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Abstract. Semantic Networks (SN) are a knowledge representation paradigm
especially suited for the meaning representation of natural language expressions.
Whereas SN formalisms often do not give a clear logical specification of their
basic constructs, logical formalisms, on the other hand, do seldom bother about a
connection to natural language or about the intensional interpretation of the non-
logical symbols used in the calculus. In order to bridge this gap, the relations and
functions used in a semantic network must be given a logical characterization.
Moreover, the logical descriptions must be provided with a richer inner struc-
ture compared to traditional logical knowledge bases. The paper exemplifies this
strategy for Multilayered Extended Semantic Networks (the so-called MultiNet
paradigm), but the basic approach should also be of importance for other models
of natural language semantics and knowledge representation. In particular, it is
argued that the axioms defining the logical properties of the expressional means
of a knowledge base have to be classified according to well-defined criteria. The
typology of axioms and the assignment of concepts to different semantic layers
derived from this classification have an important influence on the inferences car-
ried out over such a knowledge base. This is in contrast to logical knowledge
bases where one normally deals with an axiomatic apparatus having a very flat
structure or no structure at all.

1 Introduction

1.1 General Remarks

Semantic networks [1,2] belong to the knowledge representation formalisms well-suited
for the meaning representation of natural language (NL) expressions. However, there is
often no clear understanding of the nodes and arcs contained in an SN [3]. Logically
oriented systems, like the different kinds of Description Logics [4], by contrast, do sel-
dom bother about a close connection to NL, especially regarding lexical semantics and
the description of large computational lexica. In addition, they do not define a structure
on their axiomatic apparatus which is typically considered a “flat” list of well-formed
formulas assumed to express valid assertions. In contrast to that it is argued in this
paper that axioms in a real-life knowledge base have to be classified according to dif-
ferent criteria, where each class or axiom type has a special influence on the inference
process. However, the semantic network paradigms which have a logical underpinning,
like SNePs [5], Conceptual Structures [6] or Structured Inheritance Networks [7], do
not support a classification of expressional means (and in particular of axioms) which
could be used for controlling the inference process. With Multilayered Extended Se-
mantic Networks (the MultiNet paradigm [8]), this situation has changed. MultiNet is
a very comprehensively described semantic formalism and successfully used in real
NLP applications. It is employed for describing large semantically based computational
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lexica [9], for representing the results of syntactic-semantic analysis working over large
text corpora [10], and for the implementation of NL interfaces [11]. Its application in the
InSicht question-answering system [12] has been successfully evaluated in the CLEF
contest [13]. InSicht uses a MultiNet knowledge base automatically generated from 4,9
Mio sentences [14].
MultiNet extends simple semantic networks by the following features (see also Sect. 2):
a) Every node is labeled by a sort from a predefined ontology of sorts and by bundles
of layer attributes. b) MultiNet admits functions and relations of arbitrary arity. c) The
arcs (relations) are formally characterized by associated axioms which are structured
according to a well-defined typology. This paper will emphasize this typology and its
role for controlling the inference processes. d) Subnetworks can be encapsulated to
form concepts of higher order which can be connected to other concepts by relations
and functions. e) The relationships in the network are assigned knowledge types with
regard to their arguments which discern categorical (strict) knowledge from prototypi-
cal (default) knowledge and modal restrictions.

1.2 Related Work

Semantic Networks have a long tradition as a paradigm for representing cognitive struc-
tures, starting with Quillian [1]. As to the formal specification and logical underpinning
of relations and functions used in such networks, we find a logically oriented and a
more linguistically oriented approach. The works in the first line, like Shapiro’s SNePS
[5], Sowa’s Conceptual Structures [6], and Brachmann’s KL-ONE [7], have a clear log-
ical foundation, but none of them give a systematic and complete description of the
relations and functions constituting an SN. By contrast, linguistically oriented work
normally discusses selected semantic relations (so-called cognitive roles or theta-roles)
in greater detail [15,16]. However, these verbal discussions often lack a logical under-
pinning, and the proposed relations and roles are not contrasted with each other to form
a balanced system of expressional means. In SNePS [5], for example, the guideline for
choosing the appropriate relations is deliberately given the status of a recommendation
only. To meet the criteria to be fulfilled by a knowledge representation formalism useful
for NLP (especially the universality, homogeneity, and interoperability requirements [8,
Chap. 1]), one must have a clear verbal definition of the representational means and a
corresponding formal specification. This is necessary for consistent use of the formal-
ism when characterizing a large number of lexemes.
With MultiNet we have developed both, a semantic formalism and a linguistic theory,
by fixing a set of expressional means and formalizing axioms which describe these
functions and relations in a consistent and all-embracing framework. The MultiNet
paradigm is also well-supported by software tools, like the workbench MWR for the
knowledge engineer and the workbench LIA for the computer lexicographer (see [8,
Chapt. 14]). Figure 1 shows a the semantic representation of a sample sentence gen-
erated by means of MWR (exhibiting also the layer information of a selected node).
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In January, John writes a diploma thesis about special phrases on the Internet.

