
Shallow Network with Rich Features for Text
Classification

Duy-Tin Vo, Yue Zhang, and Xiaodan Zhu

1 Université Laval
2325 Rue de l’Université, Ville de Québec, Québec, Canada G1V0A6

duytinvo@gmail.com
2 Singapore University of Technology Design

8 Somapah Road, Singapore 487372
yue zhang@sutd.edu.sg

3 Queen’s University
99 University Ave, Kingston, Ontario, Canada K7L3N6

zhu2048@gmail.com

Abstract. Very deep neural models with many layers have been investigated for
document classification, achieving the best results on large datasets in a trade-
off of high computation. While deep models can increase the expressiveness of
the neural network, their strength can also come from enlarged model param-
eters. In this paper, we investigate a different approach to extend the parame-
ter space, exploiting rich features instead of deep architectures. Central to our
idea is a different view on model composition—instead of stacking multiple neu-
ral layers in depth, we juxtapose heterogeneous component neural networks in
breadth. Interestingly, under standard text classification evaluation on eight dif-
ferent datasets, the shallow model efficiently yields best performances on small-
scale benchmarks and competitive results on large-scale benchmarks.

1 Introduction

Neural network models have emerged as cutting-edge approaches to text classification,
with recursive neural network (ReNN) [1], convolutional neural network (CNN) [2, 3],
and long short-term memory (LSTM) [4, 5] having been shown to give state-of-the-art
accuracies for classifying short text along different semantic dimensions. For longer
text, such as documents of multiple sentences as shown in Figure 1, composite neural
network models appear to be promising in rendering better expressiveness, outperform-
ing the aforementioned shallow neural architectures [6, 7].

Hierarchical models [8–10] have been a typical approach to representing document
features bottom-up, where a neural network is deployed to learn sentence representa-
tion from word embeddings, and then a separate network is applied to obtain docu-
ment representation from sentence vectors in turn. Deep model without differentiating
sentences and documents have also been utilized. As depicted in Figure 2a, Zhang et
al. [6] have recently developed a deep composite network, which leverage a 9-layer
neural model (i.e., 6 CNN layers and 3 fully-connected layers) with one-hot-character
inputs. Conneau et al. [7] extended the method of Zhang et al. [6] in constructing a



Fig. 1: Document-level text classification.

very deep CNN model (i.e. up to 49 CNN layers and 3 fully-connected layers) with
character-embedding inputs, yielding the best performance when the sizes of training
data is sufficiently large.

Zhang et al. [6] made experimental comparisons between the deep CNN models
using one-hot characters and pre-trained word embeddings. In addition, they compared
deep CNNs with several traditional models for text classification including LSTM and
discrete models (e.g. bag-of-words, bag-of-ngrams, and TFIDF) on eight datasets of
varying scales of sizes. They found that character-level deep CNN models are superior
on large datasets, while discrete ngram models give better results on datasets that con-
tain less than 600,000 documents. In addition, LSTM works significantly better than
discrete models on longer sentences. The authors concluded that “there is not a single
machine learning model that can work for all kinds of datasets”. Conneau et al. [7] fur-
ther extended the method of Zhang et al. [6], using character embeddings for very deep
CNNs on the same datasets. They reported similar findings, showing that very deep
models gave the state-of-the-art results when trained on sufficiently large data, under
particular settings, and the performance of a neural network is not proportional to its
depth.

Our model follows this observation of Zhang et al. [6], making use of different types
of sub-networks (e.g. CNN and LSTM) for better accuracies. Similar to the model of
Zhang et al. [6], our model has a composite neural network structure. On the other hand,
instead of stacking multiple network units in depth, we collocate them in breadth, where
each component neural network unit is considered a different feature extractor. With
respect to model parameters, both Zhang et al. [6] and our model enlarge the number
of parameters by having multiple network components. With respect to features, Zhang
et al. [6] learn a stack of features of increasingly more abstract levels of information by
depth in space, while we learn a range of different shallow feature abstractions that are
known to compliment each other.

