Identification of lemmatization errors using
neural models

Attila Novak, Borbala Novak

Pazmany Péter Catholic University Faculty of Information Technology and Bionics
MTA-PPKE Hungarian Language Technology Research Group
Budapest, Prater u. 50/a.

{novak.attila, novak.borbala}@itk.ppke.hu

Abstract. Most research related to text processing focus on implement-
ing algorithms solving complex tasks, considering simple preprocessing
tools as acceptable together with their shortcomings. However, the per-
formance of these low-level tools is sometimes far from being perfect, and
errors introduced by them in a text processing chain propagate to higher
level modules. In this research, our goal was to create an algorithm that
can be used to improve the accuracy of a neglected, but important low-
level tool, the lemmatizer. In order to achieve this goal, we experimented
with a recurrent neural network classifier and an SVM-based classifier
using a word embedding representation of word forms. Our system is
able to predict with high accuracy (92.13%) whether a lemma candidate
assigned to a word form is correct with the given part-of-speech.
Keywords: lemmatization, morphology, error correction, machine learn-
ing

1 Introduction

Most automatic text processing chains consist of a cascade of independent mod-
ules, where each module is applied to the output of the preceding one. In the
case of such architectures, errors introduced at the beginning of the process,
propagate through the entire chain with high-level tools producing erroneous
output due to the erroneous input received from earlier modules. Thus it is of
crucial importance that tools performing standard preprocessing tasks work as
accurately as possible.

In this paper, we propose a method aiming at improving the quality of such
a tool: we present the implementation of a method that is able to judge whether
a lemma candidate produced automatically by a morphological analyzer/guesser
algorithm together with the corresponding part-of-speech tag generated by the
tool is correct. Using this method, the number of erroneous lemmata introduced
into the annotation during automatic analysis can be decreased significantly.

In our research, we experimented with the lemmatizer algorithm of the Pure-
Pos part-of-speech tagger [1]. PurePos provides the possibility of integrating a
morphological analyzer (MA), and the morphological analyzer provides lemmata

and morphosyntactic tags for words that are included in its lexicon. For those
words unknown to the analyzer, however, PurePos applies a simple lemmatiza-
tion algorithm: a slightly modified version of the suffix guesser algorithm of the
TnT tagger [2] is used that returns the operation to be applied to the word end-
ing to obtain the lemma from the original word form in addition to the assigned
morphosyntactic tag [1]. The accuracy of this algorithm is relatively low (89.01%
measured on standard texts, i.e. it generates one erroneous lemma for every 10
words unknown to the MA[1]).

On the other hand, erroneous lemmata may not only be generated for word
forms unknown to the morphological analyzer. In some cases, the analyzer itself
overapplies some productive pattern generating an analysis, that may not make
sense, with the lemma not being correct either.

The main source of erroneously lemmatized words is noisy or low quality
texts. If the input contains a high number of misspelled or non-standard word
forms, the morphological analyzer will not be able to cope with them, and, in
absence of a morphological analysis, the less accurate suffix based guesser is
applied. In the case of misspelled or non-standard words, however, the guesser
often has no chance of algorithmically deriving a proper analysis. To make this
possible, the text should be corrected prior to analysis.

The aim of our research was to create an algorithm that is able to identify in-
correct lemmata, regardless of whether the guesser or the morphological analyzer
produced them.

2 Method

We divided lemma candidates produced by PurePos into three classes:

1. Not lemma (notlem): the generated lemma candidate is not a lemma, but
an inflected word form, e.g. nyelvészek/N] ‘linguists[Noun|’. The PoS tag is
otherwise correct.

2. Bad analysis (badana): the generated lemma candidate is not correct con-
sidering the assigned part-of-speech, e.g. vdr[Adj/ ‘castle/wait|ADJ]’. The
lemma candidate itself may or may not be correct. In the latter case, it may
contain some orthographic error, or it may be a truncated word form.

3. Correct lemma (lem): the generated lemma candidate is correct together
with the assigned part-of-speech tag, e.g. vdr/V] ‘wait[Verb]’.