Fig. 1. The workbench for the knowledge engineer MWR

2 The Expressional Means of MultiNet

2.1 Sorts

Sorts are needed for characterizing the algebraic properties of relations and functions
of a knowledge representation system. They describe the domains and ranges of these
expressional means, i.e. their signatures. MultiNet distinguishes forty-five classes of
conceptual entities [8, Sect. 17.1]. Table 1 shows that part of the sortal hierarchy rel-
evant to this paper. Sorts do not only serve to define the signatures of relations and
functions, they even have an influence on the applicability of axioms (see Sect. 3) and
on inferences (Sect. 4).

2.2 Layer Attributes

Facticity. We discern three possible kinds of facticity expressed by the attribute FACT:
[FACT=real ] for existing entities (Eiffel tower), [FACT=non] for non-existing entities
(the light ether), and [FACT=hypo] for hypothetical entities (quarks). The assignment
of facticity values induces a stratification of the conceptual world into layers of existing,
non-existing and hypothetical entities. In addition to the extensional negation expressed
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Table 1. Detail from the hierarchy of ontological sorts

entity [ent]
object [o]
concrete object [co] house, milk
abstract object [ab]
attribute [at] height, weight, length
situational object [abs] race, robbery, movement

. . .
situation [si]
dynamic situation [dy] write, explode
static situation [st] stand, be ill

situational descriptor [sd]
time [t] yesterday, Monday, tomorrow
location [l] here, there
modal situational descriptor [md] impossible, necessary, desirable

quality [ql]
property [p]
total quality [tq] dead, empty, green
gradable quality [gq] friendly, expensive

. . .
. . .

quantificators and measurements [qn] all, many, two litres
formal entity [fe] (meta level entities like figures and tables)

. . .

by a non-existing situation with [FACT=non], MultiNet also supports the intensional
negation of a situation s, expressed by the relation (s MODL *NON). Both types occur
in the example “It is not true that [Peter didn’t(MODL*NON) drive to Boston with his
car][FACT=non]”, whose semantic representation is shown in Fig. 2. The law of double
negation can be applied to ascertain the truth value of the sentence “Peter drove to
Boston with his car”. However, from the perspective of NL semantics and pragmatics,
the latter sentence is not equivalent to the original one.
Genericity. The GENER attribute (degree of generality) divides the world of concepts
into generic objects with [GENER=ge] (house) and specific objects with [GENER=sp]
(〈my house〉). In this way, assertions about the generic concept can be clearly separated
from assertions about instances of that concept. Generic concepts are also needed to
model prototypical knowledge. Consider the example “Lions feed on antelopes”. A for-
malization by a universal quantifier ranging over all lions would be inadequate because
the sentence expresses only default knowledge. Layer features are useful to model the
combinatorics of quantification and determination in natural language. The interplay of
these operators with lexemes designating concepts can be captured by a method called
‘layer unification’ [17].
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Table 2. Strongly abbreviated description of relations used in this paper

Relation Signature Short Characteristics
AFF si× [o∪ si] C-Role – Affected object
AGT si×o C-Role – Agent
ANTE [t ∪ si]× [t ∪ si] Temporal successorship
ATTR o×at Specification of an attribute
AVRT si×o C-Role – Averting/Turning away from an object
CAUS si