As shown in Figure 2b, we first make use of two vectorization approaches (i.e. one-
hot encoding and embeddings) at two different basic input levels (namely characters
and words, respectively), through which we map a document into two representation
matrices. Second, a set of variable-size CNNs are applied to each input matrix to extract
local context features. In addition, we employ bidirectional LSTMs (BiLSTMs) on the
word embedding level in order to capture global dependency features. These features
are then fed into a fully connected layer to learn a document representation, before
being passed to a softmax layer for prediction.



Experiments show that our conceptually simple shallow model consistently yields
competitive results on eight different text classification datasets, which range from 120
thousand to 3 million documents with size of documents between 38 words and 575
words. In addition, it achieves better results compared to those of more traditional mod-
els on small-scale datasets, on which the very deep models [6, 7] gave inferior results.
It has been well understood that a neural network of three layers or more can learn
more functions compared to a neural network of one or two layers [11]. On the other
hand, the power of very deep models have been shown mostly empirically [12] in a
trade-off of high computational complexity. Our results might suggest further research
questions to answer of the relative strengths of very deep networks and wide exten-
sion of model parameterization while still mitigating the model complexity. Our code
is publicly available at http://XXXXXX.XXX.

2 Related Work

In its broad sense, text classification can be performed on inputs ranging from short
text (e.g., sentences) to much longer documents. The tasks have been traditionally tack-
led with various statistical models using bag-of-word features [13–15]. More recently,
neural networks have achieved the state of the art on many text classification tasks.

At the sentence level, numerous attempts have been made to model sentential mean-
ing for different tasks such as sentiment classification. For example, Socher et al. [1]
propose a recursive neural network to learn sentence representations over tree struc-
tures in a bottom-up fashion. Kim [2] applies a shallow two-channel CNN to extract
local features from sentences for text classification. Kalchbrenner et al. [3] use a dy-
namic multi-layer CNN to extract non-local features. Wang et al. [16] employ LSTM
with pre-trained embeddings for sentiment analysis of short text such as Tweets. Most
other existing models are variants of these architectures, such as adding gate structures
into ReNN [17], augmenting character embeddings in CNN [18], and employing tree-
structure for LSTM [19, 5]. However, these approaches result in weaker performances
when directly applied to long text [6].

At the document level, several composite neural networks have been proposed for
achieving better performances, by rendering hierarchical representation for documents.
For example, Tang et al. [8] attempt to hierarchically model a document by using CNN
or LSTM with word embedding inputs to learn sentence compositions, before feeding
them to a Gated Recurrent Unit (GRU) for representing a document. Zhang et al. [9]
utilize one LSTM to learn sentence representations from word embeddings and another
LSTM to documents of sentences from sentence vectors, before using a CNN to extract
document features from LSTM hidden layers. Similarly, Yang et al. [10] propose two
attention-enriched GRUs for hierarchical word-sentence-document representation. One
limitation of such methods, however, is the modelling documents from sentences, which
is subject to errors from sentence segmentation and cannot be applied directly also for
short text classification.

Zhang et al. [6] build a deep 9-layer model to tackle both short and long text clas-
sification. Without differentiating documents and sentences, they employ 70 common
characters and one-hot-encoding to map a span of text into a fixed-size matrix (e.g.



(a) Character-level deep
CNNs [6].

(b) Shallow model with rich features (this paper).

Fig. 2: Baseline and our model.

70× 1024). Then a deep network of 6 CNN layers and 3 fully connected layers is em-
ployed to classify the fixed-size matrix. Their model is similar to previous methods in
stacking basic network units into a composite network for better inferring implicit fea-
tures. Conneau et al. [7] extend the work of Zhang et al. [6] by deepening CNN model
to enhance the performance. Conneau et al. [7] employ embeddings of the 70 common
characters as inputs of a very deep CNN model, which consists of up to 49 CNN layers
and 3 fully-connected layers. These models [6, 7] yield the best performances in large-
scale datasets. For small-scale data sets, however, traditional approaches are still better
than their neural network.

