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Abstract. Over the last years, several Multi-Document 
Summarization (MDS) methods have been presented in 
Document Understanding Conference (DUC) 
workshops. Since DUC01, several methods have been 
presented in approximately 268 publications of the state-
of-the-art, that have allowed the continuous 
improvement of MDS, however in most works the upper 
bounds were unknowns. Recently, some works have 
been focused to calculate the best sentence 
combinations of a set of documents and in previous 
works we have been calculated the significance for 
single-document summarization task in DUC01 and 
DUC02 datasets. However, for MDS task has not 
performed an analysis of significance to rank the best 
multi-document summarization methods. In this paper, 
we describe a Genetic Algorithm-based method for 
calculating the best sentence combinations of DUC01 
and DUC02 datasets in MDS through a Meta-document 
representation. Moreover, we have calculated three 
heuristics mentioned in several works of state-of-the-art 
to rank the most recent MDS methods, through the 
calculus of upper bounds and lower bounds. 

Keywords. Topline, Multi-Document Summarization, 
Genetic Algorithms, Upper bounds, Significance. 

Calculando los Límites Superiores 
para la Generación de Resúmenes de 

Múltiples Documentos usando 
Algoritmos Genéticos 

Resumen. A través de los últimos años, varios métodos 
de la Generación Automática de Resúmenes de 
Múltiples Documentos (GARMD) han sido presentados 
en aproximadamente 268 publicaciones del estado del 
arte, que han permitido la mejora continua de la 
GARMD. Recientemente, algunos trabajos se han 
enfocado en calcular las mejores combinaciones de 
oraciones de un conjunto de documentos y en trabajos 
previos hemos calculado la significancia para la tarea de 
la Generación de Resúmenes de un Documento. Sin 

embargo, para la tarea de la GARMD no se ha realizado 
un análisis de significancia para ponderar los mejores 
métodos de esta tarea. En este artículo, describimos un 
Algoritmo Genético para calcular las mejores 
combinaciones de oraciones de los conjuntos de datos 
DUC01 y DUC02 mediante una representación de Meta-
documentos. Además, hemos calculado el desempeño 
de tres heurísticas mencionadas en varios trabajos del 
estado del arte para ponderar el desempeño de los 
métodos de la GARMD, mediante el cálculo de los 
límites superiores y límites inferiores.  

Palabras clave. Topline, Generación de Resúmenes de 
Múltiples Documentos, Algoritmos Genéticos, Límites 
Superiores, Significancia. 

1 Introduction 

Extractive Text Summarization (ETS) is a task 
contemplated in Natural Language Processing 
(NLP) that allows to reduce the textual content of a 
document or a set of them, this reduction is 
performed through the selection of a set of most 
representative units (phrases or sentences) of 
original text obtained from a method or a 
computational tool, using supervised and 
unsupervised learning techniques  [1, 2, 7, 15, 30]. 

Nowadays, the ETS task is one of the most 
worked in NLP. Since 1958, the first advances has 
been attributed to the works of Luhn [28] and 
Edmunson [10]. According to [41], these works has 
been considered as pioneers of Automatic Text 
Summarization (ATS), and particularly, ETS. 
Nevertheless, the most recent advances of ATS 
were presented through Document Understanding 
Conferences (DUC) workshops. Since 2001 to 
2007, these workshops was organized by the 
National Institute of Standards and Technology 
(NIST) [9]. The main products of DUC workshops 



 

are the DUC datasets and are mainly used for two 
tasks: Single-Document Summarization (SDS) and 
Multi-Document Summarization (MDS) [37]. The 
first one consists in generate a selection of most 
important sentences from a single-document text, 
while the second task consist in generate a 
selection of the most important sentences of 
textual content of several documents [21]. 

In the last years, approximately 268 
publications have been reported in the state-of-the-
art using the DUC datasets [12]. In the most of 
these publications have been presented several 
methods for MDS task, using machine learning 
techniques through supervised and unsupervised 
methods [13, 15, 35], clustering-based methods for 
representing a set of clusters different relationships 
between sentences [14, 39, 55], algebraic 
reduction through Non-negative Matrix 
Factorization (NMF) [23, 24] and Latent Semantic 
Analysis (LSA) methods [18, 24, 51, 52], text 
representation with the use of graph-based 
algorithms [12, 33, 34], the use of optimization 
methods such as Genetic Algorithms (GA) [3, 17], 
Memetic Algorithms (MA) [31, 32], Greedy Search 
(GS) and Dynamic Programming (DP) algorithms 
[29]. 

In previous works [26, 27, 41] has been 
mentioned that one of the main challenges of ETS 
is to generate automatic extractive summaries that 
similar to summaries generated by humans (gold-
standard summaries). However, for several 
domains, the gold-standard summaries are made 
abstracting summaries by substituting some terms 
and phrases of the original text. For example, in the 
work of Verma and Lee [49], the gold-standard 
summaries of DUC01 and DUC02 employ 
approximately 9% of words not found in the original 
documents [37]. Consequently, the level of 
maximum similarity will be less than 100%, and 
even more, if compared from several gold-
standard summaries, the upper bounds will be 
lower for any ETS method. Therefore, this problem 
involves the search of the best combinations of 
sentences of a set of documents that best similarity 
to gold standard summaries. 

For SDS task, some heuristics have been used 
to compare several commercial tools and state-of-
the-art methods with the purpose to comparing the 
performance of several ETS methods [16, 21, 22]. 
These heuristics are known as Baseline-first, 

Baseline-random [21], and in recent works, the use 
of Topline heuristic has been introduced [43]; in the 
most recent work [41], these heuristics have been 
used for calculating the significance of SDS task. 
However, for MDS has not performed a significant 
analysis for comparing the best novel state-of-the-
art methods, because this task involves a mayor 
number of possible combinations to represent the 
best multi-document summary, and therefore for 
calculating the significant of several state-of-the-art 
methods requires some variants to the method 
presented in [41] for finding the best combinations 
of sentences. 

