are W enc,1 and W enc,2, obtaining
respectively a hidden representation Henc and an output Y enc. All nodes in this
network use a softmax activation function and the network is trained with a
binary cross entropy objective function. More formally, the state of one hidden
node henc

i ∈ Henc is calculated as follows (with F being a softmax activation
function):

henc
i =

m∑
j=1

F (wenc,1
i,j · xenc

j ) (1)

with m = 4096. The state of an output node yenci ∈ Y enc is generated by:

yenci =

n∑
j=1

F (wenc,2
i,j · henc

j ) (2)

with n = 1024. At training time, the encoder learns to predict the correspond-
ing text representations for given image representations (both 4096-dimensional
vectors). At test time, when the image representation of a given sample is fed
into the network, the encoder produces a corresponding text-enriched image
representation.

Classifier The second part of the network functions as a classifier and has
a 2-layered fully-connected structure (also displayed in figure 1). The input of
the classifier is an enriched image vector representation Xenr of an image. This
vector passes through two fully connected layers with transformation matrices
W enr,1 and W enr,2, obtaining respectively a hidden representation Henr and an
output Y enr. This network is also trained with a binary cross entropy objective,



since the classification task is multilabel. Formally, the state of one hidden node
henr
i ∈ Henr is calculated as follows:

henr
i =

o∑
j=1

F (wenr,1
i,j · xenr

j ) (3)

with o = 4096. The state of an output node yenri ∈ Y enr is generated by:

yenri =

p∑
j=1

F (wenr,2
i,j · henr

j ) (4)

with p = 256. For a given (enriched) image (representation), the output of the
network will be a vector with membership predictions for each of the subject cat-
egories. At test time, an image (representation) is subsequently sent through the
encoder and then through the classifier (visible in figure 1) to obtain membership
predictions for the given subject categories.

3.4 Biview image classifier

Fig. 2. Full architecture of the biview image classifier. The network is trained in 2
phases with different datasets. At test-time, the network can be seen as 1 larger 4-
layered network.

This model builds on the text-enriched classifier and tries to combine the
representational quality of both the original image representation and the text-
enriched representation of the same image. This model consists of two important
parts (see figure 2). The first part is an encoder, trained exactly the same way as
in the text-enriched image model. The second part is a fully connected network
which takes as input the concatenation of the enriched representation of an image
as well as the original purely image-feature based representation of that image.
The input of the second subnetwork is now an 8192-dimensional vector Xbiv. This
vector serves as input for the first fully connected layer of 256 nodes, with weight
matrix W biv,1 to form an internal, hidden representation Hbiv. The output layer
takes these 256-dimensional vectors to make membership predictions for each



of the subject categories, Y biv, using a transformation vector W biv,2. Similar
to the text-enriched image model, this network is also trained using a binary
cross entropy objective function. Formally, the output of the encoder Y enc is
calculated from the input Xenc exactly as displayed in equations 1 and 2. Let
[Y enc : Xenc] denote the concatenation of these vectors Y enc and Xenc, then the
input vector Xbiv for the second part of the biview network is constructed as
follows:

Xbiv = [Y enc : Xenc]. (5)

The state of one hidden node hbiv
i ∈ Hbiv is calculated like this:

hbiv
i =

m+o∑
j=1

F (wbiv,1
i,j · xbiv

j ) (6)

with m = 4096 and o = 4096. The state of an output node ybivi ∈ Y biv is
generated by:

ybivi =

k∑
j=1

F (wbiv,2
i,j · hbiv

j ) (7)

with k = 256.

3.5 Image-only baseline

The architecture of the image-only model is identical to the classifier part of the
text-enriched image model. The input is a 4096-dimensional input vector which
corresponds to the purely image-feature based representation of an image. These
vectors are created as explained in section 3.1. The network itself consists of 2
fully connected layers of 256 internal nodes and 7 output nodes corresponding to
the predictions for the 7 categories. All these nodes make use of a softmax acti-
vation function and the network is trained using a binary cross entropy objective
function. The network functions as described in equations 3 and 4.