We investigated the performance of two classification algorithms at the task
of automatically assigning each lemma candidate to one of these three categories:
a character-based recurrent neural network (RNN), and a Support Vector Ma-
chine classifier (SVM). The feature set for the SVM was a representation of the
lemma candidates that consisted of the embedding vector of the original word
form obtained from a raw tokenized corpus, the embedding vector of the lemma
and the part-of-speech tag obtained from the morphologically tagged version of
the same corpus, and a one-hot representation of the proposed PoS tag itself.
In the following subsections, we present each step of the implementation and

training of our lemma candidate classification systems as well as evaluation of
their performance.

2.1 The Training Set

To create the training set, we used a 1.2-billion-token Hungarian webcorpus [3].
We analyzed the whole corpus using the PurePos tagger augmented with the
Hungarian Humor morphological analyzer [4,5]. Being a webcorpus, it contains
much noisy, non-standard text (social media contents, comments, blogs, etc.),
thus there are many erroneously analyzed and lemmatized words in the output
of the tagger/lemmatizer. we collected all the word forms occurring at least 5
times in the corpus together with their analyses. The analyses occurring in the
resulting list were either created by the morphological analyzer, or by the guesser
algorithm, but no information about the origin of the analysis was present in the
output. We applied the morphological analyzer to the word forms appearing in
the list and generated two classes of items based on the output of the analyzer.
We considered base forms included in the lexicon of the morphological analyzer
together with their part of speech as correct lemmata (1lem). Words that were
recognized by the analyzer as correct but inflected word forms rather than base
forms were assigned the category (notlem).

In addition, we needed to identify analyses that contained incorrect lemmata
either due to the form of the lemma or the assigned part-of-speech being in-
correct. This type of analysis errors turned out to be especially characteristic of
texts containing a high number of word forms with nonstandard spelling, such as
unaccented social media texts, erroneously tokenized texts, historical documents
etc. In order to collect such badly analyzed words, we first collected lemmata
that frequently appeared in their uninflected base forms in the corpus with some
part-of-speech, but had an alternative analysis with a different part-of-speech
with which they did not appear in the corpus as a base form. For example, the
ambiguous lemma vdr, 'castle[Noun|” or ‘wait[Verb]” also occurred in the anno-
tation generated by PurePos analyzed as an adjective in addition to the correct
nominal and verbal analyses. However, only the forms vdr/NJ ‘castle’ and vdr/V]
‘wait’ appeared as base forms in the output, the adjective analysis was produced
by the lemmatizer guesser of PurePos as an erroneous analysis of another word.
Starting with just a few dozen such words, we explored the nearest neighbors
of these words in a word embedding model built from the analyzed corpus (see
the POS model in Section 2.2), exploiting the earlier observation that words con-
taining similar errors are placed near each other in the word embedding space
[6]. Table 1 shows some examples for erroneously lemmatized words and their
neighbors in the model. We applied agglomerative hierarchical clustering to the
nearest neighbor lists [7] Finally, we created the list used as training data for the
category notlem by manually checking these sets of neighbors of such incorrect
words.

Finally, the training set consisted of 11066 erroneously analysed words, 82582
correct lemmata and 80000 inflected words, from which we separated 1000 ran-
domly selected items from each category as the test set.

var[Adj] ‘wait’ alma[V] ‘apple’ szép|V] ‘beautiful’

tud[Adj] ‘*know’ funda|V] [Latin word fragment| ilo[V] [word fragment]
kér[Adj| ‘ask for’ mangus[V] [Latin word fragment| nari[V] [word fragment]
jé[Adj] ‘gee’ manda|V] [Latin word fragment| evian[V] [word fragment)]
fogad[Ad]j] ‘receive’ spiritualité[N] ‘spiritualité’ insa[V] [word fragment]
cso|Adj| [word fragment| Tibi[V] [fragment of Tibita] manam([V] [word fragment]

