
Incorporating Topic Sentence on
Neural News Headline Generation

Jan Wira Gotama Putra1,?, Hayato Kobayashi2,3, Nobuyuki Shimizu2

1 Tokyo Institute of Technology
2 Yahoo Japan Corporation

3 RIKEN AIP
gotama.w.aa@m.titech.ac.jp, {hakobaya, nobushim}@yahoo-corp.jp

Abstract. Most past studies on neural news headline generation train
the encoder-decoder model using the first sentence of a document aligned
with a headline. However, it is found that the first sentence might not
provide sufficient information. This study proposes to use a topic sen-
tence as the input instead of the first sentence for neural news headline
generation task. The topic sentence is defined as the most newsworthy
sentence and has been studied in the past. Experimental result shows
that the model trained on the topic sentence has a better generalization
than the model trained using the first sentence. Training the model using
both the first and topic sentences increases the performance even further
compared to only training using the topic sentence in a certain case. We
conclude that using the topic sentence is a strategy of giving a more
informative information into the neural network compared to using the
first sentence, while keeping the input length as short as possible at the
same time.

Keywords: headline generation, topic sentence, encoder-decoder, sum-
marization

1 Introduction

Automatic summarization aims to understand and condense document(s) into a
shorter version while preserving information content in a readable fashion [1,2].
Headline generation is one variant of the summarization tasks, which was intro-
duced in DUC-2003 and DUC-2004 (Task 1) [3,4,5]. A headline can be viewed as
a summary (succinct) of document(s) (verbose) [3]. Headline generation can be
applied (not limited) to spoken broadcast news [6] or multi-document summa-
rization (e.g., summarizing news from multiple sources) where a headline does
not present [5,7]. In practice, automatic headline generation system can act as a
supporting system where a person writes a headline considering the suggestion
from automatically generated headline.

In this study, we are interested in a single document (news) headline gen-
eration. There are two approaches for the news headline generation. Firstly, an

? Work was done while interning at Yahoo Japan Corporation



extractive approach generates headline by selecting one or few important units
(words, phrases, events, sentences) then transforms, combines, or compresses
them altogether to satisfy the length constraint of the headline [4,8]. The second
approach is an abstractive approach that views the headline generation task as a
natural language generation problem [3]. The generated headline in the abstrac-
tive approach possibly includes unseen words in the source document [3,9,10].
The abstractive approach is more desirable since it is more similar to how human
works.

In the abstractive approach, headline generation can be cast as a task of
mapping an input sequence of words into a target sequence of words using an
encoder-decoder model (Sect. 2) [10,11,12,13,14,15,16]. Most existing studies uti-
lized the first sentence of a news document as an input for the encoder-decoder
model. They were focused on incorporating linguistics information or architec-
tural strategy of the encoder-decoder, while relatively little emphasize has been
given on how to choose sentences as the input (Sect. 3).

This study experiments on using topic sentence as an input. A topic sentence
is defined as the most newsworthy sentence, and its selection is based on sentence
linguistic information (Sect. 4) [17,18,19]. We propose to feed the topic sentence
into the encoder-decoder model or feed it as the input alongside the first sentence
of a news. There are two key questions addressed in this work: (1) whether the
topic sentence is more useful than the first sentence for headline generation, and
(2) whether the topic sentence is helpful in addition to the first sentence for
headline generation. Details of our experimental setting is presented in Sect. 5.
Result and conclusion of our experiment are presented in Sect. 6 and Sect. 7
respectively.

2 Encoder-Decoder Model

Encoder-decoder model maps a sequence of input into a sequence of output [20,21].
Let us denote x = (x1, . . . , xN ) as a sequence of N input words. The headline
generation task aims to find the best sequence of M words y = (y1, . . . , yM ),
M < N ; for the given input sequence x [10]. It means modeling the conditional
probability p(y | x) of an input-output pair. Usually, additional parameters θ
are involved in governing the conditional probability. Therefore, the conditional
probability is transformed into p(y | x, θ) which can be factored into ordered
conditionals as shown in Equation (1):

p(y | x, θ) =

M∏
t=1

p(yt | {y1, . . . , yt−1},x, θ), (1)

where M is the length of the output. This formulation can naturally be cast as
an encoder-decoder model where the neural network acts as the parameters θ.