The use of several optimization-based methods 
in ETS has represented a viable solution to 
generating extractive summaries of superior 
performance. These types of techniques include 
the use of GA, MA and GS methods [17, 29, 31, 
32]. Therefore, the use of optimization-based 
algorithms, represents a viable solution to obtain 
extractive summaries closest to the human-written 
summaries. In this paper, a GA is used to obtain 
the combinations of sentences that best resemble 
selected by humans using the ROUGE-1.5.5 
system and some variants to the method 
presented in [41] were applied. Furthermore, some 
meta-document principles were applied to 
calculating the Topline for MDS. 

The rest of the paper is organized as follows: 
Section 2 present some related works that have 
used techniques based on exhaustive searches to 
determine the best combinations of extractive 
summaries and the calculus of significance for 
SDS. Section 3 describe the general process of 
GA. Section 4 describes the structure and 
development of the proposed GA for calculating 
the Topline for MDS using a meta-document 
representation. Section 5 shows the GA 
experimental configuration to determine the 
highest performance sentence combinations for 
calculating the Topline heuristic for DUC01 and 
DUC02 datasets. Moreover, we present a 
significant analysis to determine the best novel 
methods in the state-of-the-art with the use of three 
heuristics, such as Baseline-first, Baseline-random 
and Topline. Finally, Section 6 we describe the 
conclusions and future works. 



 

2 Background and Related Works 

Over of the last two decades with the existence of 
the DUC workshops, many advances have been 
made in the development of ETS. Several 
problems have been worked in the ETS, some of 
them involve the segmentation of sentences [19, 
40] and automatic evaluation of summaries [20, 25, 
45, 47]. However, to know and determine the best 
extractive summaries, few studies have been 
carried out, and some of them use techniques 
based on exhaustive searches to determine the 
best combination of sentences that best represent 
the summaries made by humans [41]. One of the 
first works was presented by Lin and Hovy [26] in 
2003, where they developed a comprehensive 
search-based method to find the best sentence 
combinations of a document by taking the first 
100±5 and 150±5 words of the DUC01 dataset for 
SDS task, and evaluating sentence combinations 
through co-occurrence of bag-of-words of the 
ROUGE system [25]. Nevertheless, the main 
drawback that affected the performance of this 
procedure was exponential increase of the search 
space that implies the number of sentences of 
each document. For example, if we use a 
document of 100 sentences and furthermore 
inferred that on average each sentence has a 
length of 20 words, then to find the best extractive 
summary of 100 words should take the best 5 

sentences of the 100 available (𝐶5
100), generating 

75,287,520 possible combinations of sentences to 
find the best. 

Seven years later, Ceylan [6] presented a 
similar exhaustive search-based method to obtain 
the best combinations of sentences in ETS. Unlike 
the work of Lin and Hovy [26], this method employs 
a probability density function (pdf) to reduce the 
number of all possible combinations using some 
metrics of ROUGE system, with the purpose to be 
applied from different domains (literary, scientific, 
journalistic and legal). As we mentioned in [41], the 
main problem of this method involves the 
modification of ROUGE-1.5.5 Perl-based script to 
process several combinations of sentences in a 
cluster of computers to distribute the processing of 
the documents. Furthermore, in the news domain 
it was necessary to divide the original document in 
several sub-sections to reduce the processing of 

documents. The reduction of several combinations 
involves the discrimination of different possible 
combinations that can be generated. 

In 2017, Wang [54] presented a nine-heuristics-
based method to reduce the space of search that 
involves the combination of sentences for SDS and 
MDS tasks. This method is based to reduce the 
number of combination of sentences that present a 
low relation to gold-standard summaries from SDS 
and MDS. Subsequently, the remaining sentences 
are introduced through seven weighting methods 
to measure the similarity of the sentences in 
relation to gold-standard summaries. However, the 
use of several heuristics to determine the best 
combinations of sentences in different domains 
and different entries allows the increase of the 
computational cost to find the best sentence 
combinations. In addition, for SDS only a single 
gold-standard summary was used and in the case 
of MDS only 533 documents of 567 of the DUC02 
dataset were used, generating more biased 
results. 

Finally, in 2018 we presented a calculus of 
significance for SDS task [41]. Using three different 
heuristics (Baseline-random, Baseline-first and 
Topline) that represent the lower bounds and 
upper bounds for ETS, it has been calculated the 
level of significance of several SDS methods. 
However, this calculus only was performed for 
SDS. In this paper, we propose the method based 
on the use of GAs to find the best combinations of 
sentences that can be generated from the multi-
document summaries of DUC01 and DUC02 
datasets and rank the MDS methods. 

3 Basic Genetic Algorithm 

The GAs [22, 38, 42, 54] is a technique of 
optimization and iterative, parallel, stochastic 
search inspired by the principles of natural 
selection proposed by Darwin in 1859 [8]. The GAs 
was proposed by John Holland in 1975 as a 
method that pretends to simulate the actions of 
nature in a computer to optimize a wide variety of 
processes [11]. Nowadays, the GA is the most 
widely used evolutive computing method in 
optimization problems [44]. 

A traditional GA is characterized by 
representing the solution of a problem in 



 

individuals, which are represented by variable bit 
strings and together form a population [4]. A GA 
begins with a population of 𝑁𝑝𝑜𝑝 individuals who 

share a set of 𝑛 characteristics for each generation 
𝑔, where each 𝑖―𝑡ℎ individual 𝑋𝑖 is randomly 
generated as shown in Eq. (1). 