Our method is consistent with the above methods in leveraging composite neu-
ral network structure for document classification. Similar to the method of Zhang et
al. [6] and Conneau et al. [7] and different from Tang et al. [8] and Yang et al. [10],
we make no differentiation between short and long texts, by disregarding sentence
boundaries. Multiple neural networks are integrated, rather than building a two-layer
sentence/document model. Stacking component networks in depth helps to learn more
abstract features. However, it can make training challenging in back-propagating errors.
In constrast, shallow networks are easier to train and also relatively more interpretable.
For example, CNN has been shown to be closely related to ngram features [2, 3] and
the mechanism of LSTMs for classification have been analyzed heavily [16, 4]. Our
method is also in line with prior research on leveraging ensemble of neural networks
for language modelling [20], and solving NLP tasking more efficiently by using rich
shallow features [21], as opposed to using deep architectures.



3 Wide Text Classification Network

Given an input document d, which consists of nw words (d = w1w2...wnw
) and nc

characters (d = ch1ch2...chnc
, padded if necessary), we aim to classify d to one of

C classes. As shown in Figure 2b, we first pass the document to an input neural layer
for vectorization. Then, we apply a set of neural network units for modelling local and
global contexts. The context features are then supplied to one fully connected layer
for feature integration, from which the output layer is finally constructed and used for
prediction.

3.1 Input Layer

One-hot-encoding matrix: We follow Zhang et al. [6] in leveraging a one-hot-encoding
algorithm and dc common characters to map a character cht to a sparse one-hot vec-
tor xc

t ∈ Rdc . Given a document d containing nc characters, we transform it into a
fixed-size matrix:

Xc = xc
1x

c
2...x

c
nc
∈ Rdc×nc (1)

Word embedding matrix: In addition to the one-hot character matrix, a word embed-
ding matrix is used as our second way to represent a document. Each word wt in d is
mapped to a dense embedding vector xw

t with a dimension dw via a look-up table, so
as to obtain an input matrix:

Xw = xw
1 xw

2 ...x
w
nw
∈ Rdw×nw , (2)

where word embeddings can be either randomly initialized or pre-trained, using Word2vec
[22] or Glove [23].

Given a document d, the two input matrices Xc and Xw are fed into a set of neural
network units for extracting rich features.

3.2 Modelling Local Context Using CNNs

CNN has been shown effective for extracting local features from raw data, for both
image processing [24] and NLP [25]. A convolution operation can be regarded as a sum
over element-wise multiplication between a filter with a region size l, parameterized by
a weight matrix Wl

j ∈ Rdc×l, and a sequence of l input columns in Xc, represented by
a sub-matrix Xc[k : k + l − 1] ∈ Rdc×l, k = 1...n− l + 1.

clkj = g(Wl
j ·Xc[k : k + l − 1] + bj) (3)

In the Equation 3, j is the number of feature maps, bj ∈ R is a bias term, and g is a non-
linear activation function. Performing the convolution operation with a region size l and
dcl feature maps over the input matrix Xc, we obtain a convolutional output matrix:

C l = c l
1 , c

l
2 , ..., c

l
n−l+1 ∈ Rdc

l×(n−l+1) (4)

Element-wise max-pooling is then used to extract the dcl most salience features hc
cl for

the succeeding layers.
hc
cl = poolingmax(C

l) ∈ Rdc
l , (5)



Table 1: Dataset statistics.
Name #Classes Task #Training #Testing
AG’s news 4 News categorization 120k 7.6k
Sogou news 5 Chinese news categorization 450k 60k
DBPedia 14 Ontology classification 560k 70k
Yelp review polarity 2 Sentiment analysis 560k 38k
Yelp review full 5 Sentiment analysis 650k 50k
Yahoo! Answers 10 Question type classification 1.4m 60k
Amazon review polarity 2 Sentiment analysis 3.6m 400k
Amazon review full 5 Sentiment analysis 3m 650k