An encoder encodes the input as a single representation c (Sect. 2.1). Then,
the decoder decodes this representation to generate a sequence of output words
y (Sect. 2.2). Input-output pair examples are fed into the encoder-decoder model



which is trained to tune the value for parameters θ governing the conditional
probability. It is typically achieved by minimizing the negative log likelihood of
the conditional probability over a set of training data D, as shown in Equation
(2):

L = −
∑

(x,y)∈D

p(y | x, θ), (2)

The minimization process typically uses stochastic gradient descent method.
Once the model is trained, the encoder-decoder generates a headline y∗ by find-
ing the most probable sequence of output for a new input sequence x, as shown
in Equation (3):

y∗ = argmax
y

p(y | x, θ). (3)

The decoding process typically uses beam search algorithm.

2.1 Encoder

An encoder represents an input sequence of N words x = (x1, . . . , xN ) into a
single vector representation c. A word xt is typically represented as a one-hot
vector encoding or as a corresponding embedding vector (denoted as et). Past
studies proposed to use a recurrent neural network (RNN) encoder as shown in
Equation (4) [11,12,13,15]:

ht = f(ht−1, et)

= f(Uhht−1 + Ueet),
(4)

where f is a non-linear activation function; Uh and Ue are weight matrices. RNN
computes the current hidden state ht depending on the current word vector et

and the previous hidden state ht−1.
In practice, we can replace f using variant of neural network choices for

example, using long short-term memory (LSTM) as shown in Equation (5) [22]:

ht = φ(ht−1, et)

= ot tanh(mt)

it = σ(Uiht−1 + Wiet)

ot = σ(Uoht−1 + Woet)

gt = σ(Ught−1 + Wget)

m′t = tanh(Umht−1 + Wmet)

mt = gtmt−1 + itm
′
t

(5)

where it, ot, gt, and mt are input gate, output gate, forget gate, and memory
cell respectively. Ui, Uo, Ug, Um, Wi, Wo, Wg, and Wm are weight matrices.
The last hidden state hN is considered as the input sequence representation
c [21]. Another way to compute c is using the weighted sum of hidden states;
c = q({h1, · · · ,hN}), where q is a non-linear activation function.



RNN may be replaced with a bidirectional RNN (BiRNN) to take into ac-
count both preceding and following words for computing the hidden state ht in
question [12,13,15]. BiRNN processes the hidden state ht as the concatenation of
a foward hidden state h→t and a backward hidden state h←t . The foward hidden
state h→t is computed as in normal RNN, taking into account the current input
et and the previous hidden state h→t−1. Meanwhile, the backward hidden state
h←t is computed by taking into account the current input et and a next hidden
state h←t+1.

2.2 Decoder

As described in the previous subsection, an encoder produces a single vector
c representing the entire input sequence. A decoder uses this representation to
produce a sequence of output words y = (y1, . . . , yM ). In present study, this
output is regarded as the generated headline. A hidden state h′t represents a
conditional probability distribution of words to select the current output yt which
is typically represented in a vector form e′t. The hidden state h′t is computed by
taking into account the input sequence c, the generated word of the previous
time step yt−1 (in its vector form e′t), and a decoder hidden state of the previous
time step h′t−1. The hidden state h′t formulation is shown in Equation (6):

h′t = f ′(h′t−1, e
′
t−1, c)

= f ′(U′hh′t−1 + U′ye′t−1 + U′cc)
(6)

where f ′ is a non-linear activation function; U′h, U′y, and U′c are weight matrices.
f ′ can be replaced with variant of neural network choices. In this way, the RNN
encoder-decoder can model the factored input-output conditional probability
previously shown in Equation (1).

Attention mechanism also can be taken into account to learn a soft alignment
between input and output words [23,24]. It denotes which input word the de-
coder should focus on a particular decoding step. With the attention mechanism,
Equation (6) is transformed into Equation (7):

h′t = f ′(h′t−1, e
′
t−1, c,kt), (7)

where kt denotes how much a particular hidden state of source input affects the
t-th generated word. kt is typically computed in Equation (8):

kt =

N∑
i=1

αt,ihi

αt,i =
exp(hi · h′t−1)∑N

z=1 exp(hz · h′t−1)

(8)

where N is the length of input, hi is the encoder hidden state at time i, h′t−1 is
the decoder hidden state at time t− 1.