𝑋𝑖(𝑔) = [𝑋𝑖,1(𝑔), 𝑋𝑖,2(𝑔), … , 𝑋𝑖,𝑛(𝑔)], 𝑖 = 1,2, … , 𝑁𝑝𝑜𝑝 (1) 

Each individual 𝑋𝑟(𝑔) is evaluated from a 
specific adaptation value (fitness function) to 
determine the quality of individuals and its 
proximity to the optimal values of GA [11, 38]. From 
the value obtained as a fitness function, a selection 
of individuals is performed, where each pair of 
parents 𝑋𝑝(𝑔) and 𝑋𝑚(𝑔) is chosen to participate 

in the cross-step forming individuals 𝑌𝑖(𝑔), which 

have combined characteristics of 𝑋𝑝(𝑔) and 

𝑋𝑚(𝑔). Finally, the new individual 𝑌𝑖(𝑔) is 
introduced to the mutation stage, where partial and 
minimal modifications are made to generate an 
individual 𝑍𝑖(𝑔). As mentioned in [31], the mutation 

of individuals is based on a probability 𝑃, as shown 
in Eq. (2). 

𝑍𝑖(𝑔) =  {
𝑀𝑢𝑡𝑎𝑡𝑒(𝑌𝑖(𝑔))      𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑃

𝑌𝑖                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

where the function 𝑀𝑢𝑡𝑎𝑡𝑒(𝑌𝑖(𝑔)) modifies the 

order of one or more sentences selected as target 
from a random value 𝑟𝑎𝑛𝑑, included in a probability 

𝑃. Otherwise, the individual 𝑌𝑖(𝑔) is not modified. 
Finally, the population is updated according to the 
new individuals generated from the crossing and 
mutation stages of individuals. During the new 
generations, the average fitness function of each 
generation is improved because each generation 
produces individuals with better fitness function. 

The selection, crossing, and mutation of 
individuals are iterated until they meet a certain 
termination criterion, these criteria are based on 
the number of iterations, the convergence of 
individuals of a gene, and on a fitness function [22]. 
In summary, the general process that conducts a 
GA is guided in Fig. 1 [4-46]. 

 

 

 

Fig. 1. Basic stages of GA [4-46]. 

4 Proposed Method 

In general, the proposed method is based on the 
steps and procedures of the basic GA described in 
Section 3. The proposed GA evaluates several 
combinations of sentences in an optimized search 
space, which are candidates in representing the 
best extractive summary of one or multiple 
documents. In this section, the proposed GA is 
presented. 

4.1 Solution representation 

In [41], the solution is presented using a coding of 
individuals considering the order of sentences that 
can appear in extractive summary. Therefore, each 
individual 𝑋𝑖  is represented in a vector of 𝑛 

positions [𝑃1, 𝑃2, … , 𝑃𝑛], where each position 

includes a sentence {𝑆1, 𝑆2, … , 𝑆𝑛} of the original 
document 𝐷, and the union of all the sentences will 
represent the content of the original document, as 
shown in Eq. (3).  

⋃ 𝑆𝑖

𝑛

𝑖=1

= 𝐷 (3) 

Yes 

No 

Start 

Generate initial 
population 

Evaluation of 
individuals  

(Fitness function) 

Genetic Operators  
(Selection, crossover and mutation) 

Stop condition 
fulfilled? End 



 

For each coding to be considered as an 
extractive summary, the first sentences are 
considered from a set of words. For example, if we 
have a document with 𝑛 = 10 sentences and we 
generate an extractive summary of 100 words with 
an average of 20 words per sentence, then the 
position vector can use a sequence equivalent to 
[4, 1, 5, 6, 3, 2, 8, 7, 10, 9] indicating that the 
possible solution begins with sentences 4 and 1, 
ending with sentence 9, although only the first 5 
sentences will be considered to comply with first 
100 words as a summary. Nevertheless, for MDS, 
the search space involves a mayor number of 
combinations of sentences due to the increase of 
sentences from a set of documents. 

To represent the sentences of multi-documents 
we used the same genetic codification through the 
union of 𝑛 sentences in 𝑚 documents 

{𝑆1,1, 𝑆1,2, … , 𝑆𝑛,𝑚} to be considered as a meta-

document that contains all the 𝑖⎯𝑡ℎ sentences of 

each 𝑗⎯𝑡ℎ document, where the union of all 

sentences represent a set of documents 𝑆𝐷, as 
shown in Eq. (4) 

⋃ ⋃ 𝑆𝑖,𝑗

𝑛

𝑖=1

𝑚

𝑗=1

= 𝑆𝐷 (4) 

For each coding to be considered as an 
extractive summary, the first sentences are 
selected until they comply a certain number of 
words as constraint. For example, if we have a set 
of documents 𝑆𝐷 with 𝑚 = 5, where each one 

contains 𝑛 = 5 sentences and we have an average 
of 20 words per sentence and as constraint they 
must be generated extractive summaries with 100 
words, then the vector position can use a 
sequence equivalent to [4, 1, 5, …, 25], indicating 
that the possible solution begins with the 
sentences 4 and 1, ending with sentence 25 that 
corresponds to the last sentence of the last 
document, although only the first 5 sentences will 
be considered until to comply with first 100 words 
as a summary. 

4.2 Fitness function  

The fitness function is an important stage for the 
performance of the GA and is the value by which 
the quality of the summaries is maximized with the 

passing of (𝑔 + 1) generations. To measure the 
quality of each summary, F-measure maximization 
based on the co-occurrence of bag-of-words and 
bigrams evaluated from ROUGE-1.5.5 system was 
used [25]. The maximum F-measure score of the 

individual 𝑋𝑘(𝑔) obtained from 𝑋𝑖(𝑔) population 

determine the best combination of sentences 
found in GA. This maximization is shown in Eq. (5) 

𝑀𝑎𝑥 (𝐹(𝑋𝑘(𝑔))) =
∑𝑆 ∈ 𝑆𝑟𝑒𝑓

 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)

∑𝑆 ∈ 𝑆𝑟𝑒𝑓
 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)

 (5) 

where 𝑛 determine the size of n-gram for 
evaluating the sentence combinations of GA 
summary (𝑟𝑒𝑓), 𝐹 is the F-measure score of 
ROUGE system and 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) is the number 
of n-grams that co-occurring between the GA 
summary and the set of gold-standard summaries. 