3.6 Class assignment

For all the networks described above, class assignment is done in the same way.
Whether a given instance is a member of a certain class is determined by calcu-
lating the predicted value from the classification model for a specific class and
class assignment is true if this value is greater or smaller than a certain cutoff
value. This cutoff value is a number between 0 and 1 and can be selected in such
a way to focus the model to give higher importance to either precision (higher
cutoff value) or recall (lower cutoff value).

4 Results

4.1 Data

The data used to verify the models presented in this paper comes from the Web-
hose [3] dataset. In this collection, in total 493432 news articles are sorted into 7



different subject categories (entertainment, finance, politics, sports, technology,
travel and world news). For every category a list of JSON files is given. Each
of these files corresponds to one news article on the Web. 2 parts of these files
are used in the experiments in this paper: the text and a link to the main image
corresponding to the article. To limit the dataset for computational efficiency,
out of all the files, 10000 in total were chosen uniformly at random.3 Since all
files are chosen uniformly at random, the category probability distribution of the
selected dataset is similar to the overall probability distribution of the dataset,
but it is not explicitly enforced when selecting the 10000 files. From all these
files, the textual information was extracted and the image was downloaded (if
the link was still active). The models presented in this paper require (partly
annotated) data consisting of both an image and a corresponding text fragment.
Because of this, if the image described in the JSON file could not be downloaded,
the training sample was dropped from the dataset.
To work with these data in a neural network context, vector representations
were trained both for the textual as the visual parts of the data. The key tokens
were selected based on their Chi-Square statistic (see section 3.2) which was
computed using the whole Webhose dataset (the text fragments from all 493432
files and not just the 10000 selected files) minus the files that are part of the
test dataset, described further down, to get a more general selection of keywords
over all the news texts available. If during the preprocessing of the text it be-
came clear that a text fragment did not contain any of the 4096 keywords, this
sample was dropped from the dataset. Otherwise the textual representation for
that piece of text would not bear any information and would thus be useless for
training purposes. This leaves a dataset of 7884 data points. Before doing any
sort of training, a test set of 500 samples is drawn uniformly at random from the
selected dataset. This test set is kept aside during all different tests and serves
as the reference to measure the performance of the models. In our dataset, some
images occur multiple times (since these images occur in multiple articles). To
assure a qualitative evaluation of the models, images from the test set that occur
multiple times in the whole dataset are removed. This leaves an actual test set
of in total 378 samples.
The training set for the encoders contain all the samples of the whole dataset
without the selected test set samples. This leaves a training set for the encoder
of 7384 samples. As it is discussed below, the size of training set of the image
classifier will vary in the experiments, but in all experiments 80% of the training
data is used for training and 20% for validation and parameter tuning of the
neural networks.
In all the experiments, unless specifically stated otherwise, a threshold cut-off
value of 0.5 is used for image category prediction. Because we are dealing with
a multilabel problem and with class-imbalance of the samples for the different
categories, results in this paper are reported based on micro-averaged precision
and recall metrics (and thus also F1 score) instead of accuracy.

3 Upon acceptance, the text and image representations will be made publicly available,
as well as all data splits used in the experiments.



4.2 Results of the image classifier when trained on the full
annotated dataset

The results of the image baseline, the text-enriched image classifier and the
biview image classifier that are trained on the whole training dataset are listed
in table 1. On the test set (described above), both models which incorporate text

Table 1. Accuracy, precision, recall and F1 scores for the 3 different image classification
models trained on the full available training dataset.

Model Acc Prec Rec F1

Image 87.17% 58.69% 34.66% 43.55%
Text-enriched 87.03% 57.00% 37.56% 45.28%
Biview 86.64% 54.48% 39.95% 46.07%

in their training phase outperform the image-only baseline in terms of F1 score.
The enriched-text model improves the F1 score of the image baseline with 1.73%.
The biview model does 2.52% better in terms of F1 score than the baseline.

