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Abstract. We present a novel supervised approach to sentence compression,
based on classification and removal of word sequences generated from subtrees
of the original sentence dependency tree. Our system may use any known clas-
sifier like Support Vector Machines or Logistic Model Tree to identify word se-
quences that can be removed without compromising the grammatical correctness
of the compressed sentence. We trained our system using several classifiers on
a small annotated dataset of 100 sentences, which included around 1500 manu-
ally labeled subtrees (removal candidates) represented by 25 features. The high-
est cross-validation classification accuracy of 80% was obtained with the SMO
(Normalized Poly Kernel) algorithm. We evaluated the readability and the infor-
mativeness of the sentences compressed by the SMO-based classification model
with the help of human raters using a separate benchmark dataset of 200 sen-
tences.

1 Introduction

Sentence compression is a common NLP task of shortening sentences without changing
their meaning and while preserving their correct grammatical structure. One of the im-
portant applications of sentence compression is automatic text summarization [11,14].
The other known applications are headline generation [5], generation of television sub-
titles [18], automatic tweet generation [17], and displaying texts on small screens like
mobile phones [6]. Most approaches to the sentence compression task are based on
removing words from the sentences, but systems that use paraphrasing also exist [4].
Common sentence compression methods include integer linear programming [2], noisy-
channel models [13,10], models that use pruning of dependency and constituency parse
trees [12,1] and discriminative large margin learning [16,3]. One of the latest sentence
compression methods is based on a probabilistic model (LSTM - Long Short Term
Memory) and it does not utilize any syntactic information (like PoS or parse trees) nor
the desired compression length in order to compress sentences [7]. However, it builds
upon a large set of features and thus requires a training corpus of a considerable size.
In [7], the LSTM system is trained on two million sentence-compression instances.

In this paper, we present a new supervised sentence compression method based on
detection, labeling, and removing appropriate word sequences (subtrees) from the orig-
inal sentence. Similarly to the cited works, our approach uses dependency structure of a



sentence and prunes word sequences corresponding to dependency subtrees. However,
our approach is totally supervised and does not contain any ad-hoc rules. The subtrees
of the dependency parse tree are treated as removal candidates. For each subtree, we
calculate 25 predictive features that are later filtered by a feature selection method. Our
system may use one of the known classification methods (like SVM) in order to identify
subtrees that can be removed without compromising the grammatical correctness of the
compressed sentence. Due to a limited amount of predictive features, our system may be
trained on a much smaller set of compressed sentences than LSTM–based algorithms.
Moreover, the system compression ratio may be controlled by the user. We trained our
system with several classifiers on a manually labeled dataset of 1494 subtrees extracted
from 100 sentences and evaluated it on a separate test set of 200 sentences. Using de-
pendency tree pruning for sentence compression is motivated by the belief that the
grammatical correctness of the compressed sentences can be better ensured by pruning
of dependency trees, because tree pruning approaches do not generate new dependen-
cies and are unlikely to produce a compression with a totally different meaning [8]. An
unsupervised dependency tree pruning approach is used in [8], whereas in this paper
we propose a new supervised tree pruning approach for sentence compression. The cur-
rent version of our system has been trained on English texts but in principle, it can be
trained on an annotated collection of parsed sentences in any language.

2 The Compression Methodology

Our sentence compression methodology is composed of several stages: (1) extraction of
removal candidates (word sequences represented by subtrees of a dependency parsing
tree), (2) representation of extracted candidates by predictive features (including feature
extraction and selection), and (3) candidates classification (valid/invalid for removal)
using a pre-trained classification model. Figure 1 demonstrates the general pipeline of
our compression procedure.

Fig. 1. Pipeline of our sentence compression tool.



2.1 Generation of subtrees (removal candidates)

For each sentence, our system identifies as removal candidates all word sequences rep-
resenting the possible subtrees of the dependency syntax tree.1 Also, subtrees’ comple-
ments and single words (remaining after filtering) are added to the list of candidates.
The dependency syntax trees are generated using the Stanford Parser from the Stanford
coreNLP tool [15].