Character-level CNNs: We apply a sequence of mc (mc ≤ nc) variable-size convo-
lution operations to extract local context features at the character level resulting in mc

representations of the document:

hc
c1 ,hc

c2 , ...,hc
cmc

Word-level CNNs: Another set of variable-size CNNs with a sequence of mw filters is
applied to the embedding matrix Xw to extract local context features at the word level
from the document:

hw
c1 ,hw

c2 , ...,hw
cmw

3.3 Modelling Global Context Using BiLSTMs

In addition to the set of Cmc +Cmw CNNs, we employ two LSTMs to further enhance
feature diversity. LSTM [26] takes a recurrent process to encode the entire document s
sequentially left to right. It has been shown to efficiently capture long-range dependen-
cies. A LSTM cell block consists of an input gate it, a memory cell ct, a forget gate
ft and an output gate ot. For each embedding xt, the recurrent model outputs a cor-
responding hidden state ht by controlling information flow between the inputs x1...xt

and the history h1...ht−1. We choose a LSTM variation [27] that computes the hidden
state ht as:

it = σ(Wixt +Uiht−1 + bi)

ot = σ(Woxt +Uoht−1 + bo)

ft = σ(Wfxt +Ufht−1 + bf )

c̃t = tanh(Wc̃xt +Uc̃ht−1 + bc̃)

ct = it � c̃t + ft � ct−1

ht = ot � tanh(ct),

where σ is the sigmoid function, � denotes element-wise multiplication, and Wk,
Uk,bk (k ∈ {i, o, f, c̃}) are model parameters. The above operation on xw

1 xw
2 ...x

w
nw

results in a sequence of hidden state h1,h2...,hnw (hj ∈ Rdb ).
We employ a bidirectional extension of LSTM (BiLSTMs) [28] at the word embed-

ding level to model the global context of a document d. In particular, a history feature



hw
f is learned in the forward direction from left to right (hw

f = hf
nw

), while a future
context feature hw

b is obtained in the backward direction from right to left (hw
b = hb

1),
as shown in Figure 2b. hf

nw
and hb

1 are obtained from two different sets of parameters
Wk, Uk,bk (k ∈ {if , of , ff , c̃f}) and Wk, Uk,bk (k ∈ {ib, ob, f b, c̃b}), respec-
tively.

3.4 Hidden Layer for Feature Integration

The local features hj
c1 ,h

j
c2 , ...,h

j
cmj , j ∈ {c, w} at the character and word levels, and

the global context features hw
f ,h

w
b are concatenated into a rich feature vector represen-

tation
h = hc

c1 ⊕ ...⊕ hc
cmc ⊕ hw

c1 ⊕ ...⊕ hw
cmw ⊕ hw

f ⊕ hw
b ,

where⊕ denotes the concatenation operation and h ∈ Rdh (dh = mcd
c
l×mwd

w
l ×2db).

As shown in Figure 2b, we recruit a fully connected layer to automatically model the
document as:

f = g(Whd · h+ bhd), (6)

where f ∈ Rdhd is the vector document representation, g indicates a non-linear activa-
tion function. Whd ∈ Rdh×dhd and bhd ∈ Rdhd are the model parameters. By adding
one hidden layer, we hypothesize that the model can automatically select appropriate
features from hc

ci , hw
ci , hw

f and hw
b , which encode input levels and different contextual

features.

3.5 Output layer

The feature vector f is fed to a softmax layer for classification, where the probability of
the output classes are computed as a vector

p = softmax (W · f + b), (7)

where W = w1...wC ∈ Rdhd×C denotes the weight parameters, and b ∈ RC is the
bias term.

