
An LSTM Model for Cloze-Style
Machine Comprehension

Shuohang Wang and Jing Jiang

School of Information Systems, Singapore Management University
80 Stamford Road, Singapore

shwang.2014@phdis.smu.edu.sg,jingjiang@smu.edu.sg

Abstract. Machine comprehension is concerned with teaching machines
to answer reading comprehension questions. In this paper we adopt an
LSTM-based model we designed earlier for textual entailment and pro-
pose two new models for cloze-style machine comprehension. In our first
model, we treat the document as a premise and the question as a hy-
pothesis, and use an LSTM with attention mechanisms to match the
question with the document. This LSTM remembers the best answer to-
ken found in the document while processing the question. Furthermore,
we observe some special properties of machine comprehension and pro-
pose a two-layer LSTM model. In this model, we treat the question as a
premise and use LSTMs to match each sentence in the document with
the question. We further chain up the final states of these LSTMs using
another LSTM in order to aggregate the results. When evaluated on the
commonly used CNN/Daily Mail dataset, both of our models are quite
competitive compared with the state of the art, and the second two-layer
model outperforms the first model.

1 Introduction

In recent years there has been much interest in machine reading comprehen-
sion [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. The task is to train machines to answer
questions related to a given document. The questions may be in different for-
mats, including multiple choice questions [16,17], cloze-style questions [1,9,12]
and even questions that require summarization and inference capabilities to an-
swer [18]. In this paper, we focus on cloze-style questions, which are generated
by masking certain words from a given document. A commonly-used cloze-style
machine comprehension dataset is the CNN/Daily Mail dataset created by [1]. In
this dataset, each question is generated by removing an entity from a manually
created summary point of a news article, and the removed entity serves as the
correct answer to the question. An example question in this dataset with part
of its corresponding news article and its correct answer is shown in Table 1.1

In this paper, we focus on this cloze-style machine comprehension task and
use the CNN/Daily Mail dataset for evaluation. Motivated by the observation

1 Note that all the entities have been anonymized by [1]. This is to ensure that the
questions cannot be answered trivially based on world knowledge learned elsewhere.

2 Shuohang Wang and Jing Jiang

Table 1. An example document excerpt, question and answer.

Document
@entity5 (@entity6) an impressive art collection assembled by the late actress and
@entity3 icon , @entity4 , has officially been offered for purchase. the collection ,
which includes works by some of the greatest artists of the 20th century , went under
the hammer in @entity13 on march 31 , following a tour of @entity5 , @entity15 ,
@entity16 and @entity17 the 750 - piece collection , which fetched a total of $
3.64 million , featured bronze sculptures , jewelry , and a number of decorative arts
and paintings , which were sold at @entity50 auction house in @entity13

Question
a collection of 750 items belonging to legendary actress @entity4 has been auctioned
off at @entity50 in @placeholder

Answer
@entity13

that the answer to a question should appear in the document near tokens that are
semantically similar to the tokens in the question, we approach the task by trying
to match the question to the document (or vice versa). This sequence alignment
process is similar to textual entailment where the goal is to determine whether a
premise entails a hypothesis. Because of the similarity of the cloze-style machine
comprehension task and textual entailment, we borrow a match-LSTM model for
textual entailment that we proposed earlier [19], and study how match-LSTM
could be applied to this task. For textual entailment, match-LSTM sequentially
processes a given hypothesis sentence and updates the prediction of whether it
matches a given premise sentence or not. For machine comprehension, however,
we use the match-LSTM to sequentially process a given question and update our
belief of which token in the given passage should be the correct answer token.

Observing some special properties of the machine comprehension task we
are dealing with, we further propose a second model which uses a two-layer
hierarchical LSTM architecture. Specifically, we treat the question as a premise
instead in this model, and break down the passage into sentences and treat each
sentence as a hypothesis to be matched with the question using an LSTM. These
LSTMs serve two purposes: They measure how well a sentence from the passage
matches the question, and they remember potential answers to the question
found in each sentence. Another LSTM at the top layer then combines the final
states from each of these bottom-layer LSTMs to make the final prediction.

Using the CNN/Daily Mail dataset created by [1], we show that both models
can perform competitively compared with a number of baseline methods we
consider, and our second hierarchical model works better than the first model.
We also conduct further analyses to understand the underlying mechanisms of
our two models.