3 Related Work

Past studies on neural headline generation mostly used the first sentence-headline
pair as an input-output for the encoder-decoder model [10,11,12,13,14,15]. They
gave more emphasize on how to incorporate linguistics information or archi-
tectural strategy of the encoder-decoder model. For example, Rush et al. [10]
focused on how the encoder-decoder model can take into account word context.
In addition to the word context, Chopra et al. [11] tried to incorporate informa-
tion of the position of input words as well. Nallapati et al. [13] and Takase et al.
[14] tried to incorporate linguistic and structural information when representing
the input sequence. Kikuchi et al. [12] concerned on how to control the output
length of the decoder. On the other hand, Ayana et al. [15] worked on comparing
network architectures and training strategies.

As explained, previously mentioned studies used the first sentence of a news
document as the input sequence. However, Tan et al. [16] questioned the ef-
fectiveness of using the first sentence as the input because information in the
text is distributed across sentences [5,7]. Tan et al. [16] used the full-document
or sentences extracted from statistical ranking techniques (e.g., LSA, LexRank,
TextRank) as the input for the encoder-decoder. However, using a long input
sequence possibly degrades the performance of the encoder-decoder [16,25]. It
is relatively difficult to determine the saliency of sentences (i.e. processing unit)
while tracking what has been said and what is still left to be said as the sum-
mary [16,26,27,28]. To address existing problems, this work aims to use/add the
topic sentence, which selection is based on linguistic information (Sect. 4), as
the input of the encoder-decoder model.

4 Key Information in News

Ideally, news headline generation requires building a representation of under-
standing the 5W1H4 information of a news document [18]. However, extraction
of the 5W1H information is relatively difficult. Instead, we use the topic sen-
tence for the headline generation task as a proxy for the 5W1H information. It
is defined as a key information of news [19], as follows:

Topic sentence contains the core elements 〈subject, verb, object〉 and at least
one subordinate element time or location .

The core elements of functional information of a sentence are 〈subject, verb (pred-
icate), object〉 triples [17,18]. In addition to these core elements, time and loca-
tion are also important because they provide additional factual information in
news [18].

We hypothesize that incorporating the topic sentence is likely to provide
a better generalization of the encoder-decoder model than only using the first
sentence. The generalization means allowing the model to predict the headline of

4 what, where, whom, when, who, how



unseen news. We consider this strategy as a middle-ground between the presented
problems (i.e., only using the first sentence is not enough, need to consider
the 5W1H information, and using the full-document/long input is relatively
difficult). In contrast to statistical ranking techniques, the topic sentence consider
5W1H information (indirectly) while the statistical ranking methods do not.

A recent study by Tan et al. [29] proposed an encoder-decoder model which
jointly recognize salient sentences, and generate a summary. It will be interesting
to investigate the properties of the salient sentences selected by their model with
respect to the 5W1H information and the headline generation task in future
study.

5 Experimental Setting

5.1 Dataset

We use the annotated Gigaword dataset [30] (around 10 million documents) for
our experiment. The annotation is only used for tokenization and sentence split-
ting during preprocessing step. The preprocessing also includes replacing digits
by “#”, and replacing low-frequency words by “〈unk〉”, following the setting
by Rush et al. [10]5. The first sentence, topic sentence, and original (reference)
headline are extracted from each document.

We extract the earliest sentence containing 〈subject, verb, object〉 and at
least one subordinate element time or location as the topic sentence. It follows
the rationale of the inverted pyramid structure of news that the earlier sentences
contain more general information than the later sentences. We analyze sentences
using the dependency parser and named entity tagger in spaCy6 for a realistic
setting. DATE and TIME named entity tags are used for recognizing time infor-
mation, and GPE (i.e., countries, cities, states) and LOC (non-GPE locations)
named entity tags are used for location7. We only extract one topic sentence to
keep the length of the input as minimum as possible to avoid vanishing gradient
problem. In case there is no sentence satisfying the requirements for topic sen-
tence, we use the first sentence as the topic sentence. In case the topic sentence
is the same as the first sentence, we only use the first sentence when feeding
both first and topic sentences.