′ × si
′

Relation between cause and effect (Causality)
CIRC si× [si∪abs] Relation between situation and circumstance
COMPL p× p Complementarity relation
DIRCL [si∪o]× l Relation specifying a direction
FIN si× [t ∪ si] Relation between a situation and its temporal end
LOC [o∪ si]× l Relation specifying the location
MIN qn×qn Smaller-than relation
MODL si×md Relation specifying a restricting modality
OBJ si× [o∪ si] C-Role – Neutral object of a situation
ORNT si×o C-Role – Orientation of a situation toward something
PARS co× co Part-whole relationship
PROP o× p Relation between object and property
SCAR st×o Relation between state and carrier of the state
SSPE st× ent Relation between state and state-specifying entity
SUB o×o Relation of conceptual subordination (for objects)
SUBS si× si Relation of conceptual subordination (for situations)
TEMP si× [t ∪ si] Relation specifying the temporal embedding of a situation
VAL at× [o∪qn∪ p∪ f e] Relation between an attribute and its value

2.3 Relations and functions

To characterize an SN, we need a precise specification of the relations corresponding to
the arcs (links). To this end, MultiNet provides about 140 relations and functions de-
scribed on the basis of a uniform schema. For every relation or function R, this schema
comprises: (1) a mnemonic remark, (2) a signature based on the sorts introduced in Sect.
2.1, (3) a verbal definition, (4) a set of question patterns aiming at R in the question-
answering game, and (5) an explanation establishing connections to other expressional
means and distinguishing R from other relations and functions. The formal definition
of relations and functions is given by means of logical axioms (see Sect. 3). Table 2
sketches the relations and functions needed for our discussion. Here, the notation si

′

demands [FACT = real], and the notation si demands [GENER = ge].

The main characteristics of an SN in MultiNet format are shown by an example
in Fig. 2, where every arc is classified with respect to its first and second argument as
belonging to the categorical valid knowledge (c), situationally bounded knowledge (s),
or semantically restrictive knowledge (r).
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Fig. 2. “It is not true that Peter didn’t drive to Boston with his car”

3 A Typology of Axioms for Inferences over an SN

In the following, we use a first-order language to formulate axioms. The axioms are
written as implicational rules or equivalences of the general form

L1∧·· ·∧Ln→ (∃x1, . . . ,xk)R1∧·· ·∧Rm or
(∃x1, . . . ,xk)L1∧·· ·∧Ln→ (∃y1, . . . ,y`)R1∧·· ·∧Rm

where the Li and R j are (possibly negated) literals which correspond to the edges of the
subnetworks described by premise and conclusion. Layer features and sorts can also be
used in these axioms to further constrain the admissible variable bindings. Notice that
variables not explicitly bound by an existential quantifier will be regarded universal.

The way in which such axioms will be used in inferences over MultiNet representa-
tions is demonstrated by an example of linking “The laptop weighs 1.6 kilograms” and
“The laptop has a weight of 1.6 kilograms”. Consider the MultiNet representation of
these sentences shown in Fig. 3 below.1

Given the question “What is the weight of the laptop?”, a question pattern will
be generated from the MultiNet representation which comprises the conjunction of
edge literals, i.e. (x SUB laptop)∧ (x ATTR y)∧ (y SUB weight)∧ (y VAL v). The pattern
can be directly matched with the network shown in Fig. 3.b, based on the substitution

1 Layer features are not displayed for simplicity. The function *QUANT serves to construct a
measurement (*QUANT1.6 kg) from the given numerical quantificator 1.6 and measurement
unit kg.
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Fig. 3. MultiNet representation of sentences (a) “The laptop weighs 1.6 kilograms” and (b) “The
laptop has a weight of 1.6 kilograms”

{x/c2,y/c4,v/c3}. However, an axiom is needed to prove the question from the network
shown in Fig. 3.a.

The relationship between weighing and having a weight can be expressed as fol-
lows,

(w SUBS weigh)∧ (w SCAR k)∧ (w SSPE q)→ (∃a)(w ATTR a)∧
(a SUBS weight)∧ (a VAL q) .

In order to prove “x has a weight of v” from the semantic network representation of “x
weighs v”, a backward chaining step must then be carried out which reduces the repre-
sentation of the former sentence to the representation of the latter sentence. Following
that, the constraints expressed by the layer features must be checked in order to ensure
the correctness of the result on a more fine-grained level of meaning analysis.