If the individual 𝑋𝑘(𝑔) have the greatest co-

occurrence of n-grams from the all generations 𝑔 

of populations 𝑋𝑖(𝑔), then it will have the best 

combination of sentences when obtaining the 
largest number of retrieved n-grams. 

4.3 Population initialization  

The most common strategy for initializing the 
population (when 𝑔 = 0) must be generated with 
codifications of random real numbers for signature 
each sentence of the set 𝑆𝐷 =  {𝑆1,1, 𝑆1,2, … , 𝑆𝑛.𝑚} 

in each position 𝑃𝑖 of [𝑃1, 𝑃2, … , 𝑃𝑛×𝑚]. Therefore, 

the first generation of individuals will be according 
to Eq. 6 

𝑋𝑐(0) = [𝑋𝑐,1(0), 𝑋𝑐,2(0), … , 𝑋𝑐,𝑛(0)], 𝑋𝑐,𝑠 =  𝑎𝑠 (6) 

where 𝑎𝑠 represents a real integer number 

{1, 2, … , 𝑛 × 𝑚} that corresponds to the number of 
selected sentence from the original set of 
documents 𝑆𝐷, 𝑐 = 1, 2, …, 𝑁𝑝𝑜𝑝, 𝑠 = 1,2, …, 

𝑛 × 𝑚, 𝑛 is the number of 𝑛⎯𝑡ℎ sentence of 𝑚 
document. Therefore, each sentence has the same 
probability of being included as part of an 
extractive summary respecting a number 𝑊 of 
requested words as condition, as shown in Eq. (7) 

∑ 𝑙𝑖,𝑗

𝑆𝑖,𝑗 ∈ 𝑆𝑢𝑚𝑚𝑎𝑟𝑦

≤ 𝑊 (7) 



 

where 𝑙𝑖,𝑗 is a length of the sentence 𝑆𝑖,𝑗 

(measured in words) and 𝑊 is the maximum 
number of words allowed for generating an 
extractive summary. For each generation, Eq. (8) 
was used to generate a dynamic number of 
individuals depending on the number of sentences 
of 𝑆𝐷. 

𝑁𝑃𝑜𝑝 =  𝑁𝑆𝐷𝑜𝑐 × 𝑀 × 5 (8) 

where 𝑁𝑆𝐷𝑜𝑐 is the number of sentences of each 

document and 𝑀 is the number of documents in 
each set. In this way, all the set of documents 𝑆𝐷 

can generate different number of individuals 
because the number of sentences of each set 
involves different space of search. 

4.4 Selection  

The selection is the GA stage that allows to take a 
set of individuals 𝑋𝑐 from a generation g to obtain 
the greatest fitness values with the purpose of 
obtain best individuals in g + 1 generations. One of 
the operators of selection most known of GA is the 
elitism operator, which has the feature to choose a 
set of individuals of best aptitude in the generation 
g to pass to the generation 𝑔 + 1. 

According to [31], if we have 𝑃𝑜𝑏(𝑔) =
{𝑋1(𝑔), 𝑋2(𝑔), … , 𝑋𝑁𝑝𝑜𝑝

(𝑔)} as a population of 

individuals ordered from greater to lesser fitness 
value, then the set of individuals that will be pass 
to the next generation will be 𝐸(𝑔 + 1) =
{𝑋1(𝑔), 𝑋2(𝑔), … , 𝑋𝑒(𝑔)}, where 𝐸(𝑔 + 1) ⊆
𝑃𝑜𝑏(𝑔), 𝑒 <  100%, and 𝑒 is a parameter that 
specifies the percentage of individuals to be 
selected by elitism. However, for the selection of 
individuals it is required to use at least one 
selection operator to maintain 𝑁𝑝𝑜𝑝 individuals for 

each generation. 
To select the remaining individuals from each 

generation, we propose to generate new offspring 
from the tournament selection operator by taking 

several subsets of 𝑁𝑇𝑜𝑟 randomly selected 

individuals to obtain the individual with the best 
fitness value, as shown in Eq. (9) 

𝑋𝑏(𝑔) = 𝑀𝑎𝑥 (𝐹(𝑋1(𝑔)), 𝐹(𝑋2(𝑔)), … , 𝐹 (𝑋𝑁𝑇𝑜𝑟
(𝑔))) (9) 

where 𝑋𝑏(𝑔) is the individual with the best fitness 
value and 𝐹 is the F-measure score of ROUGE-N 
metric. To integrate the selection stage, we 
propose to use the elitism operator to choose the 
best individuals of each generation 𝑔, using a 
percentage of individuals. Finally, the remaining 
individuals are obtained from the tournament 
selection operator using samples of 2 and 3 
randomly obtained individuals. 

4.5 Crossover  

For the crossover of individuals, we use the cycle 
crossover operator (CX). The operator CX has the 
capacity to generate new offspring from the genetic 
coding of each pair of parents, considering their 
hereditary characteristics [11]. For the CX operator 
to be started, is necessary considering a crossover 
probability 𝑃 to determine the subset of individuals 
who will perform the genetic exchange. Therefore, 

if 𝑏𝑟𝑎𝑛𝑑 is a random number between 0 and 𝑃, then 

the operator must select a starting point for genetic 

exchange of parents 𝑋𝑝1(𝑔) and 𝑋𝑝2(𝑔) which 

represent pairs of parents to cross, this starting 
point is randomly generated to generate a new 

individual 𝑌𝑖(𝑔), as shown in Eq. (10) 

𝑌𝑖,𝑠 =  {
𝑋𝑝1,𝑠(𝑔)    𝑖𝑓 𝑠 ≤ 𝑝𝑡𝐶 ∧  0 < 𝑏𝑟𝑎𝑛𝑑 ≤ 𝑃

𝑋𝑝2,𝑠(𝑔)                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

where 𝑋𝑝1,𝑠(𝑔) represents the parent gene 

𝑋𝑝1(𝑔), 𝑋𝑝2,𝑠(𝑔) represents the parent gene 𝑋𝑝2(𝑔) 

and 𝑝𝑡𝐶 is an integer value representing a start 

point selected randomly in a range of [1, 𝑛], where 
n is the size of the individual. To generate a second 
offspring, the roles of 𝑋𝑝1(𝑔) and 𝑋𝑝2(𝑔) are 

exchanged with the first parent being individual 
𝑋𝑝2(𝑔). 

