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Abstract. In the current study, a method for automatic language iden-
tification based on deep convolutional neural networks (DCNN) and the
i-vector paradigm is proposed. Convolutional neural networks (CNN)
have been successfully applied to image classification, speech emotion
recognition, and facial expression recognition. In the current study, a
variant of typical CNN is being applied and experimentally investigated
in spoken language identification. When the proposed method was eval-
uated on the NIST 2015 i-vector Machine Learning Challenge task for
the recognition of 50 in-set languages, a 3.9% equal error rate (EER) was
achieved. The proposed method was compared to two baseline methods
showing superior performance. The results obtained are very promising
and show the effectiveness of using DCNN in spoken language identifica-
tion. Furthermore, in the current study, a front-end feature enhancement
and dereverberation approach based on a deep convolutional autoencoder
is also reported.
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1 Introduction

Automatic spoken language identification is the process of automatically recog-
nizing language in a spoken utterance. Language identification is an important
part of speech-to-speech translation systems and has a significant role in the di-
arization of meetings. Moreover, it can be utilized in call centers to automatically
route incoming calls to appropriate native speaker operators.

Several studies have investigated spoken language identification. The ap-
proaches presented here are categorized based on the features they employ.
Language identification systems are categorized into the following approaches:
acoustic-phonetic, phonotactic, prosodic, and lexical [1]. In phonotactic sys-
tems [1, 2], sequences of recognized phonemes obtained from phone recognizers



are modeled. In In [3], a typical phonotactic language identification system is
used, where a language-dependent phone recognizer is followed by parallel lan-
guage models (PRLM). In [4] a universal acoustic characterization approach to
spoken language recognition is proposed. The main idea is to describe any spoken
language with a common set of fundamental units, such as manner and artic-
ulation, which are used to build a set of language-universal attribute models.
The vector space modeling-based phonotactic language recognition approach is
demonstrated in [1, 5] and presented in [6]. The key idea is to vectorize a spo-
ken utterance into a high-dimensional vector, thus leading to a vector-based
classification problem.

In acoustic modeling-based systems, however, each recognized language is
modeled by using different features. Although significant improvements in LID
have been achieved from phonotactic approaches, most state-of-the-art systems
still rely on acoustic modeling.

In [7], an early attempt at language identification based on a neural network
is presented. Similarly, neural network-based language identification is addressed
in [8]. In [9] the first attempt at language identification using deep learning is
presented. In [10] automatic language identification based on deep neural net-
works (DNN) is also presented. This method demonstrates performance supe-
rior to i-vector-based [11] classification schemes when a large amount of data is
used. The method is compared to linear logistic regression, linear discriminant
analysis- (LDA) based, and Gaussian modeling-based classifiers. When limited
training data are used, the i-vector yields the best identification rate. Another
method based on DNN and using deep bottleneck features is presented in [12]. A
method for identification from short utterances based on long short-termmemory
(LSTM) recurrent neural networks (RNN) is presented in [13]. In [14] the prob-
lem of language identification is addressed by using i-vectors with support vector
machines (SVMs) [15] and LDA. SVM with local Fisher discriminant analysis
is also used in [16]. Similarly to the current study, the method is evaluated on
the NIST 2015 i-vector Machine Learning Challenge task. The results obtained
closely resemble the results obtained in the current study when using SVM.
In [17] deep neural networks-based language identification is also presented. The
method is also evaluated on the NIST 2015 i-vector Machine Learning Challenge
task.

In the current study, a method for automatic language identification based
on the i-vector paradigm and deep convolutional neural networks (DCNN) is
proposed. Convolutional neural networks [18, 19] have been successfully applied
to sentence classification [20], image classification [21], facial expression recogni-
tion [22], and in speech emotion recognition [23], Furthermore, in [24] bottleneck
features extracted from CNN are used for robust language identification.

The motivation of using CNN, instead of the conventional fully connected
feed-forward neural network, lies in the fact that CNN require less parameters.
As a result is cheaper in terms of memory and compute power compared to
DNN. Furthermore, previous studies reported robustness against noise of CNN.
Also, since the inputs to the network are i-vectors and not sequences, CNN offer



a reliable solution to the classification problem. In the current study, DCNN,
a variant of typical CNN, is used and experimentally investigated in spoken
language identification.