Fig. 2. Dependency syntax tree representing the sentence ”A woman was injured by a falling tree
in the Gresham neighborhood”.

An example of a dependency syntax tree for the sentence ”A woman was injured by
a falling tree in the Gresham neighborhood” is demonstrated in Figure 2 and selected
removal candidates are shown in Table 1, along with the compressed sentences after
removal of the corresponding subtree, its type (single word, subtree, or its complement)
and its class label (”Y” - valid, ”N” - invalid). The sentence has 11 subtrees and 12
single words. Determiners, prepositions, and ”be” verbs are filtered, retaining the set of
only five removal candidates and their complements for annotation or classification.

Removal candidate Compressed sentence Type Class
falling A woman was injured by a tree in word Y

the Gresham neighborhood.
by a falling tree in the A woman was injured. subtree Y
Gresham neighborhood
A woman was injured by a falling tree in the Gresham neighborhood. complement N

Table 1. Some possible candidates with their class labels (manually annotated).

1 Complete sentences and single words that are prepositions, wh-words, pronouns, and forms of
the ”to be” verb are not saved in the list of removal candidates.



2.2 Feature extraction

For each removal candidate, we calculate 25 different features which are supposed to
describe its complete grammatical structure. Some of the features are obtained using
the Stanford coreNLP tool. We explored four different categories of features: based on
statistical information, dependency and constituency parsing, Name Entity Recognition
(NER), and Part-Of-Speech (POS) tagging. The full list of features is as follows.

1. General quantitative features
length: Number of tokens in the subtree.
ratio: Number of tokens in the subtree, normalized by the sentence length.
rel start, rel end: Relative location of the first/last subtree word in a sentence.
chars: Total number of characters in the subtree’s words.

2. Syntax features2

dependency: Grammatical relation of the subtree’s parent to the subtree root in the
dependency parsing tree. In order to avoid overfitting, we group all dependency re-
lations to nine groups: ”core”, ”noncore”, ”spec”, ”noun”, ”comp”, ”coord”, ”case”,
”loose”, and ”other”.
depth: Distance between the subtree and the root of the dependency syntax tree.
parent: Part of speech (POS) of the parent of the subtree in the dependency tree.
subj: Does a subtree contain a subject? (true / false)
verb: Does a subtree contain a verb? (true / false)
obj: Does a subtree contain an object? (true / false)
phrase type: Phrase type of the subtree according to the sentence constituency syn-
tax tree. 3 punct in: Does a subtree contain punctuation marks? (true / false)
punct out: Is a subtree surrounded by punctuation marks? (true / false)

3. NER features
is ner: is a subtree a named entity (NE)?
ner type: NE type of a subtree.4

4. POS features
POS before, POS after: POS label of the last word preceding and the first word
following the word sequence represented by the subtree.
POS first, POS last: POS label of the first/last word in the word sequence.
%nouns, %verbs, %adjectives, %adverbs, %prepos: Percentage of nouns, verbs,
adjectives, adverbs, or prepositions in the subtree, respectively.

Feature selection is performed before applying a classification algorithm to the labeled
data (see the next section).

2.3 Compression Algorithm

Algorithm 1 contains the pseudocode of the proposed method. The inputs of the algo-
rithm are a set of complete sentences S to be compressed, a classification algorithm

2 All syntax features are calculated using the dependency syntax tree, except for the last one,
which is obtained from the constituency parse tree.

3 We use “LEAF”type for a single word
4 We use “null” for the non-NEs



Algo, and a manually annotated dataset D (with already selected features). The output
of the algorithm is a set of compressed sentences C. First, a classification model M is
induced from the dataset D using the algorithm Algo. For each sentence Si from the set
S, a dependency parse tree is created (using Stanford parser) and all subtrees of the de-
pendency tree are identified, filtered (determiners, preposition, ”wh”-words, etc.), and
saved in the set of removal candidates STi. Every subtree (removal candidate) is con-
verted to a sequence of words, the features (depending on the classification algorithm
Algo) are extracted, and the model M is used to classify this candidate. All candidates
that are classified as ”Y” by M are removed from the corresponding sentence and the
compressed sentences are added to the output set C.