4.6 Mutation  

Remembering Eq. (2) of the Section 3, the 

mutation stage takes a set of individuals 𝑌𝑖(𝑔) to 

generate individuals 𝑍𝑖(𝑔) modifying some 

features for each generation 𝑔. We used the 

insertion mutation operator to select a pair of 
genes of the individual 𝑌𝑖,𝑡(𝑔) and 𝑌𝑖,𝑟(𝑔) randomly 

to insert the gene 𝑌𝑖,𝑡(𝑔) in the gene 𝑌𝑖,𝑟(𝑔) [4], as 

shown in Eq. (11). 



 

𝑍𝑖,𝑠(𝑔) = {
𝑌𝑖,𝑡(𝑔) = 𝑌𝑖,𝑟(𝑔), 𝑌𝑖,𝑡±1(𝑔) = 𝑌𝑖,𝑡(𝑔), … , 𝑌𝑖,𝑟(𝑔) = 𝑌𝑖,𝑟±1(𝑔);      𝑖𝑓 0 < 𝑟𝑎𝑛𝑑 ≤ 𝑃

𝑌𝑖,𝑠(𝑔)                                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

where 𝑟 is the variable that relates the gene to 
be inserted, the variable 𝑡 represents the target 
gene to be inserted, which are a subset of numbers 

𝑠 = {1, 2, … , 𝑛}, and 𝑛 identifies the sentence 𝑆𝑖,𝑗 of 

each document. Therefore, if the random value 
rand is between the value 0 and 𝑃, then the 
mutation of individuals is performed by insertion 
operator, otherwise the individual is not modified. 

4.7 Replacement of individuals 

For the replacement of individuals, we propose to 
integrate the set of individuals generated by elitist 
selection (𝐸(𝑔 + 1)) and the set of individuals 𝑍𝑖(𝑔) 
from the mutation stage, to integrate the population 
of the next generation 𝑋𝑖(𝑔 + 1), as shown in Eq. 
(12). 

𝑋𝑖(𝑔 + 1) =  𝐸(𝑔 + 1) +  𝑍𝑖(𝑔) (12) 

4.8 Termination criterion 

The termination criterion used to halt GA iterations 
is determined by several generations established 
as an execution parameter. 

5 Experiments and results 

In this section, we present the experiments 
performed to generate the best extractive 
summaries by the proposed GA, using DUC01 and 
DUC02 datasets. Moreover, the performance of 
some MDS methods and heuristics was presented 
through a calculus of significance for determine the 
best MDS methods in the state-of-the-art. 

5.1 Datasets 

Remembering some ideas from Section 1, the 

DUC datasets are the most common used for SDS 

and MDS task researches. In the state-of-the-art, 

approximately 89 publications in DUC01 and 

DUC02 has been reported. Due to this, we used 

DUC01 and DUC02 datasets to calculate the upper 

bounds for MDS. DUC01 and DUC02 are products 

of workshops organized by the National Institute of 

Standards and technology (NIST) for the 

development of ETS. The documents of these 

datasets are based on news articles from some 

agencies such as The Financial Times, The Wall 

Street Journal, Associated Press and others [36, 

37]. 
DUC01 dataset consist of 309 English 

documents grouped into 30 collections, each 
collection contains an average of 10 documents 
based on news articles addressing natural disaster 
issues, biographical information, and others [36]. 
This dataset is divided for two tasks, the first task 
consists in generate summaries of single-
documents with a length of 100 words and these 
summaries were compared with two gold-standard 
summaries. For MDS, consist in generate 
summaries of multiple newswire/newspaper 
documents (articles) on a single subject with 50, 
100, 200, and 400 words. Moreover, for evaluation 
step, two abstracts were generated for each 
collection, generating 60 abstract summaries with 
the same lengths. 

Table 1. Datasets main characteristics. 

 DUC01 DUC02 

Number of collections 30 59 

Number of documents 309 567 

Number of gold-
standard summaries 
per collection/document 

2 1-2 

Multi-document gold-
standard 
extractive/abstractive 
summaries 

50, 100, 
200, 400 
abstracts 

10, 50, 
100, 200 
abstracts 
200, 400 
extracts 

  
DUC02 dataset consist of 567 news articles in 

English grouped into 59 collections, each collection 
contains between 5 and 12 documents dealing with 
topics of technology, food, politics, finance, among 
others. Like DUC01, this dataset is mainly used for 
two tasks, the first is to generate summaries of a 
document, and each document has one or two 



 

gold-standard summaries with a minimum length of 
100 words. For MDS, consist in generate 
summaries of multiple documents, one and two 
abstracts were generated as gold-standard 
summaries for each collection, generating 118 
abstracts/extracts with lengths of 10, 50, 100 and 
400 words [37]. Table 1 shows the general data for 
each dataset. 

5.2 Parameters 

To determine the upper bounds (Topline) of 
DUC01 and DUC02, different tests were carried 
out with some adjustments of parameters with the 
objective of obtaining the best extractive 
summaries. Table 2 shows the best tuning 
parameters applied to GA proposed to calculate 
the best extractive summaries of multiple 
documents. 

The fitness value of each solution is obtained 
from the n-gram specification to be evaluated by 
the ROUGE system. In this paper, the unit of 
evaluation based on the co-occurrence of bag-of-
words and bigrams (ROUGE-1 and ROUGE-2) 
was used, to compare the performance of the most 
state-of-the-art methods in relation to set of gold-
standard summaries [25]. 

Table 2. GA parameters to calculate Topline of 
DUC01 and DUC02 for MDS. 