The dataset is split into training, validation, and testing data using the doc-
uments split provided by Rush et al. [10]. In the original script, the document
whose headline consists of more than three and fewer than 50 words is included.
The first sentence also should contain 10–100 words and at least one word in
common with the corresponding headline. We add an additional filter that the
topic sentence in a document should follow the same rule as the first sentence.

The remaining documents after the filtering can be seen in Table 1. The “#
docs” column denotes the number of documents for the corresponding set. The

5 https://github.com/facebookarchive/NAMAS
6 https://spacy.io/
7 https://spacy.io/usage/linguistic-features#section-named-entities



Table 1. Filtered gigaword dataset.

Data # docs not found found-1 found-2-*

Train 2,755,324 5.54% 73.43% 21.06%
Valid 139,284 5.69% 72.76% 21.58%
Test 134,432 5.90% 72.91% 21.19%

“not found” column denotes the percentage of cases when there is no sentence
satisfying the topic sentence extraction rule. The “found-1” denotes the percent-
age of cases when the first sentence satisfies the topic sentence requirement. The
“found-2-*” denotes the percentage of cases when the topic sentence is not the
first sentence of the document (e.g., 2nd, 3rd, or 4th sentence). The reference
headline in this dataset consists of eight tokens on average. While most of the
topic sentences are the first sentence, the rest 21% (found-2-*) can be meaning-
ful for analysis compared to using only the first sentence directly as the input.
In most cases, there is a sentence satisfying the topic sentence requirements.
It proves that using the topic sentence for headline generation is possible in a
real-world setting. We use ROUGE (ROUGE-1, ROUGE-2, and ROUGE-L) to
measure the performance of models [31].

5.2 Architectural Choice

We train the encoder-decoder model using three variants of input: (1) first
sentence, (2) topic sentence, and (3) both first and topic sentences in
which each is aligned with a reference headline. We use the default encoder-
decoder implementation in OpenNMT [32]8. This architecture can be regarded
as the standard sequence to sequence architecture. The reason for using this
architecture is to investigate the consequence of using different input types,
rather than architectural choice in the neural headline generation task. The
encoder and decoder are a 2-layer LSTM BiRNN and a 2-layer LSTM RNN
respectively with 500 hidden units. Global attention mechanism and dropout
(0.3) are used. The network is trained using stochastic gradient descent with
batch size 64 and initial learning rate 1.0. The learning rate is decreased as the
model converges. The number of maximum epochs is 13. We leave the control
of output length to OpenNMT. To avoid the bias of parameter initialization, we
train five models for each input-output pair and present the average performance
in Sect. 6.

When we feed both first and topic sentences, we place the first sentence
first followed by the topic sentence later (separated by “.”). This placement
emphasizes that the information of topic sentence is kept during the decoding
process as it is closer in position to the decoder (the topic sentence is more
important than the first sentence for generalization purpose). This rationale is
backed by an empirical result in Sect. 6.1

8 https://github.com/OpenNMT/OpenNMT-py



Table 2. Evaluation result on full Gigaword test set. R denotes full-length F1 ROUGE
score while CR denotes copy rate score.

Model
Topic First First and topic

R-1 R-2 R-L CR R-1 R-2 R-L CR R-1 R-2 R-L CR

OF 29.45 12.06 26.97 0.72 40.83 20.32 37.97 0.81 23.26 7.90 20.89 0.69
OT 33.73 14.37 30.77 0.71 40.72 19.68 37.76 0.80 26.69 8.98 23.69 0.71
OTF 32.00 13.03 29.11 0.76 41.47 20.49 38.46 0.83 26.49 8.91 23.45 0.75

6 Experimental Result and Discussion

6.1 Full Gigaword

This experiment aims to confirm which input type is the best for the neural
headline generation. In this section, we describe the result of evaluation of our
models on the Gigaword test set (134K). We feed each model using topic, first
and the combination of both sentences as the input during testing. Details of the
result is shown in Table 2 whose column denotes the corresponding testing input
type. OF, OT, and OTF refer to our models trained on first, topic, and both first
and topic sentences respectively. All models produced seven tokens on average.
OT performs the best when fed using topic sentence, OTF performs the best when
fed using the first sentence, while OTF and OT perform comparably when fed
using the combination of first and topic sentences as input during testing. On
the other hand, OF remains as the worst model across types of input.