For example, if we run the algorithm on single sentence “A woman was injured by
a falling tree in the Gresham neighborhood”, it detects (classify to “Y”) the following
removing candidates: “by a falling tree in the Gresham neighborhood”, “in the Gresham
neighborhood”, “falling”.

Algorithm 1: Sentence compression
Input: set S of original sentences S1, . . . , Sn

classification algorithm Algo
annotated dataset D

Output: set C of compressed sentences
M ← induce model(D ,Algo)
C ← ∅
foreach Si ∈ S do

DTi ← generate dep tree(Si)
STi ← all subtrees(DTi)
STi ← filter(STi)
Candsi ← ∅
foreach STij ∈ STi do

Cand ij ← get words(STij)
Attr ij ← attributes(Cand ij)
Class ← classify(Attr ij ,M)
if Class = Y then

Candsi ← Candsi ∪ Cand ij

end
end
Ci ← Si

foreach Cand ij ∈ Candsi do
Ci ← Ci − Cand ij

end
C ← C ∪ Ci

end
return C

All stages of our algorithm, except classification, are polynomial (quadratic) in the
dependency tree size (number of its nodes). Practically, the most computationally ex-



pensive part of our compression pipeline is classifying the removal candidates by a
specific classification model (e.g., SMO-NPK).

3 Experiments

We performed both automated and human evaluations of the proposed method. Auto-
mated evaluations were aimed at selecting the most accurate subtree classifier for our
compression procedure. The purpose of human evaluations was to estimate the quality
of compression and compare our approach to the state-of-the-art method [7].

3.1 Training data

Our training data is composed of a random sample of 100 sentences from DUC 20025,
with various length, number of clauses, and amount of punctuation marks. Four an-
notators labeled the extracted removal candidates as “valid” if the corresponding word
sequences could be removed without compromising the sentence meaning and its gram-
matical correctness. Finally, we labeled with “Y” the subtrees marked by majority of
annotators as “valid” and with “N” all other subtrees. The resulting training dataset
contains 1494 subtrees (690 “Y” and 804 “N” instances) extracted from 100 sentences.

3.2 Classifiers

Using the Weka tool [9], we evaluated 14 different classification algorithms and finally
chose four classifiers that performed best with our dataset, namely: Logistic Regression
(LR), Sequential Minimal Optimization with Normalized Poly Kernel (SMO-NPK),
Classification Via Regression (CVR), and Logistic Model Trees (LMT).

Table 2 shows the subtree classification performance, measured by the precision and
the recall of the ”Y” class using 10-fold cross validation and all 25 features.

Classifier Precision Recall F 0.5
LR 0.750 0.754 0.751
SMO-NPK 0.766 0.741 0.761
CVR 0.739 0.761 0.743
LMT 0.737 0.771 0.744

Table 2. Evaluation of various classifiers.

In order to simplify the trained models, shorten training times, and reduce overfit-
ting, we performed feature selection with the following methods: iterative subset selec-
tion with Gain Ratio and Info Gain (bottom-up) and backward elimination with “Y”
precision (top-down).

Performance of feature selection methods is shown in Figures 3, 4 and 5.
5 http://www-nlpir.nist.gov/projects/duc/data.html



Fig. 3. Attribute selection using Gain Ratio.

Fig. 4. Attribute selection using Info Gain.

Fig. 5. Backward Elimination using “Y” precision.

The best “Y” precision and recall values obtained by each one of feature selection
methods are shown in Table 3 and Table 4, respectively. The best “Y” class precision



(0.802) was achieved using backward elimination with SMO classifier. The following
six features were finally selected: parent, punct out, POS before, POS after, POS first,
and POS last. With the exception of punct out, all these features are based on POS tags
of specific words in the subtree and in the main sentence.

Method LR SMO-NPK CVR LMT
All (25) features) 0.750 0.766 0.739 0.737
Gain Ratio 0.760 0.780 0.752 0.744
Info Gain 0.761 0.780 0.763 0.745
Backward Elimination - 0.802 - -

Table 3. ”Y” class precision values obtained with various feature selection methods.