3.6 Training

Given a set of labeled documents, the cross-entropy loss is used as the training objective:

loss(θ) = − 1

N

N∑
i=1

y (i) · log(p (i)), (8)

where θ indicates the set of parameters, N is the number of training data, and y (i)

represents the one-hot labeled vector of ith output. We tune the parameters θ, which
include word embeddings, per mini-batch using ADAM [29].



Table 2: Hyper-parameters.
Layer Parameters and Values
One-hot dc = 70, nc = 1014
Embeddings dw = 25, pdrop = 0.2
VSCNNs dcl = dwl = 50,mc = mw = 5

BiLSTMs dbb = dbf = 50

Hidden dhd = 300, pdrop = 0.5
Others batchsize = 50,maxepochs = 50

4 Experiments

4.1 Experimental Setup

Datasets: We conduct experiments on the eight large-scale datasets introduced by Zhang
et al. [6], which include a variety of classification tasks such as sentiment analysis,
news content categorization, ontology classification, and question type classification.
The statistics of the datasets are shown in Table 1. Volumes of the training data range
from hundreds of thousands samples to millions, which are ideal for empirically com-
paring complicated neural network architectures. We randomly picked 5% of the train-
ing data as validation sets.

Pre-processing: At the word level, we convert all words to lower-case and use
space tokenization. Words with frequencies less than three times are deemed unknown
tokens. We also insert m − 1 padding tokens at the beginning and n − len − m + 1
padding tokens at the end of a text to ensure that variable-size CNNs can slide over
the entire text, where len is the actual length of a text, and n = lenmax + 2(m − 1).
The Sogou news dataset, which is in Chinese and is translated into Pinyin (a phonetic
romanization of Chinese), contains some documents with more than 40,000 tokens.
For these documents, we consider only the first 3,000 words to improve computational
efficiency4.

At the character level, Zhang et al. [6] defined a set of 70 most common characters
mapping each input document into an array of 1014 characters in the set, with each
input document being truncated after the 1014th character. Characters not belonging
to common characters are encoded to be a zero vector. Zhang et al. [6] show that this
method works empirically effectively while giving reasonable efficiency. We follow
their method and set nc = 1014, dc = 70, making zero-vector paddings when the
number of characters in a document is less than 1014.

Hyper-parameters: We merge all the training samples except Sogou news, and use
word2vec [22] to obtain pre-trained word embeddings with a vector size of 25, which
is used to initialize the word look-up table. We randomly initialize Pinyin word em-
beddings for Sogou news. Word embeddings are fine-tuned during training. We apply

4 This implies that the remaining words of a long document in Pinyin are not considered for
classification. Such efficiency consideration follows Zhang et al. [6], who truncate input doc-
uments by considering only the first 1014 characters, which is significantly less than 3,000
words.



Fig. 3: Ablation experiments.

dropout [30] at the embedding layer and the last layer. All non-linear activation func-
tions g used in Section 3 are ReLU (rectified linear unit). Early stopping is employed
if there is no improvement on validation data after three consecutive epoches. Detailed
configurations are shown in Table 2. Hyper-parameters are chosen according to com-
mon values in the literature, and we did not perform grid search due to the large scales
of some datasets.

Computational efficiency: We run all experiments on GeForce GTX1080 GPU.
Thanks to the shallow structure, our model is far more efficient than very deep models
in terms of computations. Particularly, for training, the model took 300 seconds/epoch
on 120k samples. However, it only took a couple of seconds (7 seconds) for testing on
7.6k samples.

