
Unsupervised Sentence Embeddings for
Answer Summarization in Non-factoid CQA

Thi-Thanh Ha1,2, Thanh-Chinh Nguyen1, Kiem-Hieu Nguyen1, Van-Chung
Vu1, and Kim-Anh Nguyen1

1 Hanoi University of Science and Technology, VietNam,
2 Thai Nguyen University of Information and Communication Technology, VietNam

htthanh@ictu.edu.vn

Abstract. This paper presents a method for summarizing answers in
Community Question Answering. We explore deep Auto-encoder and
Long-short-term-memory Auto-encoder for sentence representation. The
sentence representations are used to measure similarity in Maximal Marginal
Relevance algorithm for extractive summarization. Experimental results
on a benchmark dataset show that our unsupervised method achieves
state-of-the-art performance while requiring no annotated data.

Keywords: Summarizing answers, Non-factoid questions, Multi-documment
summarization, Community Question-Answering, Auto Encoder, LSTM

1 Introduction

In Community Question and Answering (CQA) services (Yahoo Answers3, Stack-
Overflow4), users can post new questions and answer existing questions. Four
main problems in CQA are [1]: (1) finding similar questions given a new ques-
tion, (2) finding answers given a new question, (3) measuring answer quality and
its effect on question retrieval, and (4) finding experts in a community. Our task
of summarizing answers posits in the third problem.

Among the answers, question owner selects one or several ones as best an-
swer(s). 48% questions have a unique answer [1]. Best answers could be incom-
plete, particularly for complex questions or non-factoid questions (against factoid
questions which requires concise facts). This raises the need for answer summa-
rization in CQA. Researchers have been using text summarization techniques for
summarizing factoid, non-factoid, as well as multi-sentence and complex ques-
tions [2–4]. This work focuses on using unsupervised sentence representation
to tackle answer summarization in non-factoid CQA. Two neural models in-
cluding deep Auto-Encoder (AE) and Long-short-term-memory Auto-Encoder
(LSTM-AE) [5, 6] are explored to capture semantic and syntactic information
and generate low-dimensional vectors, which are later used for measuring sen-
tence similarity.

3 https://answers.yahoo.com/
4 https://stackoverflow.com/

We aim at tackling three main challenges: sparsity, diversity, and genre adap-
tation. Neural embeddings help overcome sparsity of short texts (i.e. questions
and answer sentences in this work). The Maximal Marginal Relevance (MMR)
algorithm [7] balances question relevance and summary diversity. Last but not
least, representations based on Yahoo-Webscope are expected to be more suit-
able for CQA.

The rest of the paper is organized as follows. Related works are discussed
in Section 2. Section 3 is dedicated to our method for answer summarization.
Experiments are presented in Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Techniques in text summarization have been applied to answer summarization
in question-answering [2]. Liu applied clustering on open questions and opin-
ion questions [1]. Tomasoni exploited metadata and proposed concept scoring
functions based on semantic overlap [8]. Other approaches aimed at solving the
optimization problem for selecting a subset of sentences that maximizes an ob-
jective function under length constraint.

Integer linear programming was successfully applied to summarize answers
in CQA [8]. Chan proposed using Conditional Random Fields to deal with the
incomplete answer problem and complex multi-sentence questions. The author
showed a systematic way to model semantic contextual interactions between
answer sentences, based on question segmentation; Both textual and non-textual
features were explored [4].

Researchers have been developing techniques to learn neural text embeddings
[5, 9–13]. Auto-encoder was applied to query-oriented single-document summa-
rization [14]. In another direction, sequence-to-sequence architecture was applied
to abstractive summarization [15–17]. The most related works to ours on answer
summarization in non-factoid CQA were presented in [18, 3], using sentence vec-
tors generated from Paragraph Vector [10] and Convolutional Neural Network
(CNN), in that order.