In addition to language identification, the effectiveness of convolutional neu-
ral networks in dereverberation is also addressed. Specifically, a convolutional
denoising autoencoder (DAE) [25] is used to map the reverberant speech into
clean speech. DAEs are used for feature enhancement using a class of deep neural
networks (DNN) and they are trained to map a corrupted speech observation to
a clean one. DAEs have been successfully used in automatic speech recognition
in noisy and reverberant environments, and they have been shown to improve
recognition rates significantly.

2 Methods

2.1 Data

In the NIST 2015 LRE i-Vector Machine Learning Challenge task, i-vectors,
constructed from conversational and narrow-band broadcast speech, are given
as training, testing, and development data. The task covers 50 languages, and
contains 15000 training i-vectors, 6500 test i- vectors, and 6431 development i-
vectors. The training i-vectors are extracted from speech utterances with a mean
duration of 35.15s. The training data and the test data are labeled, but the de-
velopment i-vectors are unlabeled. The set also includes i-vectors corresponding
to out-of-set languages. In the current study, only the in-set languages are con-
sidered. In particular, 300 training i-vectors and 100 test i-vectors are used for
each of the 50 in-set languages.

In the current study, NTT-AT multilingual speech database for telephonom-

etry 1994 was also used to investigate the effectiveness of deep convolutional
denoising autoencoders in de-reverberation. The data cover 21 languages and
four male and four female speakers are assigned to each language. Twenty-four
short utterances (i.e., approximately 4 sec) are spoken by each native speaker.
Speech data are sampled at 16-bit and 16kHz rates.

The reverberant emotional speech data are simulated based on the convo-
lution method. Specifically, impulse responses are recorded in different environ-
ments and then convoluted with the clean data in order to create the reverberant
emotional speech data. For recording, a linear microphone array with 14 trans-
ducers located at 2.83cm intervals is used [26]. The impulse response is measured
using the TSP method [27]. TSP length is 65536 points and the number of syn-
chronous additions is 16. Impulse responses in five different rooms are recorded.
The T[60] reverberation times are 0.30, 0.47, 0.60, 0.78, and 1.3 seconds, respec-
tively.

2.2 The i-vector Paradigm

Gaussian mixture models (GMM) with universal back- ground models (UBM)
are widely used for speaker recognition. In such a case, each speaker model is



created by adapting the UBM using maximum a posteriori (MAP) adaptation.
A GMM supervector is constructed by concatenating the means of the adapted
model. Similar to speaker recognition, GMM supervectors can also be utilized
for language identification.

The main disadvantage of GMM supervectors is the high dimensionality,
which requires high computation and memory costs. In the i-vector paradigm, the
limitations of high dimensional supervectors (i.e., concatenation of the means of
GMMs) are overcome by modeling the variability contained in the supervectors
with a small set of factors. Considering automatic language identification, an
input utterance can be modeled as:

M = m+Tw (1)

where M is the language-dependent supervector, m is the language-independent
supervector,T is the total variability matrix, andw is the i-vector. Both the total
variability matrix and language-independent supervector are estimated from the
complete set of the training data.

2.3 Classification Approaches

Support Vector Machines (SVM) A support vector machine is a discrimi-
native classifier, which is widely used in regression and classification. Given a set
of labeled training samples, the algorithm finds the optimal hyperplane, which
categorizes new samples. SVM is among the most popular machine learning
methods. The advantages of SVM include the support of high-dimensionality,
memory efficiency, and versatility. However, when the number of features ex-
ceeds the number of samples the SVM performs poorly. Another disadvantage
is that SVM is not probabilistic because it works by categorizing objects based
on the optimal hyperplane.

Probabilistic Linear Discriminant Analysis (PLDA) PLDA is a popular
technique for dimension reduction using the Fisher criterion. Using PLDA, new
axes are found, which maximize the discrimination between the different classes.
PLDA was originally applied to face recognition [28], and is applied successfully
to specify a generative model of the i-vector representation. PLDA was also used
in speaker recognition. Adapting to emotion recognition, for the i-th emotion,
the i-vector wi,j representing the j-th recording can be formulated as:

wi,j = β + Sxi + ei,j (2)

where β is a global offset (i.e., mean of training vectors), S represents the
between-emotion variability, and the latent variable x is assumed to have a
standard normal distribution, and to represent a particular emotion and chan-
nel. The residual term ei,j represents the within-emotion variability, and it is
assumed to have a normal distribution with zero mean and covariance Σ.