We test the difference of performance (five iterations) between pairs of mod-
els using two-tailed t-test (two-sample unequal variance), and consider it sta-
tistically significant if the difference for all ROUGE scores between models is
significant at p < 0.05. The difference of performance between models is signifi-
cant when fed using the topic sentence as input. OTF significantly outperforms OT
when fed using the first sentence. However, it does not significantly outperform
OF on this input. Similarly, OF also does not significantly outperform OT when fed
using the first sentence as input during testing. When fed using both first and
topic sentences, both OTF and OT significantly outperform OF, while the differ-
ence between OTF and OT is not significant. Based on this fact, we argue that the
topic sentence can enhance the model performance across types of input com-
pared when only using the first sentence as input during training. It means, the
models trained by using/adding the topic sentence have a better generalization
than the model trained using the first sentence. This result is interesting in the
sense that the performance is improved on the test set only by using different
training input type.

Another interesting thing to note is the copy rate. Copy rate denotes how
much the model use the words found in input data as the headline words (com-
puted using recall). OT and OF show a relatively similar copy rate across types of
input while present different performance scores. OT and OF perform comparably
when fed using the first sentence despite OT is trained using the topic sentence



(the difference is not statistically significant at p < 0.05). However, OT outper-
forms OF on other types of input. Simply said, copying words sourced from the
topic sentence does a good job for the headline generation task.

Readers might wonder why the performance trend between OT and OTF is
not consistent across types of input. OTF outperforms OT when fed using the first
sentence during testing but not in other types of input. We infer that there is
a possibility of output words sourced from the topic sentence (in training data)
despite fed using the unseen first sentence during testing (or vice versa). We
infer that OTF probably associates words in the first sentence with the words in
the topic sentence during training while OT cannot do so. When we feed both
models using the topic sentence or both first and topic sentences, OTF uses words
in both first and topic sentence while OT only uses words from the topic sentence
resulting in lower OTF’s performance score. When we test using the first sentence,
OTF probably copies words from the topic sentence as the result of association
capability, resulting in a higher performance score. This explanation (although
relatively weak) also supports our previous argument that copying words of the
topic sentence is helpful in this task. This reasoning is relatively understandable
since RNN has been demonstrated working well in language modeling task.

Generally, the performance scores are higher when models are fed using only
the first sentence than other types of input during testing. The first sentence
possibly contains a more specific information to the document which is useful for
generating headline as it should express a particular input, while topic sentence
is useful for the generalization purpose.

Some readers might argue that the performance of OTF is higher than OF

and OT when fed using the first sentence only because more information fed
during training for OTF. In that case, the performance of OTF when fed using
other types of input during testing should be better than other models as well.
In fact, this is not the case in which OTF is beaten by OT on other types of
input. It means training encoder-decoder model using a longer input does not
guarantee improvement in performance across types of input. We have to provide
an “optimal” input-output pair to train the neural network. In this experiment,
it is relatively difficult to conclude which one is more optimal between only using
the topic sentence or using both first and topic sentences as input for the training,
as there is no trend observed. We are only sure that using the topic sentence as
opposed/in addition to the first sentence provides a better generalization.

6.2 Output Examples

To demonstrate the output of our models qualitatively, some randomly picked
output examples during testing are shown. We show both output examples of
short input (Fig. 1) and long input (Fig. 2). Each output of OF, OT, and OTF

in these figures are taken from the best performing model among five iterations
(read Sect. 5.2). Ref denotes the original (reference) headline.



Take a look at Fig. 1 showing the output examples (short input) when models
are fed using the first sentence9. Generally, OT and OTF are better in picking up
factual information, e.g. “information technology”/“it” on example 1; “fall #.#
percent”/“since ####” on example 2; and OF’s inability to produce “iran” on
example 3. However, there are also cases where the incorrect factual information
are reproduced in which is not only limited to OF. We have to acknowledge that
the outputs are still far from perfect.