3 Sentence Embeddings for Answer Summarization

The proposed answer summarization framework is demonstrated in Fig 1. Given
a pair of question q and its answers {Ai}, answer sentences are first extracted
to generate of a set of sentences {Si}. The sentence representation block uses
Yahoo-Webscope to learn models and to generate low-dimensional vectors q′ and
{xi} for q and {Si}, respectively. MMR algorithm takes q′ and {xi} as inputs
and generates an answer summary.

3.1 Sentence representation

Neural networks are effective in representing semantic and syntactic information
of sentences in low-dimensional vectors. This paper investigates two unsupervised

A1

A2

Am

Sentence
Extraction

S1

S2

Sn

x1

x2

xn

Sentence
similarity

measurement

MMR
Algorithm

Answer Summary

Sentence
Representation

q’

Yahoo
webscope

q

Fig. 1. Framework for answer summarization in non-factoid CQA

neural models, i.e. Deep Auto-Encoder and Long Short-Term Memory (LSTM)
Auto-Encoder [6] for sentence representation.

Deep Auto-Encoder An Auto-Encoder neural network is a generative model
that aims at reconstructing its own inputs. Our deep Auto-Encoder model is
introduced in Fig 2. It has four encoding layers:

h1 = σ(W1.X), (1)

h2 = σ(W2.h1), (2)

h3 = σ(W3.h2), (3)

h = σ(W4.h3). (4)

A sentence X is put into the network with tf-idf weights. X is very sparse
because it only contains a small number of words while its dimension is the size of
vocabulary. The Auto-Encoder can learn a distributed semantic representation
with low dimension. The layer h is used for sentence representation. Decoding
layers are:

h
′

3 = σ(W
′

4.h), (5)

h
′

2 = σ(W
′

3.h
′

3), (6)

h
′

1 = σ(W
′

2.h
′

2), (7)

X
′

= σ(W
′

1.h
′

1), (8)

X h1
1000

h2
400

h
100

h2’ h1’
h3
300

h3’

DECODER

ENCODER

X’

Fig. 2. Deep Auto-Encoder: h (the red block) is used for sentence representation

where sigmoid function is:

σ(x) =
1

1 + e−x
. (9)

The squared error loss is:

J(X,X
′
) = ‖X −X

′
‖ =

∑
V

(Xi −X
′

i)
2, (10)

where V is vocabulary size.

LSTM Auto-Encoder Deep Auto-Encoder doesn’t capture syntactic informa-
tion in word order. We propose using LSTM Auto-encoder (Fig 3), which was
first introduced in [6]. This model learns sentence in an unsupervised manner
and captures both syntactic information in word order and semantic information
in word embeddings.

ht(enc) = LSTMword
encode(et, ht−1(enc)) (11)

hends is used to present the input sentence

es = hends (12)

ht(dec) = LSTMdecode(et, ht−1(dec)) (13)

The decoder sequentially predicts sentence words using a softmax function:

P (x′t|) = softmax(et−1, ht−1(dec)) (14)

Softmax

Decoder

Encoder

Fruit yogurt smoothies are always good <oes>

x

σ

et

σ tanh

x

σ

+

x
tanh

ht

ft
it

lt
ot

ct-1 ct

ht-1 ht

<oes> good always are smoothies yogurt fruit

Fig. 3. Long-short-term-memory Auto-Encoder: The last encoding LSTM cell (the red
node) is used for sentence representation.

et is an embedding for word at position t and generated by the LSTMdecode.
The encoder and decoder use two different LSTMs with two different sets of
parameters. Our loss function:

J(X,X ′) = 1/N
∑
i<N

H(ei, e
′
i) (15)

where H is the Cross-entropy error function. The LSTM model at time t is
defined as follows:

it
ft
ot
lt

 =

σ
σ
σ

tanh

W. [ht−1et

]
(16)

ct = ft.ct−1 + it.lt (17)

ht = ot.ct (18)

3.2 Extractive summarization

MMR is applied to generative extractive summaries (Algorithm 1). It is a greedy
algorithm which incrementally selects a sentence by maximizing a linear com-
bination of query relevance and summary diversity (line 3). Here the hyper-
parameter κ takes a value in [0, 1]. Sim(s, q) and sim(s, s′) are sentence similar-
ity. q is the question. S is the set of all sentences in the answers. L is the limit
length of a summary. R is the set of summary sentences.

