
Arithmetic Word Problem Solver using
Frame Identification

Pruthwik Mishra, Litton J Kurisinkel, and Dipti Misra Sharma

KCIS, LTRC, IIIT-Hyderabad
{pruthwik.mishra,litton.jkurisinkel}@research.iiit.ac.in,

dipti@iiit.ac.in

Abstract. Automatic Word problem solving has always posed a great
challenge for the NLP community. Usually a word problem is a nar-
rative comprising of a few sentences and a question is asked about a
quantity referred in the sentences. Solving word problem involves rea-
soning across sentences, identification of operations, their order, relevant
quantities and discarding irrelevant quantities. In this paper, we present
a novel approach for automatic arithmetic word problem solving. Our
approach starts with frame identification. Each frame can either be clas-
sified as a state or an action frame. The frame identification is dependent
on the verb in a sentence. Every frame is unique and is identified by its
slots. The slots are filled using dependency parsed output of a sentence.
The slots are entity holder, entity, quantity of the entity, recipient, addi-
tional information like place, time. The slots and frames helps to identify
the type of question asked and the entity referred. Action frames act on
state frame(s) which causes a change in quantities of the state frames.
The frames are then used to build a graph where any change in quan-
tities can be propagated to the neighboring nodes. Most of the current
solvers can only answer questions related to the quantity, while our sys-
tem can answer different kinds of questions like ‘who’, ‘what’ other than
the quantity related questions ‘how many’.
There are three major contributions of this paper. 1. Frame Annotated
Corpus (with a frame annotation tool) 2. Frame Identification Module
3. A new easily understandable Framework for word problem solving

1 Introduction

In this paper, we developed frame-based Word Problem Solver that solves math-
ematical problems posed in natural language. The biggest challenge in solving
the word problems is the natural language understanding. We present an offline
Math Solver with interface to input a question and steps involved to get the
solution. We only solved elementary math word problems involving basic math
operations like addition, subtraction, multiplication and division. The solver can
be used for tutoring school children the basic math word problems , this also can
be used as a guide to understand sentences containing mathematical quantities.

We are still a long way from modeling how humans solve word problems.
But, with the advancement in the area of deep learning , there has been renewed



interest in this area recently. Natural Language Understanding is a vital step for
solving word problems. There is also need for inclusion of world knowledge to
solve specific problems. For example:- “Robert earns 5 dollars per day, how much
does he earn in a week?”, the answer to this problem requires the knowledge of
the relation between week and day. Solving these kinds of problems which are
popularly known as unit conversion problems, requires knowledge about different
units and their significance.

Our main motivation comes from the fact that many children tend to repeat
mistakes in arithmetic word problems because they fail to see a relationship be-
tween the problem and the corresponding mathematical representation or equa-
tion. Solving a mathematical equation is easier than mapping to a mathematical
formula. In this work, we intend to bridge this gap where each sentence in a
problem can be figuratively shown their role in the final equation generation.

In this paper, we represent the word problem as a graph consisting of nodes.
Each node contains information of the entity, quantity of the entity, the entity
holder, the beneficiary if any transfer is done, the time, place or other information
related to the entity. The nodes are called frames. A frame can either be a state
frame or an action frame. The creation of a frame is usually triggered by the
verbs present inside a sentence. State frames refer to some world state while the
action frames act on state frames either to modify the quantities of different
entities involved in particular state frames or to create new state frames. The
frames which act on same units or entities can only interact among themselves.
For any arithmetic operation, two quantities should have the same unit. In our
framework, we take this fact into account. The main motivation was to make the
solving process of arithmetic problem simpler. The frame wise representation of
the problem makes it easier for a kid to understand the word problem, the related
quantities and interplay between them. This whole process can be simulated
with diagrams to make understanding of the word problems much clearer and
less complicated.

2 Previous Work

Yefim Bakman [2] touched upon the understanding involving word problems
with extraneous information. Mukherjee and Garain [12] surveyed on different
techniques used for word problem solving. Word problems can be represented
as a relation model as done by Bobrow [3]. Multiple Approaches were tried for
reasoning across sentences of the problem text. Approaches can be template
alignment, prediction of verb categories and solving the problem, using CFG
rules along with the generation of equation trees. The system design by Kush-
man et al [9] was a joint log linear distribution over the full set of equations and
alignments between the variables and text. The number of equations was de-
termined by the number of training equation templates. The number slots were
filled by the numbers present in the text while the unknown or variable slot were
filled by the nouns in the problem text. The derivations possible out of the all
templates, the derivation with the highest probability score was chosen. Illinois



Math Solver [14] had two modules to solve any arithmetic word problem. First
module was a CFG based Semantic Parser that would solve simple arithmetic
problems where specific keywords like add, subtract, difference, product, sum,
multiply or divide were present. If the problem could not be solved by the first
module, the problem was solved by decomposition of the arithmetic problem
into a series of classification problems [15]. The classification outputs were then
combined to form an expression tree through constrained inference. Hosseini’s [8]
ARIS system used verb categorization. ARIS analyzed the sentences in the prob-
lem for identifying relevant variables, their values and mapping this information
into a set of linear equations which can be easily solved. The system identified
7 kinds of verbs used in the problems which was predicted by support vector
machines. Mitra and Baral [11] created an arithmetic word problem solver which
learned how to use formulas to solve simple addition and subtraction problems.
The formulas were modeled as templates with pre-defined slots. They used a
log-linear model to find out the best possible formula to solve a problem. The
features to the model were dependency labels by running Stanford dependency
parser, POS tags, some linguistic cues, Wordnet [10] features.