The main contribution of our work is to show that the match-LSTM model
we proposed earlier for textual entailment can be easily adapted to solve the

title 3

cloze-style machine comprehension problem and performs competitively with
other state-of-the-art models.

2 Related Work

Machine Comprehension: Although it has always been one of the central
goals of artificial intelligence, the task of machine comprehension of text (MCT)
has recently gained more attention, partly because of the creation of a few bench-
mark datasets including the MCTest data [16], the Children’s Book Test data [9],
the CNN/Daily Mail dataset [1] and the Stanford QA dataset (SQuAD) [8]. Al-
though all of them were created for machine comprehension, there are some
minor differences in the way the task is defined. In this paper, we focus on the
setup by [1] and thus use their CNN/Daily Mail data for evaluation. Although
with the answer being a single token, their setup is somewhat simplified, we
believe that techniques developed for this simple setup still have potentials to
be extended for more realistic settings of machine comprehension.

Researchers have noted the similarity between machine comprehension and
other traditional NLP tasks including question answering (QA) and textual en-
tailment (TE). As a result, many solutions to machine comprehension are based
on techniques for QA and TE. For example, [3] formulated the task as textual
entailment and proposed a max-margin framework to learn the answer-entailing
structure. [6] presented a number of CNN models for machine comprehension,
and the best performing one also treats the task as textual entailment. In our
work, we also adopt an LSTM-based method we recently developed for textual
entailment to approach the machine comprehension task, but we make some
significant changes to the neural network architecture to suit our task.
Modeling Text with LSTMs and Attention Mechanisms: Long short-
term memory (LSTM) networks are a special kind of recurrent neural networks
(RNNs) and have recently been widely used to encode textual sequences to
solve a number of NLP problems, including machine translation [20], abstractive
text summarization [21], textual entailment [19] and machine comprehension [1].
Oftentimes, these models incorporate neural attention mechanisms. The idea is
to adjust the machine’s attentions to different regions of the text sequence that
has been processed in order to make new decisions, and the attention weights
are based on non-linear transformations learned from the training data. In our
work, we also adopt LSTMs with attention mechanisms.
Comparison with Other Models: There have been several models proposed
in recent years for machine comprehension [1,7,9,10,11,12,13,14,15]. There are
roughly two directions of these developing models. One direction is to focus
more on modeling the interaction between the document and the question. For
example, attention-over-attention [12], gated-attention [13] and bidirectional at-
tention flow [15] are proposed to build representations between the document
and the question. The other direction is to more reasonably predict the answer
based on the representations built between the document and the question. For
example, [11] applied the pointer network for answer extraction, [7] and [14] fine-

4 Shuohang Wang and Jing Jiang

tuned the answer prediction with a multi-step reasoner. In our work, we focus
on the first direction. Unlike previous studies which do not consider the docu-
ment structure and build attention weights independently, our model consists of
document hierarchical structure and dynamic attention mechanism for building
the representations between the document and the question.

3 Models

3.1 Preliminaries and General Framework

We consider the following setup of the task. The input is a pair of a document d
and a question q, each of which is a sequence of tokens. Furthermore, one of the
tokens in q is a special placeholder X that replaces the correct answer token2.
The expected output is a token a from document d that answers the question.
With a set of training triplets (d, q, a), we would like to learn a model that can
predict a given any pair of (d, q).

We assume that q is represented by Xq = (xq
1,x

q
2, . . . ,x

q
Nq

), where each

xq
i ∈ Rl is an embedding vector representing the ith token in q. Similarly each d

is represented by Xd = (xd
1,x

d
2, . . . ,x

d
Nd

) where each xd
j ∈ Rl. In our experiments,

these token embeddings were pre-trained and not updated during the training
of the machine comprehension models.

As we have pointed out, machine comprehension has been treated as a textual
entailment problem before with good results [3,6]. The general idea is to treat
the document as the premise and the question together with a candidate answer
as the hypothesis. If the premise can entail the hypothesis, then there is a good
chance that the candidate answer is correct. For the machine comprehension task
we are dealing with, however, there are too many candidate answers to consider
because each token in the document is one. We therefore do not combine the
question with a candidate answer to form a hypothesis but simply treat the
question containing the placeholder token X as the hypothesis. And instead of
predicting whether the hypothesis can be entailed from the premise, we learn
models that directly predict the answer token. This framework is the same as
the one employed by [1].

