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Abstract. Chatbots aim at automatically offering a conversation be-
tween a human and a computer. While there is a long track of re-
search in rule-based and retrieval-based approaches, the generation-based
approaches are promisingly emerging solving issues like responding to
queries in inference that were not previously seen in development or
training time. In this paper, we offer an experimental view of how recent
advances in close areas as machine translation can be adopted for chat-
bots. In particular, we compare how alternative encoder-decoder deep
learning architectures perform in the context of chatbots. Our research
concludes that a fully attention-based architecture is able to outperform
the recurrent neural network baseline system.
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1 Introduction

A chatbot stands for the short version of chat plus robot and it is a computer
program that conducts a human-machine conversation in any topic.

One of the very first chatbots was rule-based. It was proposed in 1966 by
Joseph Weizenbaum’s program ELIZA [13]. Input sentences were analyzed us-
ing several predefined decomposition rules, and after that key words were used
to generate responses to them. The Artificial Intelligence Markup Language
(AIML) is an evolution of these first rule-based chatbots. This AIML follows
the idea of defining written patterns and the corresponding templates which are
responses to the patterns. Then, in inference, if the robot identifies a pattern
in a sentence from a user, the robot is able to reply taking the corresponding
template [11].

To reduce the amount of work that developing these patterns and templates
requires, alternative chatbots, no longer rule-based, but retrieval-based were pro-
posed. These systems use different dialogue databases to train an information
retrieval system [2]. The big advantage of these retrieval-based systems is that
their training requires little human dedication. However, these systems still rely
on giving the most appropriate response from a set of sentences, which limits
their perfomance in the case of unseen events.

Thanks to the emergent deep learning techniques, the novel generative-based
approaches have arisen offering chatbots that are capable, for the first time, to
respond to non-predefined sentences. The first successful approach is based on
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the popular encoder-decoder architecture, which has been effectively used in
quite a few natural language applications, and, moreover, it has been extended
to image and speech processing [10,12]. One successful implementation of this
encoder-decoder architecture in natural language processing has been the recent
concatenation of recurrent neural networks (7, 3]. In fact, this architecture builds
on top of recurrent neural language models [6] by adding an encoder step and a
decoder step. In the encoder step, a recurrent neural network converts an input
sequence into a fixed representation (called thought vector). This representation
is fed in the recurrent neural network from the decoder step which allows the
decoder model to output more intelligent predictions given the context from the
encoding. While this implementation has shown some results in chatbots [10],
the main drawback is that long sequences are not well codified into a single
vector. This challenge is faced through the recent attention-based mechanisms
[1,9] recently proposed for machine translation.

The main contribution of this paper is the application of the experimentation
of these attention-based mechanisms [1,9] to chatbots. Taking [10] as starting
point, we compare the encoder-decoder architecture with attention [1] and the
transformer [9]. A manually performed evaluation shows that the latter is able
to outperfom the encoder-decoder with attention which is already better than
the encoder-decoder baseline architecture.

The rest of the paper is organized as follows. Section 2 briefly introduces
the deep learning architectures used in this work, which basically are encoder-
decoder based on recurrent neural networks (with or without attention mecha-
nism) and the transformer which uses a fully attention-based encoder-decoder
without recurrent neural networks. Section 3 details the experimental framework,
particularly, data statistics and parameters from systems. Section 4 describes the
manual evaluation. Section 5 discusses insights of results and contributions of
this study.

2 Encoder-decoder architectures and attention-based
mechanisms

An autoencoder is a type of neural network that aims at learning a representation
of the input while allowing for a decoding of this representation by minimizing
the recovering error. A generalization of this architecture is the encoder-decoder
which allows for inputs and outputs to be different. This architecture, see a di-
agram of it in Figure 1 (left), has emerged as an effective paradigm for dealing
with variable-length inputs and outputs. Although this effectiveness, its simplic-
ity limits their performance. For example, it seems unrealistic that the input
information has to fit in a fixed length vector of the internal representation. It
seems more reasonable to take input information gradually while we are gen-
erating the output. That is why, attention-based mechanisms have arosen as a
solution to this matter.

In this section, we briefly provide a high-level description of this encoder-
decoder with recurrent neural networks plus two successful encoder-decoder im-
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plementations that use attention-based mechanisms. Among these two architec-
tures we first describe the encoder-decoder based on recurrent neural networks
with attention based on multi-layer perceptron. And, we second describe the
transformer encoder-decoder architecture that uses only a combination of feed-
forward neural networks with more sophisticated attention based on multiple
heads.