From a linguistic view, the standard first-order logic (FOL) is too rigid with regard
to the validity of expressions. While a logical expression is either true or false in FOL,
a semantic formalism dealing with NL cannot assume this even for the basic assertions.
Moreover, logical calculi normally do not give a clue how to use the axioms in an effec-
tive inference strategy. Additional information about the axioms is needed to achieve
this. These considerations suggest a cross-classification of axioms according to several
criteria (detailed in Sect. 3.1–3.4), which result in eight basic types of axioms shown in
Fig. 4.

Though our discussion is based on MultiNet expressions, the axiom types and their
effect on inferences should be of relevance to other frameworks, too. In the following
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Fig. 4. The Classification of Axioms

Sections 3.1 through 3.4 we give at first a description of the different types of axioms,
while the influence of these types on the inference process is discussed in Sect 4 yielding
also a motivation for the typology of axioms presented in this paper.

3.1 Conceptually Bound vs. Conceptually Non-bound Axioms

R-axioms. From a syntactical point of view, there are two types of expressions describ-
ing axiomatic knowledge. The first type contains no lexical constants but only relation
and function symbols (apart from logical signs). These expressions are called concep-
tually non-bound or R-Axioms. The following R-Axiom connects causality and time,
saying that the effect never takes place before the cause:

(x CAUS y)→¬(y ANTE x) (1)
An example is “Since temperatures fell below 0◦C, the river froze.” The axiom lets us
conclude that the freezing of the river did not take place before temperatures fell be-
low 0◦C. Other examples of conceptually non-bound axioms are given by (3), (5), and
(6) below. The property of conceptual boundedness affects the inference strategy, since
R-axioms (which also comprise the transitivity, symmetry, and reflexivity properties of
certain relations) have a global effect on the inference process (see Sect. 4.1).
B-axioms. Axioms containing the representative of at least one concept are called con-
ceptually bound or B-axioms. An important and quantitatively large source of axioms
in NL semantics is given by meaning postulates expressing entailments and presuppo-
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sitions connected with lexicalized concepts (especially with the meanings of verbs).2

Thus, with every selling act s there is a buying act b entailed by s. The corresponding
relationship is given by the following axiom:

(s SUBS sell)∧ (s AGT a)∧ (s OBJ o)∧ (s ORNT d)→
∃b(b SUBS buy)∧ (b OBJ o)∧ (b AVRT a)∧ (b AGT d) (2)

Such a B-axiom has only a local effect, i.e. it is applied only in those cases where one
concept has to be connected to another during the inference process. Another example
of a B-axiom is (4) which contains only one concept.

3.2 Categorically vs. Prototypically Valid Axioms

Categorically Valid Axioms. It seems to be a contradiction to speak of axioms which
are restricted in their validity. But, if we want to formalize natural language semantics,
we must also account for prototypical regularities.
The following two axioms express knowledge which is categorically valid:

(p1 COMPL p2)∧¬(o PROP p1)→ (o PROP p2) (3)
(k1 PARS k2)∧ (k2 ATTR m2)∧ (m2 SUB weight)∧ (m2 VAL q2)→
∃m1∃q1[(k1 ATTR m1)∧ (m1 SUB weight)∧ (m1 VAL q1)∧ (q1 MIN q2)] (4)

Axiom (3) states that one from two complementary properties (if applicable at all) must
hold (for example, if a man is not ‘married’, then he is ‘unmarried’). Axiom (4) asserts
that a part must always weigh less than the whole. For example, if the weight of a car
is q1 = 1,500kg, then the weight q2 of the car’s engine must be less than 1,500kg, as
expressed by the smaller-than relation MIN. It is obvious that there is no exception from
these rules.
Prototypically Valid Axioms. By contrast, the rules (5) and (6), governing the inher-
itance of the part-whole relationship and of properties within the SUB hierarchy, have
only the status of default (or prototypically valid) knowledge:

(d1 SUB d2)∧ (d3 PARS d2)→∃d4[(d4 SUB d3)∧ (d4 PARS d1)] (5)
(o1 SUB o2)∧ (o2 PROP p)∧ p ∈ tq→ (o1 PROP p) (6)

Axiom (5) expresses, for example, that a specific car will have wheels given that cars
have wheels. (6) lets us conclude from the knowledge that bears are dangerous that
a specific bear will also be dangerous. It is a good assumption that a conceptual ob-
ject subordinated to a generic object inherit known parts and properties from the latter.
However, there are exceptions. For example, although individual bears normally inherit
the property dangerous from the generic concept bear; there are also circus bears, bears
being ill etc. which should not be regarded dangerous.