Generations Selection Crossover Mutation 

60 
Elitism Tournament CX Insertion 

𝑒 10% 𝑁𝑇𝑜𝑟 2 𝑃 85% 𝑃 12% 

5.3 Comparison to state-of-the-art methods 
and heuristics 

As we have mentioned on Section 1, the 

importance of knowing the best multi-document 

extractive summaries consist in determining the 

Topline from the extractive summaries of several 

set of documents and calculating the significance 

of several state-of-the-art methods. In this section, 

we present a performance comparison of the state-

of-the-art methods and their advances with respect 

to performance obtained from Baseline-first, 

Baseline-random and Topline heuristics. The 

methods and heuristics involved in this comparison 

are the following: 

─ Baseline-first: It is an heuristic that allows to 

use the first sentences of an original text 

according to a length of words to present as a 

summary to the user [16]. The performance of 

this heuristic generates good results in the ETS. 

However, this heuristic must be overcome by 

state-of-the-art methods [21]. To perform this 

heuristic in MDS, the summary is generated 

from the first sentences of each document until 

the determined number of words is met. 

─ Baseline-random: It is an heuristic in the state-

of-the-art that selects random sentences to 

present them as an extractive summary to the 

user [21]. In addition, this heuristic allows us to 

determine how significant is the performance of 

ETS methods are in the state-of-the-art [22]. To 

perform this heuristic in MDS, we generate ten 

summaries for each set of documents with 

randomly selected sentences until the number 

of words is met.  

─ Topline: It is an heuristic that allows to obtain 

the maximum value that any state-of-the-art 

method can achieve due to the lack of 

concordance between evaluators [43], since it 

selects sentences considering one or several 

gold-standard summaries. As mentioned in 

Section 2, efforts have been made in the state-

of-the-art to know the scope of the ETS. 

─ Ur, Sr, ILP: In the work of [5], several machine 

regression models has been presented, the 

method Ur uses a bag-of-words regression with 

GS-based selection. The method Sr uses a 

sentence regression method with GS-based 

selection. Finally, the method Integer Linear 

Programming (ILP) is implement for MDS. 

These methods wezre considered as baseline 

methods.  

─ R2N2_ILP and R2N2_GA: In [5], a method for 

ranking the sentences for MDS is proposed. 

Through a ranking framework upon recursive 

neural networks (R2N2) based on a hierarchical 

regression process the most important 

sentences of each document are selected. 

─ ClusterCMRW and ClusterHITS: The methods 

of [55], uses an Cluster-based Conditional 



 

Markov Random Walk Model (ClusterCMRW) 

and the Cluster-based HITS Model 

(ClusterHITS) to fully leverage the cluster-level 

information. Through these methods, 

relationships between sentences in a set of 

documents are associated. 

─ LexRank: It is a common stochastic graph-

based method to generate extractive summaries 

through a centrality scoring of sentences. A 

similarity graph is constructed that provides a 

better view of important sentences from source 

text using a centroid approach [12]. 

─ Centroid: In [39], a multi-document summarizer 

(MEAD) is presented. This method uses a 

centroid-based algorithm to score each 

sentence of each document through a linear 

combination of weights computed using the 

following features: Centroid based weight, 

sentence position and first sentence similarity. 

─ GS, Knapsack and ILP algorithms: In the work 

of [29] three inference global algorithms are 

proposed for MDS. Through the GS, Knapsack 

and ILP algorithms it was performed a study 

global of performance in MDS. The first is a 

greedy approximate method, the second a 

dynamic programming approach based on 

solutions to the Knapsack problem, and the third 

is an exact algorithm that uses an Integer Linear 

Programming formulation problem. 

─ NMF: The method of [52] uses an NMF to 

measure the relevance of document-terms and 

sentence-term matrices to ranks the sentences 

by their weighted scores. 

─ FGB: In [52], the clustering-summarization 

problem is translates into minimizing the 

Kullback-Leibler divergence between the given 

documents and model reconstructed terms for 

MDS. 

─ BSTM: The BSTM (Bayesian Sentence-based 

Topic Models) explicitly models the probability 

distributions of selecting sentences given topics 

and provides a principled way for the 

summarization task. BSTM is similar to the FGB 

summarization since they are all based on 

sentence-based topic model [53]. The difference 

is that the document-topic allocation matrix is 

marginalized out in BSTM. 

─ FS-NMF: The work of [50] considers a selection 

of theoretical and empirical features on a 

document-sentence matrix, and selects the 

sentences associated with the highest weights 

to form summaries.  

─ WFS-NMF-1, WFS-NMF-2: In [50], the NMF 

model is extended and provides a framework to 

select sentences with the highest weights to 

perform extractive summaries. 

ClusterCMRW and ClusterHITS methods do 
not participate in the following comparisons, 
because in their evaluation stage was performed 
with a lower version of ROUGE system (ROUGE-
1.4.2) and their results can differ of ROUGE-1.5.5 
version. 

For comparing and reweigh the performance of 
the methods previously described with the 
heuristics of the state-of-the-art, we used the 
evaluation based on the statistical co-occurrence 
of bag-of-words and bigrams (ROUGE-1 and 
ROUGE-2) of the ROUGE system [25] using the 
function of Eq. (13) to establish the performance of 
each state-of-the-art method respect to the best 
extractive summaries obtained by the proposed 
GA. 

𝑅𝑂𝑈𝐺𝐸⎯𝑁 =  
∑𝑆 ∈ 𝑆𝑢𝑚𝑚𝑟𝑒𝑓

 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)

∑𝑆 ∈ 𝑆𝑢𝑚𝑚𝑟𝑒𝑓
 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)

 (13) 

Table 3, 4 and 5 shows the average results of 
ROUGE-1 and ROUGE-2 when calculating the 
Topline for MDS of 30 document sets in DUC01 
dataset and 59 document sets in DUC02 dataset 
using the limit of 50, 100 and 200 words as 
constraint of GA parameters presented in Table 2. 
The performance of the state-of-the-art methods 
are shown in this comparison. 