Table 1. Examples for incorrectly lemmatized and analysed words, and their nearest
neighbours in the (analysed) word embedding model

2.2 Word embedding models

Neural word embedding models place words present in the corpus used for creat-
ing them in a few hundred dimensional semantic space, where words with similar
meaning and/or syntactic, grammatical or stylistic features are placed near to
each other, while less similar words are further apart [8,9]. In this research we
used two models described in [10]. One of them was trained on a tokenized
but otherwise raw corpus. Words are present in their original, possibly inflected
surface forms in this model. In the other case, PoS tagging and morphological
analysis was applied to the corpus, and the model was trained on a preprocessed
version of the corpus where each original token was represented by one or two
tokens. Uninflected words and punctuation are represented by a single token
consisting of the lemma concatenated with the main PoS label of the token. In
the case of inflected words, this is followed by another token, a complex tag
consisting of the rest of the morphosyntactic features of the word (such as case,
mood, tense, etc.). The detailed comparison of these models can be found in [10].
Both word embedding models were trained using the CBOW architecture with
window size set to 5, and the resulting vectors were 300 dimensional.

2.3 A character-based recurrent neural network classifier

One of the most successful paradigms of recent years is applying neural net-
works and deep learning for solving different tasks of various fields, such as text
processing. Thus, in our present research we also experimented with training a
recurrent neural network using the training set for the classification task. The
characters of the lemma candidate to be classified are fed to the input layer of
the network one by one, followed by the PoS tag as a single token. The characters
and the PoS tags are represented as one-hot vectors. The length of these vectors
is equal to the sum of the number of different characters and PoS tags found in
the training set. Each element of these vectors is 0, except for the element at the
index corresponding to the actual character or PoS tag, where the value is set
to 1.

The recurrent neural network (RNN) is a two-layer network, with one hidden
state. In each step, it uses the vector of the actual input and the result of the
preceding step (at the beginning it is set to 0). The output of each step is

a 3-element-long vector with the value at each position corresponding to the
weight (‘probability’) assigned by the model implemented in the network to the
hypothesis that the input belongs to the given class. This partial result is used as
the hidden state for creating the prediction at the next step. The final output is
normalized by a LogSoftmax layer resulting in real probability distribution. The
architecture of the RNN is shown in Figure 1. We used the PyTorch framework?
for implementation with the following parameters: the dimension of the hidden
layer was set to 256, the system was trained through 200000 epochs and the
learning rate was 0.005.

Given an input in the form of word [TAG], the RNN predicts the probabilities
of the input belonging to each class. Even though in the training set an item may
occur in more than one class, during evaluation we only considered top-ranked
class selected by the network.

| input | | hid:den |

combined

2 | [= |

softmax

| output I | hidden state |

Fig. 1: Schematic structure of a recurrent neural network

2.4 Support Vector Machine classifier

In another experiment, we used a more traditional classifier using the word
embedding vector representation of words as features. A Support Vector Machine
(SVM) implements a supervised learning algorithm, where each item is a point in
an n dimensional space and the task is to find those hyperplanes that separate the
elements of the different classes best. When using the trained models, each test
element is placed in the same space by the model, and this position determines
the class assigned to it. The output in this case is a single class, rather than a
predicted probability distribution of class membership.

! http://pytorch.org/

The input of the SVM is an n dimensional vector, constructed as the con-
catenation of three components:

— the 300 dimensional embedding vector assigned to the form of the lemma
candidate (without its PoS tag) by the embedding model created from the
raw corpus. If the word is not found in the model, a 300 dimensional vector of
zeros is used. This component provides information about the the presence
of the lemma candidate in the original corpus as an independent word form,
and, if it did occur in the corpus, then its vector representation encodes
distributional /grammatical characteristics of the word. In general, the lemma
of a word is one of its existing forms. Which member of the inflectional
paradigm of a word is used as a lemma depends on the part of speech of
the word, and is determined by grammatical tradition. In general, a very
frequent form is selected. This component is based on two assumptions: first,
that the form used as the lemma of an inflected form of a not-very-infrequent
lexical item should also appear in the raw corpus, and, second, that there
is a systematic relationship between the part of speech of the lexical item
and the vector representation of the lemma candidate form both in the case
of real lemmata and in the case of other members of the paradigm (i.e. we
can assume that the model can learn to distinguish base forms from other
inflected forms for each part of speech, and to identify lemma candidates
that were assigned the wrong part of speech).