We use long short-term memory (LSTM) networks to process the document
and the question just like [1], but our model is significantly different from theirs.
We borrow the idea of a match-LSTM architecture for textual entailment that
we previously proposed [19]. Specifically, we use an LSTM to process the docu-
ment and the question at the same time, where the hidden states of this LSTM
represent the model’s updated belief of which token from the document is the
best answer. The last hidden state of the LSTM can then be used to predict the
answer token. Our first model is based on this idea.

We further observe that there are some potential limitations with our first
model. We therefore propose a second model that uses two layers of LSTMs.

2 Entity recognition and coreference resolution were performed when the dataset was
created. Each answer is therefore always a single token.

title 5

The bottom-layer LSTMs match the question with sentences of the document
while the top-layer LSTM aggregates the results from the bottom-layer LSTMs.
This novel two-layer architecture specifically designed for our machine compre-
hension task allows us to more easily assess the probability of a token being the
answer based on its context, and our experiments show that this second model
outperforms the first model.

3.2 A Multi-pass Reader

The first model we propose works as follows. First, we use two standard LSTMs
to encode the document and the question, respectively. Let us use hq

i ∈ Rh to
denote the produced hidden state representing the ith token in the question and
hd
j ∈ Rh the hidden state representing the jth token in the document.

We then use another LSTM which we call the answer-LSTM (or a-LSTM) to
further process hq. At position i, we first use an attention mechanism to derive
a series of attention weights si,j linking hq

i to each hd
j in the document:

mi,j = tanh(Wqhq
i + Wdhd

j + Waha
i−1),

si,j ∝ exp(wsmi,j),

where Wq,Wd,Wa ∈ Rh×h are weight matrices, ws ∈ Rh is a weight vector
and ha

i−1 is the hidden state produced by the a-LSTM at the previous position.
We can think of si,j as the probability that the ith token in the question is
aligned with the jth token in the document. For example, we expect that for
the placeholder token X in the question, ideally it should be aligned with the
correct answer token in the document, and therefore the attention weight for X

with that token presumably should be high.
Using these attention weights, we obtain a weighted sum of the document’s

hidden representations as follows:

h
d

i =
∑
j

si,jh
d
j .

Subsequently, we concatenate this h
d

i with hq
i into ei = [h

d

i ; hq
i], and this ei is

used as input to the a-LSTM.
Following the general design of LSTMs, the hidden state ha

i of the a-LSTM
is derived as follows:

iai = σ(Wiei + Viha
i−1 + bi),

fai = σ(Wfei + Vfha
i−1 + bf),

oa
i = σ(Woei + Voha

i−1 + bo),

ua
i = tanh(Wuei + Vuha

i−1 + bu),

cai = fai � cai−1 + iai � ua
i ,

ha
i = oa

i � cai ,

6 Shuohang Wang and Jing Jiang

Fig. 1. The Multi-pass Reader model. The dot rectangular is the concatenation of a
document attention representation and a question state.

where the iai , fai , oa
i and cai are the input gates, forget gates, output gates and

cell state at position i, and the different W∗, V∗ and b∗ are weight matrices
and weight vectors to be learned.

Here the a-LSTM essentially uses its hidden states to record and keep up-
dating the best answer found so far from the document. Eventually, the final
hidden state ha

Nq
of the a-LSTM is used to predict the answer token through a

softmax layer. This model is depicted in Figure 1.
We can see that in this model, at each position i of the question, the a-LSTM

has to go back and revisit every position in the document in order to derive the
attention weights. This is analogous to a reader scanning the document multiple
times, once for every token in the question. We therefore call this model the
multi-pass reader model.

3.3 A Single-pass Reader

We observe that there are some limitations of the multi-pass reader model above
applied to machine comprehension. First, in machine comprehension, the docu-
ment is a long sequence, consisting of multiple sentences, whereas the question
is usually a single sentence. With the multi-pass reader, we will need to scan
the long document multiple times, which seems inefficient and unlikely to be the
way humans read. To address this problem, we propose to switch the roles the
document and the question play in the answer-LSTM. Imagine a different reader
who, before reading the document, first reads the question. With the question in
mind, he then reads the document only once, and while he is reading, he decides
whether or not to use the current token in the document as the answer to the
question. This can be accomplished by using an LSTM to process the document
and using an attention mechanism with respect to the question kept in mem-
ory to help determine the input gates and forget gates. We can thus design a
single-pass reader model.