3 Corpus Annotation

The main task in this problem is the identification of the frames. We needed to
create a corpus of frame annotated sentences to create automatic frame identi-
fication module. Each sentence in our approach contained a frame information.

Table 1. Annotated Corpus Size

Type #Questions #Sentences #Frames
Train 444 1253 1253
Test 60 168 168

Total 504 1421 1421

We created an off-line tool using python programming language for facilitating
annotation. The number of frame types were fixed to 22. Words with similar
meaning evoke a frame. The similar words can be found out from the frame-
net. We created a list of frames and a list of words corresponding to a frame.
The kappa score 1The inter-annotator’s agreement for frame annotation was
0.85 which is considered perfect agreement. Two annotators participated in the
annotation task.

4 Approach

Our approach focuses more on extraction of knowledge from sentences, parse in-
formation of the sentences, construct frames and finally solve the problem. Our
1 https://en.wikipedia.org/wiki/Fleiss’s_kappa



approach is similar to Sundaram and Khemani [17]. We modeled every word
problem as a graph of state and action frames. Action frames act on their re-
spective state frames and state frames undergo change in quantity. The intended
question in a word problem is about specific slots in frames, most of the times
the quantity which are explained in the subsection 4.2. Our approach has the
following steps:

– Preprocessing: Conversion of numbers in words to actual numbers
– Identification of Frames
– Parse Sentences
– Fill slots corresponding to frames
– Build a graph of frames
– Traverse the graph to find the answer

Fig. 1. Example of state and action frames interaction

4.1 Approaches for Frame Identification

Frame Identification constituted the first step in our approach. We implemented
different machine learning approaches for creating frame identifier. The design
of the classifiers were implemented using sklearn [13] machine learning library.
The classifiers used were : Support Vector Machines [6] and Random Forests [4].
We did not use any neural network approaches because of limited number of
training examples.

TF-IDF Features TF-IDF [16] assigns weights to words (or n-grams) based
on its frequency in a document and its frequencies across documents to find out



how important a word is to a document in a corpus. In this case, a document
is a sentence. TF-IDF was calculated for word unigrams (uni), bigrams (uni-
bi). We also experimented with character n-grams in different ranges [2-6 and
3-6]. We did not use any additional lexical or linguistic features like parts-of-
speech tags, morph features, wordnet [10] features or dependency labels for frame
identification.

4.2 Approach for Problem Solving

After the frame identification, we parsed each sentence to fill the frame slots. For
dependency parsing, Stanford dependency parser [5] which was a neural network
based parser was used. We used following slots or attributes for each frame which
were identified from specific dependency labels whose dependency mapping are
given below. After each frame was created, a graph was built with frames. Action

ht
Table 2. Dependency label to Frame Slot Mapping

Dependency Label Frame Slot
Subject Entity Holder

dobj Entity
amod Attribute of Entity
iobj Beneficiary

nummod Quantity
nmod:case Addidional Info

frames acted on a set of state frames to force a change in quantities contained in
frames. The quantity updates could be intimated to neighboring frames so that
all the frames were updated at once. Each question queried about specific frame
slots which could be easily answered by traversing the graph once.

5 Working Example of the System

For the arithmetic word problem: “John had 5 books. John gave Robert 2 books.
How many books John have now?” the equation for this question is x = 5−2 and
the solution is x = 5 Figure 2 shows the initial frames created after parsing the
first sentence. In word problems, sometimes questions are asked on information
which are not present explicitly in the question. The answer to this kind of
question can only be answered through proper inference. If the question in the
above example is changed to “How many books are there?”, a solver needs to
infer that “Somebody has some books” means “There are some books.” We tried
to incorporate this information in our system. So in figure 2, there are two frames
connected to each other instead of one. Both these frames are state frames. The
second sentence gives the information about a transfer operation carried out



Fig. 2. Initial Frames

Fig. 3. Complete Graph of Frames



between two entity holders. The order and type of operation can be found out
by matching the entity holders and entities. So in this case, the transfer_goods
frame triggers a subtraction operation in one possess frame with an update
in quantity slot 5 − 2 = 3. It also creates another possess frame triggering
an addition operation with quantity coming from 0 + 2 = 2. As the graph
is built dynamically with addition of new information, the updated quantities
information are propagated to all the connected nodes. The question sentence is
also parsed to find out the frame type and type of question asked. “who” kind
of question seeks answer from entity holder slots of the frames, similarly “what”
maps to entity slots. “how many” questions interrogates about the quantities
involved in the frames. In the current system, the relation between all these
question types and frame slots are predefined.