According to the results presented in Tables 3, 
4 and 5, Topline performance is substantially 
distant from other state-of-the-art methods, as 
mentioned by [43]. For DUC01 with 100 words, 
Topline obtained a performance equivalent to 
47.256 with ROUGE-1 and 18.994 with ROUGE-2, 
while the best state-of-the-art method is R2N2_ILP 
obtaining 7.870 with ROUGE-2. For DUC02 with 
100 words, Topline obtained a performance 
equivalent to 49.570 with ROUGE-1 and 18.998 
with ROUGE-2, in the same way, R2N2_ILP is the 



 

best state-of-the-art method obtaining 37.960 with 
ROUGE-1 8.880 with ROUGE- 2 (see Table 3). 

For DUC02 with 200 words, Topline obtained a 
performance equivalent to 75.163 with ROUGE-1 
and 66.512 with ROUGE-2, while the best state-of-
the-art method is WFS-NMF-1 obtaining 49.900 with 
ROUGE-1 and 25.800 with ROUGE-2. Moreover, 
the heuristic Baseline-first outperforms all state-of-
the-art methods (see Table 4). 

For DUC02, Topline obtained a performance 
equivalent to 42.967 with ROUGE-1 and 16.084 
with ROUGE-2 for summaries in 50 words. For 
summaries in 100 words, Topline obtained a 
performance equivalent to 49.570 with ROUGE-1 

and 18.998 with ROUGE-2. For summaries in 200 
words, Topline obtained a performance equivalent 
to 56.120 with ROUGE-1 and 23.682 with ROUGE-
2. The best state-of-the-art methods are the 
methods ILP obtaining 28.100 with ROUGE-1 in 50 
words, 41.500 with ROUGE-1 and 10.300 with 
ROUGE-2 in 200 words. The method based of in 
the Knapsack problem obtained 5.900 with 
ROUGE-2 in 50 words, 34.800 with ROUGE-1 and 
7.300 with ROUGE-2 for summaries in 100 words. 
Furthermore, the Baseline-first heuristic 
outperform to the GS-based method in several 
scores (see Table 5). 

Table 3.  Results of ROUGE-1 and ROUGE-2 methods and heuristics on DUC01 and DUC02 for summaries 
of 100 words (evaluated from abstractive gold-standard summaries). 

 DUC01 DUC02 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 47.256 18.994 49.570 18.998 

R2N2_ILP 36.910 7.870 37.960 8.880 

R2N2_GA 35.880 7.640 36.840 8.520 

Ur 34.280 6.660 34.160 7.660 

Sr 34.060 6.650 34.230 7.810 

Ur+Sr 33.980 6.540 35.130 8.020 

LexRank 33.220 5.760 35.090 7.510 

Baseline-first 31.716 6.962 33.385 7.042 

Baseline-random 26.994 3.277 28.637 3.798 

Table 4. Results of ROUGE-1 and ROUGE-2 methods and heuristics on DUC02 for summaries of 200 
words (evaluated from extractive gold-standard summaries). 

 DUC02 

Method ROUGE-1 ROUGE-2 

Topline 75.163 66.512 

Baseline-first 50.726 26.979 

Centroid 45.379 19.181 

LexRank 47.963 22.949 

NMF 44.587 16.280 

FGB 48.507 24.103 

BSTM 48.812 24.571 

FS-NMF 49.300 24.900 

WFS-NMF-1 49.900 25.800 

WFS-NMF-2 49.100 25.200 

Baseline-random 38.742 9.528 



 

Table 5. Results of ROUGE-1 and ROUGE-2 methods and heuristics on DUC02 for summaries of 50, 100 
and 200 words (evaluated from abstractive gold-standard summaries). 

 DUC02 

 50 words abstracts 100 words abstracts 200 words abstracts 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 42.967 16.084 49.570 18.998 56.120 23.682 

ILP 28.100 5.800 34.600 7.200 41.500 10.300 

Knapsack 27.900 5.900 34.800 7.300 41.200 10.000 

Baseline-first 26.939 5.241 33.385 7.042 41.118 10.362 

GS 26.800 5.100 33.500 6.900 40.100 9.500 

Baseline-random 21.599 2.298 28.637 3.798 36.074 6.308 

 
A comparison of the level of advance of the most 
recent state-of-the-art methods is shown in Tables 
6, 7 and 8. To determine this performance, we use 
the Eq. (14) based on the premise that the 
performance of Topline heuristic is 100% and 
Baseline-random is 0%. 

𝑅𝑂𝑈𝐺𝐸⎯𝑁 =  
(𝑅𝑂𝑈𝐺𝐸⎯𝑁𝑂𝑀 − 𝑅𝑂𝑈𝐺𝐸⎯𝑁𝐵𝑅)  ×  100

𝑅𝑂𝑈𝐺𝐸⎯𝑁𝑇𝐿 − 𝑅𝑂𝑈𝐺𝐸⎯𝑁𝐵𝑅

 (14) 

where 𝑅𝑂𝑈𝐺𝐸⎯𝑁 specifies the F-measure 

score of bag-of-words and bigrams, 𝑂𝑀 is the 
performance of other methods, 𝑇𝐿 is the 

performance of Topline heuristic and 𝐵𝑅 is the 
performance of Baseline-random heuristic. 

The best state-of-the-art method from the Table 
6 presents an advance equivalent to 48.94% for 
ROUGE-1 and 29.22% for ROUGE-2 in DUC01, 
and DUC02 presents an advance equivalent to 

44.54% for ROUGE-1 and 33.43% for ROUGE-2 
for summaries of 100 words. Therefore, it follows 
that for the development of the MDS task there is 
51.06% for ROUGE-1 and 70.78% for ROUGE-2 
in DUC01, and 55.46% for ROUGE-1 and 66.57% 
for ROUGE-2 in DUC02 to be explored in 
summaries of 100 words. In the other hand, it is 
observed that the performance of Baseline-first 
heuristic is overcome by all state-of-the-art 
methods (see Table 6). 