— the 300 dimensional vector representation of the lemma candidate (with its
PoS tag) retrieved from word embedding model created from the analyzed
corpus. If the word is not found in the model, a 300 dimensional vector of
zeros is used.

— the one-hot vector of the PoS tag, as used in the input of the RNN: a vector
of length equal to the number of different PoS tags, containing all zeros,
except for the index of the actual tag, where it is set to 1. There were 23
different part of speech tags in the corpus we used, thus the length of this
component was 23.

Thus, the input representation of words for the SVM was a 623 dimensional
vector. In order to ensure the possibility of non-linear separation based on the
training data, we used the RBF kernel for training the model.

3 Results

For evaluation, 1000 items per class (not present in the training set) were used.
Since one word could occur in more than one class, there were some duplicates in
the list of randomly selected test words, but for the accuracy of the evaluation,
we removed these words. Thus, the number of test words used for evaluating the
models was 2974. Quantitative results are shown in Table 2.

We investigated the quality of the classifiers from two aspects. First, we
measured the accuracy of the systems for the three-class classification. In this

evaluation, only predictions exactly identifying the correct class were consid-
ered correct (see Precision (3-class)). The three-class classification accuracy of
the RNN classifier was 74.37%, and that of the SVM classifier was 87.86%. In
both cases, at least about 3/4 of the tested words were classified correctly, but
the SVM almost reached 90% precision. Since our initial goal was to create an
algorithm that is able to decide whether a lemma with a given part-of-speech
is correct, in the other evaluation scenario we did not distinguish the classes
badana and notlem: we did not consider it an error if the model confused these
two classes. The notlem vs. badana distinction is only relevant because texts
containing a high number of items from this class can be identified as ortho-
graphically substandard. In the latter evaluation scenario, i.e. predicting whether
a lemma candidate is correct or not, the precision of the RNN was 80.53%, while
that of the SVM was 92.13% (see Precision (2-class)). The SVM classifier using
word embedding vector representations thus outperformed the character-based
RNN in both evaluation scenarios. Even though the word ending plays an im-
portant role in determining the morphological class of a word, and the RNN
model also had access to orthographic information concerning typical mistyping
patterns in the badana class, it did not have access to any information about the
context each lemma candidate usually appears in, while this information turned
out to be both important for the task and effectively encoded in the embedding
vectors and efficiently exploited by the SVM.

Precision (3-class) Precision (2-class)
RNN 74,37% 80,53%
SVM 87,86% 92,13%

Table 2. The precision of the two systems in the 3-class and 2-class scenario (lem vs.
{notlem|badana})

In a more detailed evaluation, we also quantified the specific types of errors,
as shown in Table 3. As it can be seen from the confusion matrices, the RNN
assigned more words to the class badana, but almost one third of them (31.64%)
should have been classified as either an inflected word or a correct lemma. The
SVN, however, though having a lower recall, only assigned this class to 5 words
erroneously. It can be concluded that the SVM has high precision, i.e. those
words that were judged as invalid lemmata could be considered incorrect with
high probability. Regarding confusion between the classes notlem and lem, the
number of errors are also smaller for the SVM. 97.8% of those lemma candidates
that were judged as not lemma were indeed not lemmata. The SVM model has
very good recall for the notlem and lem classes. Unfortunately, the precision of
the correct lemma class is smaller for the SVM, it is 83.3%. Comparing the two
systems, the RNN performed better only for the recall of the class badana. Items
belonging to this class were more often assigned to one of the other classes by

the SVM. For the two-class (lemma/not lemma) classification, the SVM model
has R = 96.15%, P = 83.30%, F' = 89.27%.