Algorithm 1 Maximal marginal relevance (MMR)

Input: q, S, L
Output: R
Initialize: R =∅; Ranked list of summary sentences;

1: repeat
2: Find a sentence s by MMR with parameter 0 ≤ κ ≤ 1, so that
3: s = arg maxs∈S/R(κ.sim(s, q)− (1− κ).maxs′∈R sim(s, s′)
4: R=R ∪ s;
5: until | R | > L;
6: return R;

Sentence similarity is computed by cosine similarity:

sim(s1, s2) =
s1.s2

‖s1‖.‖s2‖
(19)

4 Evaluation

4.1 Datasets

L6 - Yahoo! Answers Comprehensive Questions and Answers corpus5 from Ya-
hoo Webscope was used for unsupervised learning of sentence representation
(Table 1).

Table 1. Yahoo Webscope corpus.

Statistics Size

Questions 87,390
Answers 314,446
Answer sentences 1,662,497

We used the test dataset in [3] for evaluation6. The dataset contains manual
summaries with the limited length of 250 words. In our experiments, limited
summary length was selected accordingly (L = 250 in MMR).

4.2 Experimental Setup

Each input sentence vector put into AE is represented using tf-idf. The vocabu-
lary was created by lowercasing, removing the stopwords, rare words (below 10
times), stemming, and normalizing number. The auto-encoder has four layers

5 https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
6 We have no access to train and dev datasets.

Table 2. Test dataset.

Statistics Size

Non-factoid questions 100
Answers 361
Answer sentences 2,793
Words 59,321
Manual summaries 275
Avg. summaries per question 2.75

for encoding, and four layers for decoding. Layer h with 100 dimensions is used
to present sentence. Learning parameters for back propagation and Adam algo-
rithm[19] were: learning rate η = 0.001; batch size = 128 sentences; 20 epochs.
The model was trained on Yahoo-webscope in eight hours with a machine of 20
CPUs.

Word embeddings from word2vec7 on Google news of size 300 were fed into
LSTM-AE. When a word was not in the vocabulary of pre-trained word embed-
dings, its embedding was sampled from a normal distribution. Commas, colons
were converted to <dot>. Periods, end marks were converted to <eos>. Learning
parameters were: batch size of 128 sentences, 20 epochs, learning rate η = 0.001.
It took three weeks with a machine of 20 CPUs to train this model on Yahoo-
webscope. Both AE and LSTM-AE were implemented on Tensorflow.

4.3 Experimental Results

ROUGE metric [20] was used to evaluate text summarization. At first, the results
of two baselines, tfidf and tf-idf weighted average word embeddings, are shown
in Table 3. AE, LSTM-AE and a combination of AE and LSTM-AE by concate-
nating the two sentence embeddings (mentioned as CONCAT) are compared.
The results are in Figure 4. As we only have the test dataset, experiments with
different values of κ as the only hyper-parameter (of MMR) were conducted.
LSTM-AE with κ = 0.3 was selected as our representative to compare with
related works. Last but not least, with κ = 0.3, linear combination of AE and
LSTM-AE similarities was investigated (Table 5):

sim(s1, s2) = α.simAE(s1, s2) + (1− α).simLSTM−AE(s1, s2), (20)

where α is hyper-parameter.
As expected, Word2vec outperforms tfidf by large margin (Table 3) thanks to

low dimensional vectors and semantic information. However, Word2vec is not on
par with AE and LSTM-AE (Figure 4). This is because the former straightfor-
wardly derives sentence embeddings from word embeddings by weighted average;
while sentence vectors are parameters of the two latter models that need to be

7 https://github.com/mmihaltz/word2vec

Table 3. Evaluating two baselines.