OF and OT tend to generate headline according to the information it has seen
in the corresponding input (paraphrasing the input). On the other hand OTF tend
to be able to include other information which is not seen in the input (e.g. “it” is
possibly a shortened form of “information technology” on example 1; the phrase
“first time” on example 2. This is the main reason of our argument in Sect. 6.1
that there is a possibility of output words sourced from the topic sentence (in
training data) despite fed using the unseen first sentence during testing (or vice
versa) for OTF (words association capability).

Example 1
Input: the united states has donated egypt us$ ## million in recognition of its accession to the
world trade organization ’s information technology agreement , the u.s. ambassador to cairo said
wednesday .
Ref: united states donates us$ ## million to egypt for joining ita
OF: united states donates us$ ## million to .
OT: u.s. gives egypt $ # million for its information technology
OTF: u.s. gives egypt $ ## million in recognition of it

Example 2
Input: for american consumers , the prospect of falling prices sure sounds like a good thing but a
prolonged and widespread decline , with everything from real-estate values to incomes collapsing ,
would spell disaster for the u.s. economy .
Ref: falling prices stagnant employment numbers have economists worrying about deflation
OF: u.s. consumer confidence drops to new high
OT: u.s. consumer prices fall #.# percent in may
OTF: u.s. consumer prices fall for first time since ####

Example 3
Input: germany urged the united states on monday to exercise restraint toward iran , a country the
u.s. administration has accused of harboring top al-qaida members .
Ref: germany urges u.s. restraint against iran
OF: u.s. says it has no plans to give up on .
OT: germany urges us to exercise restraint on iran
OTF: germany urges u.s. to exercise restraint on iran

Fig. 1. Output Examples (Short Input)

Output examples when models are fed using long input (both first and topic
sentences) is shown in Fig. 2. Similar to the trend of the short input, OT and
OTF are better at picking up factual information than OF, although the produced
factual information can be incorrect (e.g. OT in example 1 in Fig. 2). There are
cases (not always) in which models are “confused” when fed using long input
(e.g. example 2). This problem is not exclusive to OF and OT, but also happen to

9 We do not show the output examples when models are fed using the topic sentence
as interest of space.



OTF as well. Certainly, it is more difficult to extract information from the longer
input.

Example 1
First Sentence: microsoft corp. has agreed to pay aol time warner $ ### million to settle an
antitrust suit over allegations that the software giant used strong-arm tactics to make its internet
explorer the dominant web browser , displacing aol ’s netscape .
Topic Sentence: under thursday ’s settlement , aol - time warner also gets free license to microsoft
browsing software for seven years microsoft also would license its digital media technology to aol ,
as well as work with the company to promote digital media initiatives .
Ref: microsoft to pay aol $ ### million in settlement
OF: microsoft agrees to pay aol time warner
OT: microsoft to pay $ # million to settle antitrust suit
OTF: microsoft to pay $ ### million to settle antitrust suit

Example 2
First Sentence: michael jordan wo n’t return as president of basketball operations for the washing-
ton wizards .
Topic Sentence: team owner abe pollin made the decision after meeting with jordan on wednesday
the move ends jordan ’s # # years with the wizards , the last two as a player .
Ref: michael jordan leaving wizards owner says
OF: with . . . to be .
OT: . to be . as new president
OTF: new york ’s . to be .

Fig. 2. Output Examples (Long Input)

6.3 Additional Small Test Sets

For the sake of comparison with existing models, we also evaluate our models
using commonly used small test set. The small test set comprises of 2000 first
sentence - headline pairs sampled from Gigaword dataset by Rush et al. [10].

Table 3. Evaluation result on 2000 first sentence - headline pairs of sampled Gigaword
test set. R denotes full-length F1 ROUGE score.

Model R-1 R-2 R-L

This study
OF 28.38 13.00 26.27
OT 28.77 12.69 26.40
OTF 29.37 13.13 27.08

Other Studies
ABS+ 29.78 11.89 26.97
words-lvt2k-1sent 32.67 15.59 30.64
OpenNMT Benchmark 33.13 16.09 31.00
RAS-Elman 33.78 15.96 31.15
MRT 36.54 16.59 31.15

Table 3 shows the result of the average full-length F1 ROUGE scores of our
models (trained five times for each input type) evaluated using the small test



set. We compare our models to ABS+ [10], words-lvt2k-1sent [13], OpenNMT
Bechmark10 [32], Ras-Elman [11], and MRT [15]. Note that models from other
studies11 are trained using 3.7M training data sourced from the same annotated
Gigaword corpus we used, which is preprocessed using the same script by Rush
et al. [10]. However, as we add an additional filter into the preprocessing script
(Sect. 5.1)12, our models are trained using fewer data (2.7M). Despite this dif-
ference, our models perform competitively with the baseline (ABS+). It will be
interesting to investigate the performance when models from other studies are
trained using fewer 2.7M documents (as the result of our additional filter) in the
future.