4.3 Influence of fraction of annotated data on classification results

Details of the experiment In this experiment, the quality of the different
classification models is assessed with respect to the size of training data of the
image classifier. For all multiples of 1000 smaller than the size of the total training
set (7384), training sets are selected uniformly at random of that specific size.
This experiment was repeated 5 times in total and the scores are averaged over
all the experiments to obtain more qualitative results.

Results of experiment for specific sizes of annotated training dataset
In figure 3 the F1 scores for the three different image classification models are
displayed. These scores are micro averaged over all different subject categories.
Based on the F1 score, both classifiers that incorporate the corresponding tex-
tual information into their training phase outperform the image-only baseline
classifier for all considered sizes of the training data. Out of the two proposed
models however, one does not outperform the other. This probably means that
the text-enriched image representation still captures (a big part of) the original
pure-image information. This way it seems that the extra information that the
Biview classifier has is mostly redundant.

Table 2 gives more detailed results for one relatively smaller dataset of 2000
annotated data points and one relatively larger dataset of 5000 annotated train-
ing instances. For the case of 2000 samples there is a clear outperformance in
F1 score of the text-enriched and the biview model with respect to the image
baseline. The biview classifier leads to an improvement of 4.08% in F1 score on
the baseline, the text-enriched classifier even improves the baseline by 4.93%
(p-value of 0.023, 2-tailed t-test). For the case of 5000 samples the difference in



Fig. 3. F1 score of the image classifiers in function of the fraction of the annotated
image dataset: Results of the image-only baseline are shown in blue, of the text-enriched
image classifier in red and of the biview classifier in orange.

F1 score between the text-enriched classifiers and the pure image baseline is less
than in the first case (as expected by the results displayed in figure 3) but still
significant. The biview model outperforms the baseline image classifier by 1.44%
in F1 score, the text-enriched model outperforms the baseline by 1.84% (p-value
of 0.040, 2-tailed t-test).

Table 2. Accuracy, precision, recall and F1 scores for the image classification models
trained on 2000 and 5000 annotated training instances

Model Size Acc Prec Rec F1

Image 2000 87.18% 60.47% 29.84% 39.93%
Text-enriched 2000 87.21% 58.34% 36.46% 44.86%

Image 5000 87.41% 60.48% 34.55% 43.92%
Text-enriched 5000 87.10% 57.34% 38.10% 45.76%

Results for specific subject categories Since all our viewed results are
averages over all subject categories it is also interesting to look at the results for
specific categories. This is to see whether the conclusions from the averages are
generally applicable or whether some specific categories influence the average.



These data (for the specific case of a training dataset of 3000 data instances4)
is visible in table 3. These results confirm that the earlier findings are correct:

Table 3. F1 scores for each of the different subject categories for the 3 image classifiers.

Category Image Text-enriched Biview

Entertainment 37.06% 47.47% 45.00%
Finance 13.24% 8.32% 11.03%
Politics 47.49% 46.09% 48.45%
Sports 70.42% 70.01% 71.32%
Technology 9.09% 34.51% 31.40%
Travel 29.85% 32.25% 35.49%
World News 12.45% 20.88% 25.31%

Macro Average 42.04% 45.12% 45.78%

the textually informed image classifiers outperform the image-only baseline. In
only one of the 7 categories the image classifier performs best and this category
(finance) is one that scores particularly badly compared to the other categories.
For four of the other categories, the textually informed classifiers do significantly
better than the image-only baseline. The difference is generally bigger when the
image baseline scores are lower (more room for improvement).

5 Conclusion

In this work we have described and evaluated two image classification models,
that is, the text-enriched image classifier and its variant, the biview image classi-
fier, that incorporate textual information to obtain text-enriched representations
or embeddings of image features. We have tested these models in different en-
vironments to assess their classification quality. Our experiments show that the
text-enriched classifiers outperform a purely image-feature based classifier on a
Web news image dataset from Webhose. The difference in performance is even
more pronounced when the image classifier is trained only a small set of examples
labeled with subject categories.