6 Experimental Results

Table 3 illustrates the results of the same for the aforementioned classifiers. The
best performing metrics are shown in bold. Table 4 shows the comparison of
our system with ARIS. Our system was able to solve 118 questions out of 312
questions of the AI2 dataset. 2

Table 3. Frame Classification with TF-IDF Features

.

Model Features Precision Recall F1-Score
uni 0.82 0.84 0.81

Linear-SVM uni-bi 0.75 0.81 0.77
char[2,6] 0.73 0.80 0.75
char[3,6] 0.75 0.81 0.76

uni 0.79 0.82 0.78
Random-Forest uni-bi 0.74 0.76 0.73

char[2,6] 0.75 0.80 0.76
char[3,6] 0.77 0.81 0.78

ht
Table 4. Comparison of System Accuracy with ARIS

System Accuracy
ARIS 77.7%

Our System 37.8%

2 http://ai2-website.s3.amazonaws.com/data/arithmeticquestions.pdf



7 Error Analysis and Observation

One source of error could be incorrect frame identification. The major limitation
of our system is its dependence on dependency parser’s output. The example
below shows how parsing errors can propagated to result in an incorrect answer
or unsolvable problem.

– “How many Pokemon cards does Jason have now ?”
– The parser wrongly tags “now” as the entity which results in the algorithm

not being able to find the answer from the graph.

If the parser performs poorly, then the slots will be incorrectly populated. This
will finally impact the overall performance in solving the problem. Unit conver-
sion problems can not be handled by the current system e.g “How many days are
there in a week?”. Similarly questions like “Find the answer when 3 is added to
5.” can not be solved because the problem has a different kind of structure to ba-
sic word problems and the dependency labels given by the parser to not conform
to our mapping. We observed that the linear-SVM outperformed random forests.
We also observed that the word unigram (uni) TF-IDF features were better in
classification of frames than character n-gram TF-IDF features. Almost all the
arithmetic problem solvers output only the answers or equation, but our system
outputs step wise explanation along with the answer and equation.

Even though the motivation of the design of the frames came from framenet
[1], the output of our system is not similar to framenets. If a verb had different
meanings, we did not create different frames for different semantics. We focused
more on the computational part of the involved frames.

8 Conclusion and Future Work

In this paper, we present an easily understandable framework for solving arith-
metic word problems. We hope that this will motivate to try out different tech-
niques to help students understand word problem solving better. In our ap-
proach, we have predefined action frames performing arithmetic operations. This
task can be learned which action frame does what operation. The frame identifi-
cation module can be improved by increasing its accuracy. We intent to increase
the training data size by bootstrapping [7]. Word embeddings can be used to
find similar verbs. We rely on parser’s output to fill the frame slots, we could
explore the use of computation parsing instead of linguistic parsing. We could
also integrate a co-reference and anaphora resolution module into our system as
it is not handled in the current set-up. The learning of the question types and
slots can also explored.

References

1. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguistics



and 17th International Conference on Computational Linguistics-Volume 1. pp.
86–90. Association for Computational Linguistics (1998)

2. Bakman, Y.: Robust understanding of word problems with extraneous information.
arXiv preprint math/0701393 (2007)

3. Bobrow, D.G.: A question-answering system for high school algebra word problems.
In: Proceedings of the October 27-29, 1964, fall joint computer conference, part I.
pp. 591–614. ACM (1964)

4. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
5. Chen, D., Manning, C.: A fast and accurate dependency parser using neural net-

works. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 740–750 (2014)

6. Cortes, C., Vapnik, V.: Support vector machine. Machine learning 20(3), 273–297
(1995)

7. Dietterich, T.G., et al.: Ensemble methods in machine learning. Multiple classifier
systems 1857, 1–15 (2000)

8. Hosseini, M.J., Hajishirzi, H., Etzioni, O., Kushman, N.: Learning to solve arith-
metic word problems with verb categorization. In: EMNLP. pp. 523–533 (2014)

9. Kushman, N., Artzi, Y., Zettlemoyer, L., Barzilay, R.: Learning to automatically
solve algebra word problems. Association for Computational Linguistics (2014)

10. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

11. Mitra, A., Baral, C.: Learning to use formulas to solve simple arithmetic problems.
In: ACL (1) (2016)

12. Mukherjee, A., Garain, U.: A review of methods for automatic understanding of
natural language mathematical problems. Artificial Intelligence Review 29(2), 93–
122 (2008)

13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Pas-
sos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn:
Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (Nov 2011),
http://dl.acm.org/citation.cfm?id=1953048.2078195

14. Roy, S., Roth, D.: Illinois math solver: Math reasoning on the web. In: HLT-
NAACL Demos. pp. 52–56 (2016)

15. Roy, S., Roth, D.: Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413 (2016)

16. Sparck Jones, K.: A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation 28(1), 11–21 (1972)

17. Sundaram, S.S., Khemani, D.: Natural language processing for solving simple word
problems. In: 12th International Conference on Natural Language Processing. p.
390 (2015)