2.1 Encoder-decoder with Recurrent Neural Networks

Given an input sentence, the encoder iteratively computes for each word a hid-
den state vector using the word and previous hidden state of the recurrent neural
network (RNN). Once the whole sentence has been analyzed, the relevant infor-
mation of the input sentence is contained in the last hidden state of the RNN,
known as context or thought vector. The decoder computes, word by word, an
output in the original representation space using the information contained in
the context vector and previous decoded words.

The architecture implementation can vary depending on the type of RNN
cell used (genuine RNN cell, a LSTM cell [4] or a GRU cell [3]), number of cells
per layer or the number of hidden layers among other parameters. Figure 1 (left)
shows a diagram of this architecture.

One of the main drawbacks of this architecture resides in the fact that as
the size of the input sentence increases, the encoder needs to compress a large
quantity of information into a fixed-length vector. This is lossy compressing
process that may yield to a poor performance of the chatbot.

2.2 Encoder-decoder with Recurrent Neural Networks with
attention

To overcome the aforementioned drawback of the basic RNN-based encoder-
decoder approach, an attention mechanism is commonly used in the decoder [1].
In this case, for each generated word, the decoder computes a context vector
composed of the weighted sum of all hidden state vectors of the encoder instead
of relying on the ability of the encoder to compress the whole input sequence
into the thought vector.

Weights are computed by an alignment model and normalized over all values
to get a percentage of how relevant the word from the input sentence is, in
relation to the word to be decoded, see figure 1 (right) showing the diagram of
this architecture. For further technical explanation of how weights are computed
see [1].

2.3 Transformer

While previous architecture has been successfully applied to machine translation,
there are still some issues to solve. The architecture in practice can be really slow
to train and given the way RNNs deal with sequences, it is not easy to parallelize
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Fig. 1. (Left) Encoder-decoder with RNNs; (Right) Encoder-decoder with RNNS and
attention.

the algorithm and take advantage of recent computational resources such as
Tensor Processing Units (TPUs). Motivated by this issue, the Transformer model
[9] has been proposed and it has been proven to be competitive in the task of
machine translation. The Transformer model is able to improve state-of-the-
art results in a couple of academic benchmarks while speeding up training by an
order of magnitude in comparison to RNN-based encoder-decoder with attention
shown in previous section.

The Transformer architecture is basically an encoder-decoder which concate-
nates attention-based mechanisms allowing to model relationships between words
without requiring recurrence. More specifically, there are three main stages in
the encoder (see Figure 2). The first one is where input words are projected
into a vector representation space by an embedding matrix and then, given that
there is no information of the order and position of words in the input sentence, a
positional encoding is added to the embedded input vectors. Note that in previ-
ous RNN encoder/decoder models, due to their sequential nature, no positional
information is required.

The second stage is a multi-head attention block (of Self-Attention in this
first case) that linearly projects the input information into different space rep-
resentations and performs attention over all of them. This method allows the
model to identify different semantic, morphological and lexical characteristics of
the input sequence and attend them separately at the decoding process. Finally,
a position-wise feed-forward network is used, which applies two linear transfor-
mations to each position separately.

The decoder has five stages, the first two only used at the training phase:
an output embedding and positional encoding (similar to the one used in the
encoder but for target sentences in the training phase), a masked multi-head
attention (also Self-Attention), a multi-head attention, a feed forward network
and finally a softmax layer to compute the output probabilities. Given that at
the decoding process we can not know the future words, the attention can only
be applied to previous ones. This is what the masked multi-head attention does,
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Fig. 2. Transformer.

which is a multi-head attention block with a mask that restricts the attention
only to past words. For a deeper technical explanation of the architecture see

[9]-

3 Experimental framework

This section reports the data, preprocessing and parameters that we used to
build our chatbot systems.

3.1 Data and preprocessing

Models were tested on the OpenSubtitles dataset [8]. The Open Subtitles Corpus
is composed by a wide range of movie and TV series scripts translated to multiple
languages. It is generally used by video platforms to show subtitles of their
movies/TV series.

The subtitles do not contain identity nor turn information. Therefore, sim-
ilarly to [10], we assumed that consecutive sentences were uttered by different
characters. We constructed a dataset consisting of pairs of consecutive utter-
ances, using every sentence twice as context and as target. Due to computing
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and memory constrains, we extracted a subset of the first 10 million sentences
for training. Preprocessing of the database consisted on removing XML tags,
limiting the sentence size and removing strange symbols (i.e. #,”,*-d). For
evaluation we used the same 200 sentences that were used in [10], which covers
different styles of conversation (i.e. basic, philosophical, personality and general
knowledge). Details on training and evaluation split are reported on Table 1.

Table 1. Size of the training database.