Word2Vec Tfidf
κ Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

0.1 0.621 0.529 0.607 0.532 0.282 0.464
0.2 0.619 0.524 0.606 0.531 0.282 0.463
0.3 0.618 0.523 0.605 0.532 0.281 0.464
0.4 0.615 0.518 0.600 0.530 0.279 0.467
0.5 0.622 0.525 0.604 0.529 0.279 0.464
0.6 0.614 0.513 0.605 0.528 0.278 0.467
0.7 0.610 0.507 0.607 0.529 0.280 0.489
0.8 0.609 0.504 0.610 0.530 0.285 0.488
0.9 0.611 0.505 0.603 0.532 0.288 0.488
1.0 0.608 0.501 0.601 0.532 0.289 0.489

learned from data. With κ < 0.5, LSTM-AE beats AE on all the metrics. When
κ > 0.5, AE performs better on ROUGE-1 and ROUGE-2. This is possible
because a large value of κ prefer diversity to relevance. Overall, LSTM-AE is
a better choice. It is worth noting that concatenating the two models doesn’t
bring significant improvement (Figure 4).

Fig. 4. Performance on varying κ in MMR.

LSTM-AE with κ = 0.3 was compaired to state-of-the-art methods. DOC2VEC
[18] uses Paragraph Vector [10] to generate sentence representation and sparse
coding to detect salient sentences. However, it is not clear on which data Para-

Table 4. Comparison to state-of-the-art methods.

Method Rouge-1 Rouge-2 Rouge-L

BestAns 0.473 0.390 0.463
DOC2VEC + sparse coding 0.753 0.678 0.750
CNN + document expansion + sparse coding + MMR 0.766 0.646 0.753

LSTM-AE 0.766 0.653 0.759

graph Vector was learned and how sentences were represented. CNN learns sen-
tence embeddings from annotated answer sentences, i.e. sentences with labels as
summary or non-summary. Relevant sentences from Wikipedia are also retrieved
to overcome sparsity. Low-dimensional sentence vectors are first put into sparse
coding and then MMR to generate summaries. Here, the baseline BestAns selects
the best answers as summaries.

Interestingly, our unsupervised sentence representation performs slightly bet-
ter than supervised one without annotated data (Table 4). LSTM-AE outper-
forms DOC2VEC. The reason could be two-fold: i) Paragraph Vector introduces
paragraph (i.e. sentence in this case) context via so-called paragraph id addi-
tional token in the input layer, and sampling several windows through the sen-
tence. Meanwhile, LSTM-AE captures semantic and syntactic of the sentence in
the last encoding LSTM cell and uses it for sentence representation. ii) LSTM-AE
was trained on Yahoo-Webscope, a large corpus of questions and answers from
communities. This could make sentence representation more suitable to CQA
tasks. On the other hand, we have no clue on which data Paragraph Vector is
trained in DOC2VEC; and why ROUGE-2 reported in [18] is higher than both
CNN and our method. In the future, we are going to reimplement DOC2VEC,
with Yahoo-Webscope as training data for Paragraph Vector, to investigate in
more details.

Table 5. Evaluating linear combination of AE similarity and LSTM-AE similarity

α Rouge-1 Rouge-2 Rouge-L

0.1 0.771 0.661 0.761
0.2 0.771 0.661 0.760
0.3 0.771 0.661 0.760
0.4 0.770 0.660 0.759
0.5 0.770 0.659 0.759
0.6 0.771 0.658 0.759
0.7 0.772 0.662 0.763
0.8 0.772 0.662 0.763
0.9 0.771 0.660 0.759

Table 5 shows that linear combination of sentence similarities is more effective
than concatenating the representations of sentence pairs (Figure 4).