The difference of performance between our models (OT, OF, and OTF) is not
statistically significant at p < 0.05, although OTF showed a slightly higher score.
This result is interesting in the sense that the performance is improved on a
standard test set although the input type is different during training. This re-
sult suggests that abundant of information exists in the topic sentence that
using/adding it can improve the performance over the testing data despite the
difference of input type used on training.

7 Conclusion and Future Work

In this work, we experiment on incorporating topic sentence which is well stud-
ied in the past, and give an empirical proof that the topic sentence is useful for
headline generation task. We train the encoder-decoder model using: (1) first
sentence, (2) topic sentence, or (3) both first and topic sentences-headline pair.
We find that the model trained using the topic sentence has a better generaliza-
tion compared to the model trained using the first sentence. Training the model
using both the first and topic sentences increases the performance even further
in a certain case. This fact proves that the topic sentence is useful for news
headline generation task.

As future work, we will assess the difference of using topic sentence as opposed
to other sentence selection/ranking methods. In addition, it will be interesting to
investigate whether using/adding other types of subset of the full news document
is able to improve the performance, moreover to automatically decide the optimal
subset of text (with respect to 5W1H) as the input for news headline generation.

References

1. Hovy, E., Lin, C.Y.: Automated text summarization and the summarist system. In:
Proceedings of a Workshop on Held at Baltimore, Maryland: October 13-15, 1998.
TIPSTER ’98, Stroudsburg, PA, USA, Association for Computational Linguistics
(1998) 197–214

10 http://forum.opennmt.net/t/text-summarization-on-gigaword-and-rouge-

scoring/85. It basically shows OF trained on 3.7M dataset.
11 Performance of models from other studies are taken directly from their papers.
12 It implies we discard more documents than the original script.



2. Zhou, L., Hovy, E.: Template-filtered headline summarization. In: In the Proceed-
ings of the ACL workshop, Text Summarization Branches Out. (2004) 56–60

3. Banko, M., Mittal, V.O., Witbrock, M.J.: Headline generation based on statistical
translation. In: Proceedings of the ACL, Stroudsburg, PA, USA, Association for
Computational Linguistics (2000) 318–325

4. Zajic, D., Dorr, B.J., Schwartz, R.: Bbn/umd at duc-2004: Topiary. In: Proceedings
of the NAACL Workshop on Document Understanding. (2004) 112–119

5. Alfonseca, E., Pighin, D., Garrido, G.: Heady: News headline abstraction through
event pattern clustering. In: Proceedings of the ACL (Volume 1: Long Papers),
Sofia, Bulgaria, Association for Computational Linguistics (August 2013) 1243–
1253

6. Kong, S.y., Wang, C.c., Kuo, K.c., Lee, L.s.: Automatic title generation for chinese
spoken documents with a delicate scored viterbi algorithm. In: Proceedings of
Spoken Language Technology (SLT) Workshop. (2008) 165–168

7. Tzouridis, E., Nasir, J., Brefeld, U.: Learning to summarise related sentences. In:
Proceedings of COLING: Technical Papers, Dublin, Ireland, Dublin City University
and Association for Computational Linguistics (August 2014) 1636–1647

8. Wang, R., Dunnion, J., Carthy, J.: Machine learning approach to augmenting
news headline generation. In: Proceedings of the IJCNLP, Jeju Island, Korea,
Association for Computational Linguistics (October 2005) 155–160

9. Zajic, D., Dorr, B.: Automatic headline generation for newspaper stories. In:
Proceedings of the Workshop on Automatic Summarization. (2002) 78–85

10. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. In: Proceedings of the EMNLP, Lisbon, Portugal, Asso-
ciation for Computational Linguistics (September 2015) 379–389