References

1. Imagenet dataset. http://www.image-net.org/ (2016), accessed: 2017-10-24
2. Natural language toolkit. http://www.nltk.org/ (2017), accessed: 2017-10-31
3. Webhose dataset. https://webhose.io/datasets (2017), accessed: 2017-10-24
4. Chatbri, H., McGuinness, K., Little, S., Zhou, J., Kameyama, K., Kwan, P.,

O’Connor, N.: Automatic mooc video classification using transcript features and
convolutional neural networks. In: ACM MM - MultiEdTech Workshop (2017)

4 The choice for a dataset of 3000 samples is only illustrative, results are similar for
different sizes of training datasets and can be provided upon acceptance.



5. Chekuri, C., Goldwasser, M.H., Raghavan, P., Upfal, E.: Web search using auto-
matic classification. In: WWW (1997)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR, IEEE Conference on. pp. 248–255. IEEE
(2009)

7. Deriu, J., Lucchi, A., Luca, V.D., Severyn, A., Müller, S., Cieliebak, M., Hof-
mann, T., Jaggi, M.: Leveraging large amounts of weakly supervised data for
multi-language sentiment classification. In: WWW, Perth, Australia, April 3-7,
2017. pp. 1045–1052 (2017)

8. Diaconis, P., Efron, B.: Testing for independence in a two-way table: New interpre-
tations of the chi-square statistic. The Annals of Statistics 13(3), 845–874 (1985),
http://www.jstor.org/stable/2241103

9. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: IEEE ICCV. pp. 1422–1430 (2015)

10. Guermazi, R., Hammami, M., Hamadou, A.B.: Classification of violent web images
using context based analysis. In: ACM SAC, Sierre, Switzerland, March 22-26,
2010. pp. 1768–1773 (2010)

11. Huang, F., Zhang, X., Li, Z., Mei, T., He, Y., Zhao, Z.: Learning social image
embedding with deep multimodal attention networks. In: ACM MM, Mountain
View, CA, USA, October 23 - 27, 2017. pp. 460–468 (2017)

12. Mei, T., Zhang, C.: Deep learning for intelligent video analysis. In: ACM
MM, Mountain View, CA, USA, October 23-27, 2017. pp. 1955–1956 (2017),
http://doi.acm.org/10.1145/3123266.3130141

13. Qi, X., Davison, B.D.: Web page classification: Features and al-
gorithms. ACM Comput. Surv. 41(2), 12:1–12:31 (Feb 2009),
http://doi.acm.org/10.1145/1459352.1459357

14. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J.,
Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers. In:
ICML, Sydney, NSW, Australia, 6-11 August 2017. pp. 2902–2911 (2017),
http://proceedings.mlr.press/v70/real17a.html

15. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-
shelf: an astounding baseline for recognition. In: CVPR, IEEE Conference on. pp.
806–813 (2014)

16. Simonet, V.: Classifying youtube channels: A practical system. In: WWW.
pp. 1295–1304. WWW ’13 Companion, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2487788.2488164

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014), http://arxiv.org/abs/1409.1556

18. Song, Y., Zhao, M., Yagnik, J., Wu, X.: Taxonomic classification for web-based
videos. In: CVPR, IEEE Conference on. pp. 871–878. IEEE (2010)

19. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific
word embedding for twitter sentiment classification. In: ACL, June 22-27, 2014,
Baltimore, MD, USA, Volume 1: Long Papers. pp. 1555–1565 (2014)

20. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos.
In: IEEE ICCV. pp. 2794–2802 (2015)

21. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NIPS. pp. 3320–3328 (2014)

22. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and
ego-motion from video. arXiv preprint arXiv:1704.07813 (2017)