5 Conclusions and Discussions

The paper presents an approach to summarizing answers for non-factoid ques-
tions in CQA using unsupervised neural sentence embeddings. Semantic and
syntactic information, as well as genre and domain knowledge are incorporated
in low-dimensional vectors. Empirical results demonstrated the effectiveness of
these representations, particularly ones generated by LSTM-AE. Our method
outperforms other methods and is on par with a method based on supervised
sentence representation. In the future, we are going to apply drop-out in learn-
ing neural models, and use Restricted Boltzmann Machines to initialize Auto-
Encoder to enhance their output representation. Moreover, encouraging by re-
sults on CQA answer summarization, we are going to investigate LSTM-AE on
extractive text summarization and CQA problems.

References

1. Liu, Y., Li, S., Cao, Y., Lin, C.Y., Han, D., Yu, Y.: Understanding and summarizing
answers in community-based question answering services. In: Proceedings of the
22Nd International Conference on Computational Linguistics - Volume 1. COLING
’08, Stroudsburg, PA, USA, Association for Computational Linguistics (2008) 497–
504

2. Wang, M.: A survey of answer extraction techniques in factoid question answer-
ing ravichandran, deepak, abharam ittycheriah, and salim roukos. 2003. automatic
derivation of surface text patterns for a maximum entropy based question answer-
ing system. In: In Proceedings of the Human Language Technology Conference
and North American Chapter of the Association for Computational Linguistics
(HLT-NAACL. (2006)

3. Song, H., Ren, Z., Liang, S., Li, P., Ma, J., de Rijke, M.: Summarizing answers
in non-factoid community question-answering. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining. WSDM ’17, New York,
NY, USA, ACM (2017) 405–414

4. Chan, W., Zhou, X., Wang, W., Chua, T.S.: Community answer summarization
for multi-sentence question with group l1 regularization. In: Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics: Long Pa-
pers - Volume 1. ACL ’12, Stroudsburg, PA, USA, Association for Computational
Linguistics (2012) 582–591

5. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786) (2006) 504 – 507

6. Li, J., Luong, M., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs
and documents. CoRR abs/1506.01057 (2015)

7. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for re-
ordering documents and producing summaries. In: Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. SIGIR ’98, New York, NY, USA, ACM (1998) 335–336

8. Tomasoni, M., Huang, M.: Metadata-aware measures for answer summarization
in community question answering. In: Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics. ACL ’10, Stroudsburg, PA, USA,
Association for Computational Linguistics (2010) 760–769

9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. CoRR abs/1310.4546
(2013)

10. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
CoRR abs/1405.4053 (2014)

11. Gouws, S., Bengio, Y., Corrado, G.: Bilbowa: Fast bilingual distributed repre-
sentations without word alignments. In: Proceedings of the 32nd International
Conference on Machine Learning. (2015)

12. Qiu, X., Huang, X.: Convolutional neural tensor network architecture for
community-based question answering. In: Proceedings of the 24th International
Conference on Artificial Intelligence. IJCAI’15, AAAI Press (2015) 1305–1311

13. Severyn, A., Moschitti, A.: Modeling relational information in question-answer
pairs with convolutional neural networks. CoRR abs/1604.01178 (2016)

14. Yousefiazar, M.: Query-oriented Single-document Summarization Using Unsuper-
vised Deep Learning. (2015)

15. Nallapati, R., Xiang, B., Zhou, B.: Sequence-to-sequence rnns for text summariza-
tion. CoRR abs/1602.06023 (2016)

16. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685 (2015)

17. Chopra, S., Auli, M., Rush, A.M.: Abstractive sentence summarization with at-
tentive recurrent neural networks. In: HLT-NAACL. (2016)

18. Zhaochun Ren, Hongya Song, P.L.S.L.J.M., de Rijke, M.: Using sparse coding for
answer summarization in non-factoid community question-answering. (2016)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

20. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. (July 2004)