4.2 Development Experiments

Ablation Developments: We study the effectiveness of each standard neural network
unit by doing ablation experiments on one small-scale data (AG’s news with an average
length of 38 words) and one large-scale data (Yahoo! Answers with an average length
of 96 words). Four models are compared:

– char CNNs: using local context features extracted by character-level CNN units to
represent documents;

– + word CNNs: utilizing both local context features of character-level and word-
level CNN units;

– + word BiLSTMs: employing the features of char CNNs and global context fea-
tures obtained by BiLSTM units;

– ALL: combining all the features mentioned above.
As shown in Figure 3, the error rates of char CNNs on AG’s news and Yahoo! An-

swers are 11.55% and 34.26%, respectively. By adding word-level neural network units
(i.e. CNNs and BiLSTM), the performance of ALL is increased significantly on both
datasets, with an absolute error reduction of 4.47% and 7.65%, respectively. There is a
doubled improvement rate in the absolute error on large-scale labeled data in compari-
son with small-scale labeled data.

In addition, augmenting character-level CNN with word-level CNNs (+ word CNNs)
gives a better performance (a 7.45% error rate) in comparison with adding word-level
BiLSTMs (+ word BiLSTMs) (7.67% error rate) for short text classification. The op-
posite trend is observed for long text classification, where LSTM outperforms CNN.



Table 3: Effectiveness of hidden layer, where ‡ denotes a p-value below 10−3 by pair-
wise t-test.

Model AG’s news Yahoo! Answers
ALL− 7.16 26.74
ALL 7.08‡ 26.61‡

These results are explainable by the characteristics of CNN in extracting local features
and LSTM in capturing long-range-dependency features. The ablation experiments jus-
tify our hypothesis that juxtaposing different standard neural network units enriches
distinct features for our system.
Effectiveness of hidden layer: We exploit the capability of the feature integration layer
on AG’s news and Yahoo! Answers datasets by comparing:

– ALL−: directly feeding all local and global features to the softmax layer for pre-
diction;

– ALL: our model in Figure 2b.
The results are shown in Table 3. Without using a hidden layer (ALL−), the error rates
on the two datasets are 7.16% and 26.74%, respectively. By adding one hidden layer
for feature integration, the performance of our system increases significantly to 7.08%
and 26.61%, respectively. We further compute a pairwise t-test between two models
and show that the use of a hidden layer is significant (with p < 10−3). However, when
inserting one more hidden layer, we do not observe consistently improved accuracies.
We therefore use one hidden layer for feature integration.

4.3 Final Results

For each dataset, we compare the performance of our model with those of the previous
best methods5, namely:

– ngrams: multinomial logistic regression using features of the 500,000 most fre-
quent 5-grams.

– ngram TFIDF: multinomial logistic regression with features based on the TF/IDF
of ngrams.

– word LSTM: a one-layer LSTM classifier; the input is pre-trained word embed-
dings [22] with a dimension of 300.

– word deep-CNNs: a 9-layer CNN model with a large structure (i.e. the number of
feature maps is 1024), which consist of 6 CNN layers and 3 fully connected layers;
the input is pre-trained word embeddings [22] with dimension of 300.

– char deep-CNNs+ 1: the “Lg. Conv. Th.” model of Zhang et al. [6], which uses
a large CNN with the number of feature maps being 1024 and data augmentation
technique.

– char deep-CNNs+ 2: the “Sm. Conv. Th.” model of Zhang et al. [6], which uses
a small CNN with the number of feature maps being 256 and data augmentation
technique.

5 We do not compare our method to the method of Yang et al. [10], because they employ only
three datasets among eight datasets with different settings in the number of training data.



