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Abstract. Language models are a key component of input methods, be-
cause they provide good suggestions for the next candidate input word
given previous context. Recurrent neural network (RNN) language mod-
els are the state-of-the-art language models, but they are notorious for
their large size and computation cost. A main source of parameters and
computation of RNN language models is embedding matrices. In this
paper, we propose a sparse representation-based method to compress
embedding matrices and reduce both the size and computation of the
models. We conduct experiments on the PTB dataset and also test its
performance on cellphones to illustrate its effectiveness.
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1 Introduction

Language modelling is a fundamental task in natural language processing, and
can also be combined with other tasks such as spelling correction, machine trans-
lation and speech recognition. RNN language models [1,2] are capable of utiliz-
ing arbitrarily long history in theory, making them an ideal choice for language
modelling. Despite RNN’s powerful modelling capacity, its large size limits its
application: the size of such models will easily grow to tens of megabytes or even
larger, which is cumbersome for mobile or embedded devices.

Researchers have proposed many techniques to compress large neural net-
works, including weight pruning [3,4] and weight sharing [5,6]. Nevertheless,
weight pruning leads to irregular connection patterns in the final pruned model,
making it unfriendly to hardware; and weight sharing techniques often involve
modifying standard neural network structures and sometimes impose extra con-
straints on training algorithms, making them difficult to incorporate with stan-
dard RNN layers. In [7] it has been observed that a large portion of parameters
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in RNN language models comes from the embedding matrix and proposed to
compress the embedding matrix using sparse representation. Thus this method
does not affect the network architecture and can be easily combined with popular
RNN cells such as LSTM [8,9].

In this paper, we follow the same sparse representation approach as in [7]
but go even further: we aim to reduce both the size and the computation cost
of RNN language models. Our main contributions are three-folds:

– We propose a binary search procedure to ensure each vector is represented
by a fixed number of basis vector, thus better exploits parallel processing
capabilities of the hardware;

– We derive a re-formulation of logits computation which can be combined
with sparse representation perfectly and reduces computation cost;

– We test our model’s performance and availability on cellphones instead of
just performing theoretical analysis.

The rest of this paper is organized as follows: In section 2, we review the
background of our work. Our proposed method is illustrated in section 3 and
experiment results are presented in section 4. Finally, section 5 concludes our
work and discusses further directions.

2 Related Works

2.1 Skip-gram Word Vector

Word embeddings, also known as word vectors, are dense and low dimensional
representations of words. One of the most popular tool to train word embeddings
is word2vec[10]. We briefly summarize skip-gram model with negative sampling
as follows:

L = log
∑
w∈C

∑
c∈Context(w)

g(w, c) =
∑
w∈C

∑
c∈Context(w)

log g(w, c) (1)

g(w, c) = log σ(ET
wOc) +

∑
cN∈NEG(w)

[log σ(−ET
wOcN )] (2)

where (w, c) is a word-context pair, NEG(w) is the set of negative samples for
word w, σ(t) = 1/(1 + exp(−t)) is the sigmoid function, E,O ∈ Rn×|V | are
input and output embedding matrices, and Ex, Oy ∈ Rn are input embedding
for word x and output embedding for word y respectively. In many literature,
only matrix E is regarded as word embeddings. However, as argued by [11], we
use both matrix E and O in our experiment, which leads to a more effective way
of initializing RNN language models.



2.2 RNN Language Model

RNN language models read a word embedding Ewt as their input at each time
step t, do some internal computation f(·), and predict the distribution of the
next word ot:

ht = f(Ewt
,ht−1) (3)

ot = softmax(Pht + c) (4)

, where E ∈ Rn×|V | and P ∈ R|V |×n are input and output embedding matrix
respectively, c ∈ Rn is a bias term. In our experiment, we will use LSTM as the
default RNN cell f(·).

2.3 Sparse representation

The sparse representation idea is to exploit the redundancy in embedding matri-
ces: embedding matrix can be viewed as |V | vectors in Rn. Considering |V | � n,
one can choose a group of over-complete bases in Rn and approximate each word
vector using a sparse linear combination of basis vectors, which leads to a com-
pression method. Since the number of parameters in embedding matrices is much
larger than that in hidden layers (O(n|V |) vs. O(n2)), compressing embedding
layers compresses the entire model.