After the training and test i-vectors are computed, PLDA is used to decide
whether two i-vectors belong to the same class. For this task, a test i-vector



and an emotion i-vector are required. The emotion i-vectors are computed as
the average of the training i-vectors, which belong to a specific emotion. A clas-
sification trial requires the emotion i-vectors, the test i-vector, and the PLDA
model {β,S,Σ} parameters.

Convolutional Neural Networks (CNN) A deep neural network is a feedfor-
ward neural network with more than one hidden layer. The units (i.e., neurons)
of each hidden layer take all outputs of the lower layer and pass them through
an activation function. A convolutional neural network is a special variant of
the conventional network, which introduces a special network structure. This
network structure consists of alternating convolution and pooling layers.

2.4 Evaluation Measures

In the current study, the EER (i.e., equal false alarms and false rejections), the
identification rates, and the cost functions are used as evaluation measures. Con-
sidering that in the current study only the in-set languages are being recognized,
the cost function defined by NIST is modified as follows:

Cavg =
1

n

n
∑

k=1

Perror(k) · 100 (3)

where

Perror(k) =
No. of errors for class k

No. of trials for class k
(4)

The identification rate is defined as:

acc =
1

n

n
∑

k=1

No. of corrects for class k

No. of trials for class k
· 100 (5)

where n is the number of the target languages. In addition, the detection error
tradeoff (DET) curves, which show the function of miss probability and false
alarms, are also given.

The effectiveness of the convolutional denoising autoencoder in feature en-
hancement is evaluated using the mean squared error (MSE) and cosine similar-
ity values. The MSE is defined as follows:

MSE =
1

n

n
∑

i=1

(Ŷi − Yi)
2 (6)

The cosine similarity is given by the following formula:
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Table 1: Cavg cost for different language sub-set of NIST LRE 2015.
No of Languages Classification method

DCNN SVM PLDA

10 4.2 5.4 8.2

20 9.6 10.7 16.5

30 11.7 13.9 23.6

40 13.8 15.7 27.9

50 16.0 18.6 32.9

Table 2: EER for different language sub-set of NIST LRE 2015.
No of Languages Classification method

DCNN SVM PLDA

10 1.8 2.4 3.2

20 3.7 4.1 5.5

30 3.6 4.5 6.0

40 3.4 4.7 6.3

50 3.9 5.2 6.7

where Ŷ is the vector of n predictions, andY is the input vector, which generated
the predictions.

3 Results

3.1 Language Identification Experiments

These sections present the experimental results for automatic language identifi-
cation. The experimental results show the performance of the proposed method
compared to SVM, and PLDA for the identification of 10, 20, 30, 40, and 50
in-set target languages using the NIST 2015 LRE i-Vector Machine Learning
Challenge task. For language identification, a DCNN with four convolutional
layers, one Maxpooling layer, and one fully connected output layer was used.
The number of filters in the convolutional layers was set to 32, 128, 128, and 128,
respectively, and the epochs number was set to 150. In the convolutional layers,
the ReLu activation function was used, and in the fully connected output layer,
the Softmax activation function was chosen. Finally, the dropout probability
was set to 0.15.

Table 1 shows the costs for 10, 20, 30, 40, and 50 target languages, respec-
tively. The results show that the lowest average costs are obtained when using
DCNN. It is also shown, the DCNN is followed by SVM. The results show the
effectiveness of the proposed method in spoken language identification. In the
case of the 50 in-set target languages, the average cost function is only 16.0%,
which is a very promising result and superior to the results obtained from other
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Fig. 1: DET curves for ten target languages.
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Fig. 2: DET curves for the fifty target languages.

similar studies. The results also show that the cost when using PLDA rapidly
increases as the number of target languages increases, and that PLDA is less
effective for the current task.

Table 2 shows the EER when using the five sub-set target languages. As
shown, when using the DCNN approach, the lowest EER is obtained, followed
by SVM. The EER when using PLDA is the highest among the three classifiers.
As the table shows, when DCNN is used, the EERs in the case of 20, 30, 40, and
50 languages are very similar. This result indicates the robustness of DCNN in
different sub-set target languages.