Table 4: Testing errors, where ∗∗ denotes the second best results.
Model AG Sogou DBPedia Yelp P Yelp F Yahoo Amazon P Amazon F
ngrams 7.96 2.92 1.37 4.36 43.74 31.53 45.73 7.98
ngrams TFIDF 7.64∗∗ 2.81∗∗ 1.37 4.56 45.20 31.49 47.56 8.46
word LSTM 13.94 4.82 1.45 5.26 41.83 29.16 40.57 6.10
word deep-CNNs 9.92 4.39 1.42 4.60 40.16 31.97 44.40 5.88
word deep-CNNs+ 9.91 - 1.37 4.63 39.58 31.23 43.75 5.80
char deep-CNNs 1 12.82 4.88 1.73 5.89 39.62 29.55 41.31 5.51
char deep-CNNs 2 15.65 8.65 1.98 6.53 40.84 29.84 40.53 5.50
char deep-CNNs 3 11.59 8.95 1.89 5.67 38.82 30.01 40.88 5.78
char deep-CNNs+ 1 13.39 - 1.60 5.82 39.30 28.80 40.45 4.93
char deep-CNNs+ 2 14.80 - 1.85 6.49 40.16 29.84 40.43 5.67
char deep-CNNs+ 3 10.89 - 1.69 5.42 37.95 29.90 40.53 5.66
char very deep-CNNs 1 9.36 3.61 1.36 4.35 35.28 27.17 37.58 4.28
char very deep-CNNs 2 8.67 3.18 1.41 4.63 37.00 27.16 38.39 4.94
char very deep-CNNs 3 8.73 3.36 1.29∗∗ 4.28∗∗ 35.74 26.57 37.00 4.31
Our model (ALL) 7.08 2.71 1.24 4.27 36.84∗∗ 26.61∗∗ 39.43∗∗ 4.73∗∗

– char deep-CNNs+ 3: the “Sm. Full Conv. Th.” model of Zhang et al. [6] with
distinctions between lower and upper characters.

– char very deep-CNNs 1: the 29-CNN-layer model of Conneau et al. [7], which
employ “convolution” operation as a down-sampling method between two convo-
lutional blocks.

– char very deep-CNNs 2: the 29-CNN-layer model of Conneau et al. [7], which
utilize “k-max pooling” as a down-sampling method between two convolutional
blocks.

– char very deep-CNNs 3: the 29-CNN-layer model of Conneau et al. [7] which use
“max pooling” as a down-sampling method between two convolutional blocks.

Classification: The results are shown in Table 4. Our model yields the competitive
performance on all the eight datasets. In particular, on small-scale data such as AG’s
news and DBPedia, where the accuracies of very deep neural network models have
not surpassed traditional statistical methods, our model produces the lowest error rates
of 7.08% and 1.24%, respectively. For large-scale data, such as Yahoo! Answers, our
model produces competitive result (e.g. 26.61 on Yahoo! Answers) compared to the
performance of the very deep methods char very deep-CNNs 3 (e.g. 26.57 on Yahoo!
Answers).
Sentiment Analysis: On small-scale data such as the Yelp review, our combined model
outperforms all the best approaches with an error rate of 4.27%. Similar to topic clas-
sification, the performance of our model (i.e. 4.27%) is superior to that of traditional
methods (i.e. 4.36%) on sentiment polarity classification, which were achieved by the
ngrams model. On large-scale data, namely Amazon Review in both polarity and fine-
grained classification, our model gives competitive results to the very deep model of
Conneau et al. [7] and better performances in comparison with the deep method of
Zhang et al. [6] by 1% and 0.2%, respectively, which employed data augmentation tech-



nique. It is worth noting that when trained on small-scale data (i.e. less than 600,000
labeled samples), our model obtains a new state of the art.

4.4 Discussion

The main reasons of the above improvements is the modelling of a document from dif-
ferent perspectives at different levels. With respect to the length of texts, our model
mitigates the lack of semantic information when classifying short text by activating
variable-size CNNs for extracting a set of discrete local features. When applied on long
text, BiLSTMs are leveraged to extract long-term dependencies over the document.
These different neural network units are automatically and favorably learned and se-
lected depending on the input length. Regarding the scale of the datasets, the model
takes advantage of multiple input levels and various component neural networks in
breadth when learning over large-scale data. On small-scale data our model still works
effectively thanks to the use of two different vectorizaion methods, namely character
one-hot encoding and word embedding. This mechanism permits the system to extract
enriched features from two different perspectives, which are deficient in traditional deep
neural networks.