The formulation in [7] is as follows: Denote basis matrix by U ∈ R|B|×n
(each column of U is a basis vector in Rn, and all |B| > n columns form a
group of over-complete bases), a word vector by w, they determine basis weights
x = (x1, x2, · · · , x|B|) as the solution of the following optimization problem:

min
x
‖Ux−w‖22 + α‖x‖1 + β|1Tx− 1|+ γ1T max{0,−x} (5)

, where the first term is the approximation error, the second term controls the
sparseness of weights x, the third term requires the sum of all weights to be close
to 1, and the last term favors non-negative weights. While these regularization
terms have their intuition, they introduce 3 additional hyper-parameters and
make it more difficult to optimize.

They simply choose the word vectors of the most frequent words as the
over-complete basis vectors and solve the equation above for all word vectors of
infrequent words to obtain the sparse codebook. Because many components in
x are zeros, one just need to store the indices and values of non-zero weights.

3 Methodology

This section consists of two subsections. In the first subsection, we describe the
algorithm for learning sparse codings, the key part of which is a binary search
procedure to ensure each sparse coding is of fixed length; in the second subsec-
tion, we illustrate how to utilize this sparse representation to reduce computation
during prediction.



3.1 Proposed Sparse Representation

Our sparse representation technique is similar to the one in [7], but we simplify it
to a basic LASSO problem and make it more tractable. We also assume words are
sorted by their frequency in descending order, so that for a embedding matrix
E ∈ Rn×|V |, its first |B| columns U = E1:|B| are word vectors of the most
frequent |B| words, where |B| > n is a hyper-parameter specified manually.

The proposed algorithm tries to represent a new word vector w by
a linear combination of exactly s basis vectors. It has four inputs: an over-
complete basis matrix U ∈ Rn×|B|, a new word vector w to be approximated, an
integer s which indicates the desired sparseness, and a float tolerance tol used
in terminating condition. And it returns two values: indices, an integer array of
length s, denoting the ids of chosen basis vectors; and weights, a float array of
length s, containing coefficients of the linear combinations.

The pseudo code of our algorithm is demonstrated in Algorithm 1.1. LASSO
is used to control sparseness, but because we don’t know the optimal regular-
ization strength α∗ which can give us an exactly s-hot solution x∗, we set up
a large range of the optimal α∗, and reduce this range by iterated trials. This
binary search procedure converges very quickly.

When the range is small enough, we probably have obtained a good enough
αt, so we break it in line 13 and gather the indices and values of non-zero
entries in current x∗. Note that there is a possibility that the number of non-
zero entries in x∗ is slightly fewer than pre-specified s (because we break the
loop in the strong regularization branch), we need to add more basis vectors
with zero weights to embedding w’s sparse representation to force a fixed length
approximation, which is the ”Zero padding” part of the algorithm.

For each column vector Ej ∈ Rn in the whole embedding matrix E, we can
pass Ej as parameter w in algorithm 1.1 and learn a sparse representation for
it. Run over all |V | columns in E, we can get |V | indices and weights and stack
all them up into two matrices of shape s× |V |, as illustrated in figure 1.

Compression ratio: The compression ratio is n× |V |/(n× |B|+ 2s× |V |).
Suppose n = 400, s = 10, |B| = 2000 and |V | = 20000, which is indeed a
practical setting we used in our mobile experiment, the ratio is 6.67. Noting
that the elements in index matrix I are all non-negative integers less than |B|,
we can use even fewer bits to store this matrix. Output embedding matrix can
be compressed similarly with each matrix in figure 1 transposed.

It is also very easy to restore a word vector from the basis vectors and its
sparse representation: one just need to fetch proper basis vectors and add them
up with corresponding weights, as in Algorithm 1.2.

3.2 Fast Prediction

To predict the next word, an RNN language model need to read current word
embedding. For standard RNN language model, the current word embedding
can be fetched directly from the input embedding matrix. For our sparse repre-
sentation, one need to use algorithm 1.2 to recover the embedding and feed it



Algorithm 1.1 Sparse Code Learning Algorithm

1: procedure Learn-Sparse-Coding(U,w, s, tol)
. Choose s vectors from columns of U to approximate word embedding w

2: αmin ← 1e-3
3: αmax ← 1e3

. Binary search
4: while true do
5: αt = (αmin + αmax)/2
6: x∗ ← minx

1
2n
‖Ux−w‖22 + αt|x|1

7: k ← NUMBER-OF-NON-ZERO-ENTRIES(x∗)
8: if k > s then . Regularization is too weak
9: αmin ← αt