3.3 Deductive Axioms vs. Destructive Axioms

Deductive Axioms. Many axioms, like (1) through (6), can be used in a deductive pro-
cess to derive new knowledge, given by the conclusion, provided that the premise be
fulfilled. The important feature of monotonic deduction is that no piece of knowledge
in the knowledge base must ever be retracted.

2 We cannot discuss the phenomenon of lexical ambiguity here, but we actually discern three
phenomena in our computational lexicon: polysemy, homography, and meaning molecules [9].



10

Destructive Axioms. There are also axiomatic regularities which not only generate new
knowledge but also cancel earlier knowledge. Into this class of ‘destructive’ axioms we
number the derivation of the temporal end of a situation s:

(e SUBS end)∧ (e AFF s)∧ (e TEMP t)→ (s FIN t)|DEL (s TEMP _) (8)
Thus if an activity e ends a situation s at time t, then a new relation FIN for s must
be established and the earlier specification of s by the relation TEMP must be deleted.
Similarly, the transfer of negation from its extensional form to its intensional equivalent
must be written as a mutual substitution (indicated by the dot over the arrow) and not
as a logical equivalence:

[FACT(s) = non]∧ (s MODL nil)←̇→(s MODL *NON)∧ [FACT(s) = real] (9)
This axiom says in particular that the right side of the formula can not be monotonously
derived from the left side and additionally inserted into the knowledge base. Given one
of the expressions (left side or right side of the axiom) is true, one can take the expres-
sion on the other side of ←̇→ instead of the former (but not both of them at a time, as
would be the case with a normal equivalence). It is not possible to regard this a deduc-
tive logical inference because simply adding the derived relationships would result in an
analysis involving two negating constructions, which corresponds to a double negation
(as shown in Fig. 2).

3.4 Epistemically Restricted vs. Non-restricted Axioms

Epistemically Restricted Axioms. There are axioms which are epistemically restricted
in the sense that their validity is only warranted within a certain epistemic or cognitive
context. A typical example is the restricted transitivity of CAUS:

(k1 CAUS k2)∧ (k2 CAUS k3)→ (k1 CAUS k3) (10)
This axiom is connected with a fading effect preventing infinite prolongation of causal-
ity chains by a presumed (but not strongly valid) transitivity of CAUS. This effect is due
to the so-called INUS-conditions [18], i.e. humans asserting a causal relation empha-
size a certain cause and neglect other necessary conditions for this relationship. A long
causal chain thus weakens the connection between the original cause and final effect.
A similar behavior is shown by the relation PARS [8, Sect. 4.2]. It is not at all obvious
how such epistemic level and the observed fading effect could be expressed by purely
logical means.
Epistemically Non-restricted Axioms. For most axioms no epistemically motivated
restriction can be observed. In particular, the transitivity of conceptual subordination
(11) and of spatial inclusion (12) hold unconditionally:

(o1 SUB o2)∧ (o2 SUB o3)→ (o1 SUB o3) (11)
(o LOC (*INm))∧ (m LOC (*INn))→ (o LOC (*INn)) (12)

Axiom (11) concludes from the fact that pidgeons are birds and that birds are animals
that indeed pidgeons are animals. Axiom (12) concludes from the fact that Marc’s sun
glasses are in his car and the fact that the car is in the parking garage that Marc’s sun
glasses are in the parking garage.
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4 Effects on Inference and Logical Answer-Finding

4.1 The Role of Different Axiom Types in Inferences

Axioms which are conceptually not bound have to be treated with care by the reasoner,
since an R-axiom for a relation R can be applied in inferences over the SN wherever
R is involved (global effect). In addition, symmetry axioms may cause oscillations in
the set of literals to be proved, while transitivity axioms blow up searches and repeat-
edly create literals containing only variables as arguments (see e.g. [19]). By contrast,
conceptually bound axioms have only local effects. They establish a kind of hyperre-
lation between two or more concepts in a meta-level SN. Here, we meet the Frame
Problem in Artificial Intelligence: In a B-axiom like (2), only the change of participant
roles (like AGT, AFF, AVRT, and OBJ) is specified, but nothing is said about the local,
temporal and circumstantial embedding of the main situation (mainly represented by
LOC, TEMP, and CIRC, resp.) The transfer of these specifications must be handled by
axiom schemata for classes of concepts: While the temporal specification of a selling
act like s in (2) transfers unchanged to b, there is no such transfer of the specification
(s1 TEMP t1) of a sending act s1 to the corresponding receiving act sk(s1). For the latter
class we have:

(s1 SUBS 〈send-act〉)∧ (s1 TEMP t1)∧
(sk(s1)SUBS 〈receive-act〉)∧ (sk(s1)TEMP t2)→ (t1 ANTE t2) (13)

In other words, the act of receiving always takes place after the corresponding sending
act.

Categorically valid axioms lead to monotonic reasoning, while prototypically valid
axioms call for nonmonotonic reasoning. The standard approach to default reasoning
based on a truth-maintenance system does not scale up to knowledge bases of realistic
size, though. The basic technique proposed in MultiNet is to warrant that every de-
duction step involving default knowledge again produces only default knowledge. The
newly generated default knowledge has to be checked for local contradictions in a well-
defined neighborhood of the concepts involved. Semantic networks can help defining
such neighborhoods as their link structure gives a natural notion of vicinity for concep-
tual entities.

For epistemically restricted axioms, we propose the use of built-in procedures which
treat borderlines of epistemic or functional levels by special parameters for controlling
the inference process. For transitivity and symmetry axioms, we propose a procedural
treatment in any case (be they epistemically restricted or not).

4.2 The Effect of Sorts and Layers on Inferences

Sorts. In the context of NL semantics, not every rule of standard FOL is valid with-
out restriction. The proposed sorts are useful to constrain the applicability of logical
rules. For example, the distinction of gradable properties (sort [gq]) and total proper-
ties (sort [tq]) prevents a wrong application of the law of double negation. In FOL, the
meanings of adjectives are usually formalized as unary predicates, e.g. “friendly” as
FRIENDLY(x) and “unfriendly” as UNFRIENDLY(x). The normal way to express the
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dependency of the predicates would be UNFRIENDLY(x)↔ ¬FRIENDLY(x). We then
obtain ¬UNFRIENDLY(x)↔ FRIENDLY(x), which is clearly wrong. This indicates that
the law of double negation does not hold unconditionally. Unlike total properties (dead ),
the gradable properties friendly and unfriendly are not stable under double negation.
Genericity. The classification into generic concepts vs. specific instances is important
for inferences, because it distinguishes between different mechanisms of knowledge
processing and inheritance. For example a specific individual [GENER=sp] can inherit
from a generic concept [GENER=ge]. However, it is impossible that a generic concept
or an individual will ever inherit from a specific instance.
Facticity. The rules of inference must be different for existing and non-existing objects.
If there exists no object with property B, there is also no object with a stronger prop-
erty B′. Existing objects [FACT=real ] show the opposite pattern: If there is an object
with property B, then it also has any weaker property B′′. In general, the support for
non-denoting terms will affect the calculus rules [20]. Facticity must be anchored in the
logical language since special inference rules apply to hypothetical and non-existing
objects.

5 Conclusion

The described semantic network formalism targets at the formal representation of un-
regimented natural language. To achieve this, we introduced representational means
which capture the facticity status, degree of generality, modal embedding, and other
characteristics of NL concepts in terms of a multidimensional assignment of layer at-
tributes and knowledge types. Our final goal is that of developing a ‘Logic of MultiNet’
which fully captures the combinatorics of these dimensions. This will demand, among
other things, an integration of reasoning with modalities, prototypes, pluralities and
generalized quantifiers. In the paper, we have demonstrated that the relations and func-
tions on which the formalism is based can be made precise by axioms which formally
describe their expected behaviour. These axioms differ with respect to a number of
characteristics and we have shown that the proposed classificatory dimensions of cate-
goricity, conceptual boundedness and epistemic restriction are especially important in
this respect because they affect the validity and efficiency of inference. The ‘knowl-
edge types’ mentioned in the introduction also have a significant influence on the type
of inference and on the answer-generation strategy (this topic has been dealt with in
[21]). MultiNet as described in this paper and the NLP technology connected to it are
the cornerstone of the semantically based search engine SEMPRIA [22].
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