5 Conclusion

We experimented with a shallow neural network with rich CNN and LSTM features
for text classification, comparing it to a deep network with many stacked CNN compo-
nents. By jointly employing different levels of textual representations and wiring mul-
tiple neural network units in breadth, our model achieved competitive performances
for classifying documents on different datasets with varying lengths and classification
objectives. Interestingly, on small-scale datasets, where very deep models are shown
inferior to traditional methods, our composite approach performed significantly better
than previous best deep models and traditional discrete methods. These results might in-
spire further investigation of the strengths and weaknesses of very deep neural network
models. We release our code and models at http://XXXXXX.XXX.

References

1. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, D.C., Ng, A., Potts, C.: Recursive
deep models for semantic compositionality over a sentiment treebank. In: Proceedings of
EMNLP. (2013) 1631–1642

2. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of
EMNLP. (2014) 1746–1751

3. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for mod-
elling sentences. In: Proceedings of ACL. (2014)

4. Li, J., Luong, T., Jurafsky, D., Hovy, E.: When are tree structures necessary for deep learning
of representations? In: Proceedings of EMNLP. (2015) 2304–2314

5. Zhu, X., Sobhani, P., Guo, H.: Long short-term memory over recursive structures. In: Pro-
ceedings of ICML. (2015)



6. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classifica-
tion. In: Proceedings of NIPS. (2015)

7. Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional networks for
text classification. In: Proceedings of EACL. (2017) 1107–1116

8. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for
sentiment classification. In: Proceedings of EMNLP. (2015) 1422–1432

9. Zhang, R., Lee, H., Radev, D.: Dependency sensitive convolutional neural networks for
modeling sentences and documents. In: Proceedings of NAACL-HLT. (2016)

10. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks
for document classification. In: Proceedings of NAACL-HLT. (2016) 1480–1489

11. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise training of
deep networks. In Proceedings of NIPS (2007)

12. Zhou, J., Cao, Y., Wang, X., Li, P., Xu, W.: Deep recurrent models with fast-forward con-
nections for neural machine translation. Journal of TACL (2016)

13. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In:
Proceedings of ICML. (1997) 412–420

14. Joachims, T.: Transductive inference for text classification using support vector machines.
In: ICML. (1999) 200–209

15. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine
learning techniques. In: Proceedings of ACL. (2002) 79–86

16. Wang, X., Liu, Y., SUN, C., Wang, B., Wang, X.: Predicting polarities of tweets by com-
posing word embeddings with long short-term memory. In: Proceedings of ACL-IJCNLP.
(2015) 1343–1353

17. Chen, X., Qiu, X., Zhu, C., Wu, S., Huang, X.: Sentence modeling with gated recursive
neural network. In: Proceedings of EMNLP. (2015) 793–798

18. dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short
texts. In: Proceedings of COLING. (2014)

19. Tai, S.K., Socher, R., Manning, D.C.: Improved semantic representations from tree-
structured long short-term memory networks. In: Proceedings of ACL-IJCNLP. (2015)

20. Le, P., Dymetman, M., Renders, J.M.: LSTM-based mixture-of-experts for knowledge-aware
dialogues. In: Proceedings of RepL4NLP. (2016) 94–99

21. Zhang, Y., Nivre, J.: Transition-based dependency parsing with rich non-local features. In:
Proceedings of ACL:HLT. (2011) 188–193

22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Proceedings of NIPS. (2013)

23. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation.
In: Proceddings of EMNLP. (2014) 1532–1543

24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE (1998) 2278–2324

25. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural lan-
guage processing (almost) from scratch. JMLR (2011)

26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. JNC 9 (1997) 1735–1780
27. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with

lstm. JNC (2000)
28. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural net-

works. In: Proceedings of ICASSP. (2013)
29. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
30. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a

simple way to prevent neural networks from overfitting. JMLR (2014)