Set Role Segments Words Vocab
Training  Context 20,000,000 64,192,197 180,368

Target 48,174,044 182,404
Evaluation Context 200 1,446 399

3.2 Parameters

At the experiments in [10], the architectures had 4096 unit cells for the entire
OpenSubtitles database. Due to computational limitations, our model had to
be simpler both by limiting the database (as we explained) and also by using a
two layered LSTM model with 512 unit cells per layer. Additionally, the model
with attention uses a sampled softmax loss function with 512 samples. All three
models have a 64 dense size for the embedding matrix. To ensure that we cover
the 99% of the dataset, we have limited the vocabulary size to 72,827 words
and the length of sentences to 24 words. All words that are used only once
are discarded. For training, we used ADAM [5] with a learning rate of 0.002,
an exponential decay rate for the first moment estimates (81) equal to 0.9, an
exponential decay rate for the second moment estimates (52) equal to 0.999 and
€ = 10® (offset to prevent any division by zero); a batch size of 256 and a dropout
rate of 0.1.

The transformer architecture has 8 attention heads and 6 hidden layers with
512 units. For training, we have also used ADAM with a learning rate of 0.2,
exponential decay rates for the first and second moment estimates 5, = 0.9 and
Ba = 0.98. and ¢ = 10%; a batch size of 4096 and a drop out and attention
dropout rates of 0.1. For better responses, we have added to the three models a
beam search algorithm with a beam size of 4 and a penalty length factor of 0.6.

4 Evaluation

There is no automatic measure established for chatbots. Therefore, we carried
out the evaluation manually. In order to compare our three conversational mod-
els, we asked three evaluators to rank chatbot responses among: good, bad or
neutral. Additionarlly, we annotated when the three evaluators agreed in rank-
ings.
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Results are shown in Table 2 showing ranking from Evaluator 1, Evaluator
2, Evaluator 3 and agreement between them. Results show clear improvement of
both attention mechanisms over the baseline system. In fact, all evaluators agree
that the transformer architecture is good or neutral in 34.5% of the questions
whereas the baseline architecture is only good or neutral in 23.5% of the questions
and the baseline plus attention is good or neutral in 24.5% of the questions.

Table 2. Manual Evaluation. Best results in bold.

System Ranking Evaluator 1 Evaluator 2 Evaluator 3 Agreement
RNN Good 41 47 54 32
+Attention 61 51 71 43
Transformer 74 57 70 51
RNN Bad 75 123 53 46
+Attention 90 116 57 46
Transformer 25 110 25 20
RNN Neutral 84 30 93 15
+Attention 49 33 72 6
Transformer 101 33 105 18

In addition to the results, we report several examples on different styles of
conversations present in the test set: basic, philosophical, personality and general
knowledge. These examples show the type of improvement that attention is
capable to bring to the system which in general include more adequate responses
in the context of the user input.

Conversation 1: Basic

Context what is your name ?

RNN Anouk.

+Attention Adriano faustino sotolongo.
Transformer i don’t know .

Context what time is it ?

RNN I do n’t know.

+Attention  6:30.

Transformer i don’t know.

Conversation 2: Philosophical
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Context I think you are a machine
RNN I'm sorry

+Attention Vlanne:

Transformer I'm not a machine .
Context Life is sad .

RNN I’'m not a monster.
+Attention 1 do n’t want to go to jail.
Transformer It’s not sad .

Context Is there a god 7

RNN No.

+Attention Surprisingly, yes.
Transformer no .

Conversation 3: Personality

Context How old were you when you were able to speak 7
RNN Eighteen.

+Attention Seventeen.

Transformer six months.

Conversation 4: General knowledge

Context ronald reagan is ...

RNN I’'m not a good person.

+Attention And i’'m not a spy..

Transformer he’s in the hospital.

Context Is five plus five equal to ten ?
RNN No, no.

+Attention That’s exactly what i’'m gon na do.
Transformer yes .

5 Conclusions

Attention-based mechanisms are revolutionizing natural language, speech and
image processing applications. In this paper, we are implementing a couple of
recently proposed attention mechanisms into the chatbot application.

Experiments trained on an open-domain database show that a fully attention-
based architecture performs significantly better in a variety of contexts including
basic, philosophical, personality and general knowledge. Three evaluators agreed
on rating the responses of the fully attention-based mechanism 34.5% of the time
either good or neutral, while the responses of the baseline architecture with
attention was rated in that terms on a 24.5% of the time and the responses of
the baseline system were only 23.5% of the time either good or neutral.

Taking advantage of this generic encoder-decoder architecture, among further
research, we plan to introduce further contexts while training the system so as to
allow the system to keep coherence in longer dialogues and to train our system
on multiple languages.
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