10: else . Regularization is too strong
11: αmax ← αt

12: if αmax − αmin < tol then
13: break
14: end if
15: end if
16: end while

. Extract non-zero entries from x∗
17: indices ← INDICES-OF-NON-ZERO-ENTRIES(x∗)
18: weights ← VALUES-OF-NON-ZERO-ENTRIES(x∗)

. Zero padding
19: if k < s then
20: Randomly choose s− k column ids from basis in U
21: Append these s− k ids to indices
22: Append s− k zeros to weights
23: end if

. Now both indices and weights have exactly s elements.
24: return indices, weights
25: end procedure

Algorithm 1.2 Word Embedding Restoring Algorithm

1: procedure Restore-Word-Embedding(U , indices, weights)
. Restore a word vector from its of sparse representation form

2: v ← 0
3: for i = 1..len(indices) do
4: v ← v + weights[i]Uindices[i] . Uj denote the j-th column of U
5: end for
6: return v
7: end procedure



Fig. 1. Decompose embedding matrix into 3 smaller matrices

to RNN, which involves s embedding lookups, vector scaling and vector addi-
tion and thus increases model computation slightly. However, we can use the
shared bases to speedup the computation of the output side, a main
source of computation cost in RNN language models, and reduce the
total computation.

Our goal is to calculate Pht in equation 4 given a sparse decomposition of P ∈
R|V |×n. Noting that the basis matrix is shared across all sparse representations,
we can cache the product between basis matrix Û and hidden state ht based on
the following key observation:

〈Pi,ht〉 =

〈
s∑

j=1

weights[j]Ûindices[j],ht

〉
=

s∑
j=1

weights[j]
〈
Ûindices[j],ht

〉
(6)

, where weights and indices are sparse representation for Pi.
Denote the sparse decomposition of P ∈ R|V |×n by Û , Î, Ŵ (they are of

shape |B|-by-n, |V |-by-s, and |V |-by-s respectively, not to be confused with
input embedding matrix E’s decomposition U, I,W in figure 1), we have the
following fast multiplication algorithm 1.3:

Reduction in flops: The original Pht requires n|V | float multiplications
and (n − 1)|V | additions, while algorithm 1.3 requires only n|B| + s|V | mul-
tiplications and (n − 1)|B| + (s − 1)|V | additions. Again, if n = 400, s =



Algorithm 1.3 Fast Multiplication Algorithm

1: procedure Fast-Multiplication(Û , Î, Ŵ ,ht)
. Compute Pht from a sparse decomposition of P , i.e.: Û , Î, Ŵ

2: v ← Ûht . v is of length |B|
3: r ← 0|V | . r is a zero-vector of length |V |
4: for i = 1..|V | do
5: ri ←

∑s
j=1 Ŵi[j]vÎi[j] . Ŵi, Îi denote the i-th row of Ŵ , Î respectively

6: end for
7: return r
8: end procedure

10, |B| = 2000 and |V | = 20000, we reduce the computation cost by a factor
of (n|V |+ (n− 1)|V |)/(n|B|+ s|V |+ (n− 1)|B|+ (s− 1)|V |) = 8.08.

4 Experiments

In this section we show our experiment results on PTB dataset3 and model
performance on cellphones. To recap, our model is basically an RNN language
model described in subsection 2.3, where the input embedding Ewt

in equation
3 is computed using algorithm 1.2 and Pht in equation 4 is computed with
algorithm 1.3. We use LSTM as the default RNN cells.

We pretrain input and output embeddings with skip-gram models using
python package gensim [12] and draw 5 negative samples for each word in train-
ing data. The input and output embedding matrices in this paper corresponds to
member variables syn0 and syn1neg in class gensim.models.KeyedVectors respec-
tively. Then we use algorithm 1.1 to decompose pretrained embedding matrices
and initialize parameters of our sparse RNN language model. For parameters
within hidden layers, we simply initialize them from uniform distribution as in
[2]. The index matrices I and Î are fixed thereafter, while basis matrices and
weight matrices are kept finetuned during the training phase, which is another
difference from paper [7]. Training is performed using TensorFlow [13].