The best state-of-the-art methods present an 
advance equivalent to 30.64% for ROUGE-1 and 
28.56% for ROUGE-2 (see Table 7). Therefore, it 
follows that for the development of the MDS task in 
summaries of 200 words, there is a 69.36% for 
ROUGE-1 and 71.44% for ROUGE-2 to be 
explored. In the other hand, the performance of 
Baseline-first heuristic is outperforming to best 
state-of-the-art method with 32.90% for ROUGE-1 
and 30.62% for ROUGE-2. 

Table 6. Ranking of state-of-the-art methods and heuristics on DUC01 and DUC02 for summaries of 100 
words. 

 DUC01 DUC02 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 100% 100% 100% 100% 

R2N2_ILP 48.94% 29.22% 44.54% 33.43% 

R2N2_GA 43.86% 27.76% 39.19% 31.07% 

Ur 35.96% 21.52% 26.38% 25.41% 

Sr 34.87% 21.46% 26.72% 26.39% 

Ur+Sr 34.48% 20.76% 31.02% 27.78% 

LexRank 30.73% 15.80% 30.83% 24.42% 

Baseline-first 23.30% 23.45% 22.68% 21.34% 

Baseline-random 0% 0% 0% 0% 



 

Table 7.  Ranking of state-of-the-art methods and heuristics on DUC02 for summaries in 200 words. 

 DUC02 

Method ROUGE-1 ROUGE-2 

Topline 100% 100% 

Baseline-first 32.90% 30.62% 

Centroid 18.22% 16.94% 

LexRank 25.32% 23.55% 

NMF 16.05% 11.85% 

FGB 26.81% 25.58% 

BSTM 27.65% 26.40% 

FS-NMF 28.99% 26.98% 

WFS-NMF-1 30.64% 28.56% 

WFS-NMF-2 28.44% 27.50% 

Baseline-random 0% 0% 

Table 8. Ranking of state-of-the-art methods and heuristics on DUC02 for summaries in 50, 100 and 200 
words. 

 DUC02 

 50 words abstracts 100 words abstracts 200 words abstracts 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 100% 100% 100% 100% 100% 100% 

ILP 30.42% 25.40% 28.49% 22.38% 27.07% 22.98% 

Knapsack 29.49% 26.13% 29.44% 23.04% 25.57% 21.25% 

Baseline-first 24.99% 21.35% 22.68% 21.34% 25.16% 23.33% 

GS 24.34% 20.33% 23.23% 20.41% 20.08% 18.37% 

Baseline-random 0% 0% 0% 0% 0% 0% 

For summaries of 50, 100 and 200 words, the 
best state-of-the-art methods were ILP-based 
method with a percentage equivalent to 30.42% for 
ROUGE-1 (50 words), 27.07% for ROUGE-1 and 
22.98% for ROUGE-2 (200 words) while the 
Knapsack problem-based method obtained a 
percentage equivalent to 26.13% for ROUGE-1 (50 
words), 29.44% for ROUGE-1 and 23.04% for 
ROUGE-2 (100 words) (see Table 8). In general, 
the best state-of-the art methods presents an 
average percent of advance equivalent to 28.97% 
for ROUGE-1 and 24.05% for ROUGE-2. 
Therefore, it follows that for the development of the 
MDS task in summaries of 50, 100 and 200 words 
in DUC02, there is an average 71.03% for 

ROUGE-1 and 75.95% for ROUGE-2 to be 
explored. In the other hand, the performance of 
GS-based method is closer than Baseline-first in 
several ROUGE metrics. 

6 Conclusions and future works 

In previous works, the upper bounds for SDS and 
MDS has been calculated on exhaustive search-
based methods to obtain the best extractive 
summaries. However, determine the best 
extractive summaries through this method was 
inadequate and expensive due to increase of 
documents and sentences. In this paper, we 



 

propose the use of GAs for calculating the upper 
bounds (Topline heuristic) to reweigh the 
performance of MDS methods. 

Some GA operators were used to obtain the 
best extractive summaries. In the fit-ness function 
stage, it was proposed to use ROUGE-N method 
of ROUGE-1.5.5 system to evaluate the quality of 
GA combinations. Through ROUGE-N, we 
obtained several patterns features from gold-
standard summaries. 

In the state-of-the-art, the maximum possible 
performance value of MDS in DUC01 and DUC02 
were unknown. However, it was possible to 
approximate the performance of the best extractive 
summaries with the use of GAs, to know the scope 
of MDS methods. In the other hand, we propose 
identifying several patterns of sentence features 
obtained from the best sentence combinations 
through supervised and unsupervised machine 
learning models to improve the performance of 
MDS methods.  

In general, the best state-of-the-art methods 
(reported in Table 6, 7 and 8) are R2N2_ILP, 
R2N2_GA, WFS-NMF-1, ILP and Knapsack in 
different metrics. However, it was not possible 
perform a ranking of all state-of-the-art methods 
because several methods were not implemented in 
different subsets of documents of DUC01 and 
DUC02 datasets. In the other hand, the 
performance of Baseline-first is overcome in 
several subsets of documents (see Table 6 and 8), 
except for summaries in 200 words (from DUC02). 
With the new reweight of MDS methods (reported 
in Table 6, 7 and 8), it was possible to determine 
the advance percentages of the best state-of-the-
art methods. In several subsets of documents (see 
Table 6, 7 and 8), it is observed that the percentage 
of significance is much closer to several methods 
of the state-of-the-art, so it will be very important to 
analyze the quality of the summaries generated by 
means of a Turing test, to demonstrate if the level 
of achieved performance of extractive summaries 
is confounded with summaries created by humans. 
Finally, we propose the use of GA-based method 
for calculating the upper bounds in several 
languages for determining the ranking of 
significance for several multilingual ETS methods. 
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