result result
RNN badana notlem lem SVM badana notlem lem
- badana 713 93 156 badana 646 127 189
S notlem 90 840 70 notlem 0 994 6
* lem 240 113 659 lem 5 34 973

Table 3. The confusion matrices of the two systems measured on the test set

Looking at the results also revealed that quite often the origin of an incorrect
lemmatization was a spelling error. Words that were originally misspelled, and,
as a consequence, received an incorrect lemma, were assigned the class badana
both in the training and the test set, even if the lemma and the PoS tag could
have been correct for the correct form of the original word (i.e. the PoS tag is
correct and the lemma contains exactly the same spelling error as the original
word form). Our algorithm often classified these words as lem. This solution
could be acceptable in the case of processing noisy texts.

4 Conclusions and future work

In this paper, we have presented and compared two algorithms trained to be able
to judge whether an automatically generated lemma with a given part-of-speech
is correct for a word or not. The implementation using a Support Vector Machine
classifier using word embedding features performed better in the task, reaching
an accuracy above 92%, while the recurrent neural network could achieve only
slightly above 80% accuracy. Both systems were trained and tested for Hungar-
ian, but no language-specific information was used. For training the models, we
used a list of words generated automatically and checked manually and we used
two types of word embedding representations for each word and their automati-
cally assigned PoS tag. Though our system is not able to suggest a correct lemma
for the words it classified as incorrect, if the classifier was integrated into the PoS
tagger, the correct lemma could also be retrieved, since the current version of the
integrated lemmatizer generates many lemma candidates for words unknown to
the morphological analyzer. Instead of blindly selecting the top candidate from
this list, the classifier could be used as a filter to remove erroneous candidates.

Acknowledgments

This research has been implemented with support provided by grants FK125217
and PD125216 of the National Research, Development and Innovation Office of
Hungary financed under the FK17 and PD17 funding schemes.

References

10.

. Orosz, Gy., Novak, A.: PurePos 2.0: a hybrid tool for morphological disambigua-

tion. In: Proceedings of the International Conference on Recent Advances in Natu-
ral Language Processing (RANLP 2013), Hissar, Bulgaria, Incoma Ltd. Shoumen,
Bulgaria (2013) 539-545

Brants, T.: Tnt: A statistical part-of-speech tagger. In: Proceedings of the Sixth
Conference on Applied Natural Language Processing. ANLC 00, Stroudsburg, PA,
USA, Association for Computational Linguistics (2000) 224-231

Endrédy, 1., Proszéky, G.: A pazmany korpusz. Nyelvtudoményi Kézlemények 112
(2016) 191-206

Novék, A.: Milyen a jé6 Humor? In: I. Magyar Szamitogépes Nyelvészeti Konferen-
cia, Szeged, SZTE (2003) 138-144

Proszéky, G., Kis, B.: A unification-based approach to morpho-syntactic parsing
of agglutinative and other (highly) inflectional languages. In: Proceedings of the
37th annual meeting of the Association for Computational Linguistics on Computa-
tional Linguistics. ACL ’99, Stroudsburg, PA, USA, Association for Computational
Linguistics (1999) 261-268

Novék, A.: Improving corpus annotation quality using word embedding models.
Polibits 53 (2016) 49-53

Siklési, B.: Using embedding models for lexical categorization in morphologically
rich languages. In Gelbukh, A., ed.: Computational Linguistics and Intelligent Text
Processing: 17th International Conference, CICLing 2016, Konya, Turkey, Springer
International Publishing, Cham. (2016)

Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Human Language Technologies: Conference of the North Amer-
ican Chapter of the Association of Computational Linguistics, Proceedings, June
9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA. (2013) 746-751
Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Informa-
tion Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States. (2013) 3111-3119

Novak, A., Novak, B.: Magyar szobeagyazasi modellek kézi kiértékelése. In: XIV.
Magyar Szamitogépes Nyelvészeti Konferencia, Szeged, SZTE (2018)