Table 3: Equal error rates using training data of different sizes.
No. of training Classification method

i-vectors DCNN SVM PLDA

2500 6.2 8.3 7.2

5000 4.8 6.7 6.9

7500 4.4 6.4 7.2

10000 4.3 6.1 7.6

12500 4.0 5.8 7.3

15000 3.9 5.2 6.7

0.1 0.2 0.5 1 2 5 10 20 40

False Positive Rate (FPR) [%]

0.1

0.2

0.5

1

2

5

10

20

40

F
al

se
 N

eg
at

iv
e 

R
at

e 
(F

N
R

) 
[%

]

10-Lang
20-Lang
30-Lang
40-Lang
50-Lang

Fig. 3: DET curves for different sub-set target languages using DCNN.

Figure 1 and Fig. 2 show the DET curves in the case of 10 and 50 target
languages, respectively. The figures make it clear that superior performance is
obtained when the proposed deep CNN-based approach is used.

To investigate the effect of the training data size when using the three classi-
fiers, an experiment is conducted using reduced training data. Table 3 shows the
EER obtained in this case. The results show that using only 50 training i-vectors
for each target language, the EER is still as low as 6.2%. As shown, the DCNN
classifier shows the lowest EER, and it is followed by SVM. Figure 3 shows the
DET curves for different sub-set target languages when using DCNN. As shown,
differences can be obtained in the case where 10 target languages were used. In
all other cases, the DET curves are very similar.

3.2 Front-end Feature Enhancement Experiments

This section presents the results when convolutional denoising autoencoder was
used for feature enhancement. Twelve mel-frequency cepstral coefficients (MFCC)



Table 4: Mean squared errors (MSE) for speech dereverberation.
T[60] [sec] Denoising method

Reverberant CNNDAE DAE

0.30 1.64252 0.569070 0.570243

0.47 2.101042 0.569152 0.568758

0.60 2.346825 0.568656 0.569388

0.78 1.874870 0.568518 0.568780

1.30 1.701246 0.568803 0.572073

Table 5: Cosine similarities for speech dereverberation.
T[60] [sec] Denoising method

Reverberant CNNDAE DAE

0.30 0.858569 0.960958 0.960942

0.47 0.789376 0.960941 0.960928

0.60 0.763129 0.960859 0.960889

0.78 0.824312 0.960880 0.960807

1.30 0.842408 0.961047 0.960879

were extracted every 10 ms using a window of 25 ms. The MFCCs were then con-
catenated with shifted delta cepstra (SDC) coefficients to form feature vectors of
size 112. The inputs to the convolutional denoising autoencoder (CNNDAE) are
the feature vectors extracted from clean and reverberant speech, respectively.
The encoder part of the CNNDAE consists of two convolutional layers and two
MaxPooling layers. Each of the MaxPooling layers performs compression in
the half-dimension. The decoder part consists of three convolutional layers and
two UpSampling layers. The proposed method was also compared to a method
based on a typical, fully connected denoising autoencoder (DAE) with one hid-
den layer and 32 units. Table 4 shows the MSEs for reverberant speech and
dereverberant speech. As shown, in most of cases CNNDAE shows slightly lower
MSEs compared to DAE. The MSE values show the effectiveness of using a deep
convolutional denoising autoencoder in speech dereverberation. On the other
hand, the results show that the performance when using CNN and DAE denois-
ing autoencoders is closely comparable. Table 5 shows the cosine similarities.
Similar to MSE values, when using CNNDAE the highest similarities are being
obtained.

4 Conclusion

In this study, we proposed a method for language identification based on i-
vectors and deep convolutional neural networks. The method was evaluated on
the NIST 2015 LRE i-Vector Machine Learning Challenge task and demonstrated



performance that is superior to that obtained using SVM and PLDA classifiers.
For the identification of the 50 in-set languages, a 3.9% EER and a 16.0% cost
were obtained. Using SVM, a 5.2% EER and 18.6% cost were achieved. Fur-
thermore, a method for dereverberation in language identification was proposed.
The proposed method is based on convolutional denoising autoencoder, and its
effectiveness in speech dereverberation was demonstrated. As future work, spo-
ken language identification experiments in reverberant environments based on a
convolution denoising autoencoder will be conducted.
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