Method LR SMO-NPK CVR LMT
All (25) features) 0.754 0.741 0.761 0.771
Gain Ratio 0.761 0.728 0.759 0.768
Info Gain 0.767 0.735 0.759 0.771
Backward Elimination - 0.720 - -

Table 4. ”Y” class recall values obtained with various feature selection methods.

Method LR SMO-NPK CVR LMT
All (25) features) 0.751 0.761 0.743 0.744
Gain Ratio 0.760 0.769 0.753 0.749
Info Gain 0.762 0.771 0.762 0.750
Backward Elimination - 0.784 - -

Table 5. ”Y” class F 0.5 measure values obtained with various feature selection methods.

Different number of features selected by each one of the feature selection meth-
ods. According to forward selection with the Gain Ratio and the Info Gain measures,
“dependency” is the most important feature having the highest Gain Ratio and Info
Gain values, which implies that the subtree’s dependency relation to the main sentence
should be the leading criterion for choosing removal candidates in a dependency tree.
However, SMO-NPK provided a better “Y” precision (0.802) than all other classifiers,
without this feature and with the smallest number of features (six), when Backward
Elimination was used.

3.3 Test Data

For human evaluation, we use the first 200 sentences from a dataset available online and
used in [7]. The compression ratio is defined by the number of characters in compressed



sentences divided by the number of characters in the original sentences. We applied
our method to each sentence several times repeatedly, with the first run processing the
original sentence from the dataset and each subsequent run applied to the sentence
compressed by the preceding run. As expected, each subsequent run obtained a higher
compression ratio that converged to some value after four iterations. The compression
ratios (CR) for iterations 1, 2 and 4 as well as for the LSTM-based method from [7] are
shown in Table 6.

3.4 Human Evaluation

We evaluated LSTM and the first, second and fourth runs of our method in an exper-
iment with human raters. The raters were eight graduate students not involved oth-
erwise in this research project. The raters were asked to rate the readability and the
informativeness of generated compressions. Readability measures the grammatical cor-
rectness, comprehensibility and fluency of the output whereas informativeness mea-
sures the amount of important content preserved in the compression. Every sentence-
compression pair was rated by two raters who were asked to select a score on a five-
point scale. The results are shown in Table 6.The results show that our mean compres-
sion ratio is much higher than in LSTM (resulting in higher informativeness) whereas
the average readability of our compressions is lower by 10% only (p value < 0.0001 for
readability between our first run and LSTM). Taking into account that our model was
trained on a very small dataset of only 100 sentences vs. two million in [7], our initial
results are quite encouraging. Lower readability compared to LSTM may be explained
by a very small training dataset and a relatively low precision of the classification model
(80% only), meaning that in 20% of cases we may remove a wrong subtree and produce
a grammatically incorrect sentence.

Method Readability Information CR
Run1 4.06 3.47 0.63
Run2 3.72 2.99 0.55
Run4 3.44 2.77 0.52
LSTM 4.49 3.32 0.39

Table 6. Readability, informativeness and compression ratio of first, second and fourth iterations
of our compression method compared to the LSTM .

4 Conclusions

We implemented a sentence compression tool that uses the subtrees of the dependency
parse trees of the original sentences as potential removal candidates and calculates 25
predictive features for each subtree. To train a supervised learning algorithm we created
a small dataset based on subtrees labeled by human annotators. We experimented with
several classification algorithms and found that SMO (Normalized Poly Kernel) per-
formed best with our dataset requiring only 6 out of 25 features (mostly based on POS



tags) to classify the removal candidates. Subsequently, we utilized the SMO classifier
for choosing subtrees to be removed by our sentence compression pipeline and used it
to compress 200 sentences from a separate benchmark dataset. The results of the hu-
man evaluation indicate that using a very small training dataset of only 100 sentences,
our compressions are only slightly less readable than the compressions produced by the
LSTM algorithm, which was trained on two million sentence-compression instances.
Also, our pipeline can be easily adapted to other languages given a sentence splitter,
tokenizer, dependency parser, and POS tagger on those languages.
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