11. Chopra, S., Auli, M., Rush, A.M.: Abstractive sentence summarization with atten-
tive recurrent neural networks. In: Proceedings of the NAACL-HLT, San Diego,
California, Association for Computational Linguistics (June 2016) 93–98

12. Kikuchi, Y., Neubig, G., Sasano, R., Takamura, H., Okumura, M.: Controlling
output length in neural encoder-decoders. In: Proceedings of the EMNLP, Austin,
Texas, Association for Computational Linguistics (November 2016) 1328–1338

13. Nallapati, R., Zhou, B., dos Santos, C.N., Çaglar Gülçehre and Bing Xiang: Ab-
stractive text summarization using sequence-to-sequence rnns and beyond. In:
CoNLL. (2016)

14. Takase, S., Suzuki, J., Okazaki, N., Hirao, T., Nagata, M.: Neural headline gener-
ation on abstract meaning representation. In: Proceedings of the EMNLP, Austin,
Texas, Association for Computational Linguistics (November 2016) 1054–1059

15. Ayana, Shen, S.Q., Lin, Y.K., Tu, C.C., Zhao, Y., Liu, Z.Y., Sun, M.S.: Recent ad-
vances on neural headline generation. Journal of Computer Science and Technology
32(4) (Jul 2017) 768–784

16. Tan, J., Wan, X., Xiao, J.: From neural sentence summarization to headline gener-
ation: A coarse-to-fine approach. In: Proceedings of the IJCAI. (2017) 4109–4115

17. Leskovec, J., Milic-Frayling, N., Grobelnik, M.: Extracting summary sentences
based on the document semantic graph. Microsoft Research (2005)

18. Genest, P.E., Lapalme, G.: Framework for abstractive summarization using text-
to-text generation. In: Proceedings of the Workshop on Monolingual Text-To-Text
Generation, Portland, Oregon, Association for Computational Linguistics (June
2011) 64–73

19. Wang, W.: Chinese news event 5w1h semantic elements extraction for event on-
tology population. In: Proceedings of the 21st International Conference on World
Wide Web. WWW ’12 Companion, New York, NY, USA, ACM (2012) 197–202



20. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder–decoder for
statistical machine translation. In: Proceedings of the EMNLP, Doha, Qatar, As-
sociation for Computational Linguistics (October 2014) 1724–1734

21. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Proceedings of the NIPS, Cambridge, MA, USA, MIT Press (2014)
3104–3112

22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8)
(November 1997) 1735–1780

23. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the ICLR. (2015)

24. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. In: Proceedings of the EMNLP, Lisbon, Portugal,
Association for Computational Linguistics (September 2015) 1412–1421

25. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: Encoder–decoder approaches. In: Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,
Doha, Qatar, Association for Computational Linguistics (October 2014) 103–111

26. Kiddon, C., Zettlemoyer, L., Choi, Y.: Globally coherent text generation with
neural checklist models. In: Proceedings of the EMNLP, Austin, Texas, Association
for Computational Linguistics (November 2016) 329–339

27. See, A., Liu, P.J., Manning, C.D.: Get to the point: Summarization with pointer-
generator networks. In: Proceedings of the ACL (Volume 1: Long Papers), Van-
couver, Canada, Association for Computational Linguistics (July 2017) 1073–1083

28. Cheng, J., Lapata, M.: Neural summarization by extracting sentences and words.
CoRR abs/1603.07252 (2016)

29. Tan, J., Wan, X., Xiao, J.: Abstractive document summarization with a graph-
based attentional neural model. In: Proceedings of the ACL (Volume 1: Long Pa-
pers), Vancouver, Canada, Association for Computational Linguistics (July 2017)
1171–1181

30. Napoles, C., Gormley, M., Van Durme, B.: Annotated gigaword. In: Proceedings
of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale
Knowledge Extraction. AKBC-WEKEX ’12, Stroudsburg, PA, USA, Association
for Computational Linguistics (2012) 95–100

31. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Proceed-
ings of the ACL workshop on Text Summarization Branches Out. (2004) 10

32. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: Opennmt: Open-source toolkit
for neural machine translation. In: Proceedings of ACL, System Demonstrations,
Vancouver, Canada, Association for Computational Linguistics (July 2017) 67–72


	Incorporating Topic Sentence on Neural News Headline Generation