4.1 PTB

For PTB dataset, we set up two experiments: small and large. All our hyper-
parameters and training protocols follow [2]4. Both the small model and large
model have a vocabulary size of 10,000 and 2 LSTM layers. However, the hidden
size is different: 200 for small model and 1,500 for large model. The perplexity
results are reported in table 1 (the lower, the better):

We see that our sparse model has a higher training perplexity, but the gap
between train and test perplexity is smaller. Actually, the sparse constraints

3 Available at http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
4 See https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/
ptb word lm.py for details.

http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py


Table 1. Perplexity on PTB dataset

Model train test

Small
standard [2] 37.99 115.91

sparse (s = 10, |B| = 2k) 69.67 110.88

Large
standard [2] 37.87 78.29

sparse (s = 20, |B| = 4k) 55.23 82.35

act as a regularizer and prevent overfitting. We see that small sparse model
performs better that the standard model, but large sparse model is worse. This
phenomenon can be explained by the ratio |B|/n: for the small model, the bases
are more over-complete (|B|/n = 2000/200 = 10), and the sparse approximation
is pretty precise; while for the large one, the ratio is only 4000/1500 = 2.67,
which leads to some approximation error and causes degeneracy in performance.

4.2 Performance on Cellphones

In this part, we compare 3 different models. The first model is a standard RNN
language model, with embedding size 400 and 2 LSTM hidden layers of size
400. The second one uses algorithm 1.1 to compress the output embeddings and
algorithm 1.3 to speedup prediction. The third model further compresses the
input embedding matrix.

The models are trained on an internal corpus, which is consisting of 10M
sentences and the domain is daily conversation. We normalize all punctuation
to <pun> and numbers to <num>, and keep the most frequent 20,000 words in
the final vocabulary. For sparse representation, we set basis size |B| = 2000 and
sparseness s = 10.

On a Macbook Pro Retina 2015, we test the memory consumption and re-
sponse time (time for inference 1 step) of these 3 models, and summarize the
results in table 2. The response time is the average value of 200 inferences.

Table 2. Memory and response time on Macbook

Model Model1: basic Model2: sparse softmax Model3: sparse

Memory consumption (MB) 72 47 24
Response time (ms) 16.5 9.5 7.5

From model 1 to model 3, we can see memory does reduce a lot due to our
compression algorithm. And there is a large drop in response time from model 1
to model 2, which is the effect of our fast multiplication algorithm. Surprisingly,
the response time of model 3 is even shorter than that of model 2, which can be
attributed to better locality and modern cache system.

We also test our models on a Nexus 5, and we don’t know any previous
work that has tested their method on real cellphones. The memory consumption



is roughly the same as that on the Macbook, so we omit it here. We run 100
predictions for each model, and list the response time as follows:

Table 3. Response time on Nexus 5

Model Model1: basic Model2: sparse softmax Model3: sparse

Response time (ms) 30∼33 15∼28 19∼22

It’s clear that the last two models are faster, and the third model is more
stable than the second one.

We also compare our model’s performance by combining it with LatinIME,
an open source input method editor. The default language model of LatinIME
is based on n-gram models, and it integrates unigram to trigram counts with
a complicated algorithm and empirical values. When predicting next word, it
utilizes previous context and current incomplete character sequence. Character
sequence is fed to an internal Trie tree to find words with similar spellings, and
the language model reranks the candidate words based on previous context. We
replace the n-gram language model with our RNN language model, and compare
the input efficiency of these two methods. The input efficency is defined as
the ratio of number of real characters to that of keystrokes. For example,
if a user wants to input the word ”happy”, and he managed to achieve this by
typing only the first 3 letters ”hap” (because input method recommend the word
”happy” to him), the input efficiency is len(”happy”)/len(”hap”) = 5/3. The test
result is in table 4.

Table 4. Input efficiency statistics

Method LatinIME LatinIME with RNNLM

Input efficiency 1.55 1.83

We see that LatinIME with RNNLM behaves significantly better than origi-
nal LatinIME with n-gram language model. Actually, we do observe bad predic-
tions of the original LatinIME like ”in two days ago”, because it thinks both ”in
two days” and ”two days ago” are valid. When combined with RNNLM, these
bad cases rarely occur.

5 Future Works

In this paper, we propose a method to decompose a word embedding matrix
into an over-complete basis matrix, an index matrix, and a weight matrix. By
fixing the length of each sparse coding and computing the logits of next word
distribution though the linear combination of those of output basis vectors, we



reduce both the size and computation cost of the model and make it more
suitable to run on hardware.

In the future, we plan to explore other kinds of redundancy, e.g.: sharing
the input and output over-complete basis matrices, tying input and output em-
bedding matrices, etc. These techniques will make the model smaller and more
efficient.
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