Second, we also observe that in our dataset the question is oftentimes a
paraphrase of one or a few consecutive sentences of the document. This means

title 7

Fig. 2. The Single-pass Reader model. Here hd
m,n refers to the hidden state produced

by some preprocessing LSTM for the nth token in the mth sentence in document d,
and Nd,m is the number of tokens in the mth sentence in d. Hq represents the hidden
states produced by LSTM for the tokens in question and h

q
m,i is the weighted sum of

question hidden states Hq.

when we try to assess whether the current token in the document is a good
answer, we should check whether its surrounding tokens match the tokens in the
question well. Based on this observation, we propose to split the document into
sentences first and match each sentence with the question using an LSTM. On
top of these token-level LSTMs for each sentence, we then build a sentence-level
LSTM to aggregate the results.

Specifically, the single-pass reader model works as follows. Suppose the doc-
ument Xd has been split into a sequence of sentences (Xd

1,X
d
2, . . . ,X

d
Md

), where

each Xd
m itself is a sequence of tokens. Given a particular Xd

m, we can follow the
same procedure as described in Section 3.2 but treat Xq as the document and
Xd

m (the mth sentence) as the question. After using the answer-LSTM to pro-
cess these two sequences, we obtain the last hidden state of the answer-LSTM,
which we denote with hs

m,Nd,m
(where Nd,m is the number of tokens in the mth

sentence). This hidden state records the best answer token we can find from this
sentence. Furthermore, we expect this hidden state to also indicate overall how
well this sentence matches the question, or in other words, whether this sentence
contains many tokens that are semantically similar to the tokens in the question.
A sentence that better matches the question is more likely to contain the correct
answer token.

Next, we treat these hs
m,Nd,m

as the input to another LSTM. This top-layer
LSTM works at sentence level and aggregates the results from the sentences.
What it tries to do is to remember answers from sentences that match the
question well but forget answers extracted from poorly-matched sentences. The
last hidden state ht

Md
from this top-layer LSTM is used to predict the final

answer through a softmax layer. This model is depicted in Figure 2.

8 Shuohang Wang and Jing Jiang

Table 2. Some statistics of the CNN/Daily Mail dataset. The last row refers to the
relabeled data by [10], where the entities in a document were re-labeled in order, such
that the first entity is labeled as @entity1, the second entity as @entity2, etc., rather
than being randomly labeled.

CNN Daily Mail

Train 380,298 879,450
Dev 3,924 64,835
Test 3,198 53,182
avg # tokens per doc 762 813
avg # sentences per doc 33.4 32.6
avg # entities per doc 26.2 26.2
vocab size 118,497 208,045
classes 405 415
classes (relabeled) 145 156

4 Experiments

4.1 Data and Experiment Setup

We use the CNN/Daily Mail dataset created by [1] to perform evaluation. The
documents are news articles from CNN/Daily Mail and the questions were cre-
ated from the bullet points that came with the articles. Details of the data
preparation, including how the entities were recognized and anonymized, can
be found in the original paper [1]. Some statistics of the data set are shown in
Table 2.

We consider the following baselines:
Attentive Reader: In this model proposed by [1], attention mechanism is used
to compute a weighted sum of the document hidden states for the prediction.
Impatient Reader: The impatient reader is also developed by [1]. It sequen-
tially accumulates the weighted sum of document states for each state in the
question.
MemNNs: This is a machine comprehension model developed by [9] using Mem-
ory Networks.
Entity-Centric Classifier: This model proposed by [10] is based on human en-
gineered features such as whether the entity occurs in the question, the frequency
of the entity in the document, etc.
Attention Sum Reader: This is the attention sum reader model recently
developed by [11]. It is a relatively simple model that uses attention mechanisms
to directly pick the answer.
Stanford Attentive Reader: This model developed by [10] is an attentive
reader with a different attention mechanism and experiment settings from [1].
DER Network: This is a model recently developed by [22] using dynamic entity
representation.
EpiReader: This is a model developed by [7] combining the components of
reasoner and extractor.

title 9

Table 3. Results on the CNN and the Daily Mail data sets with a single model. Note
that the bottom section shows the performance of the models trained on the relabeled
data sets.

Model CNN Daily Mail
dev test dev test

Attentive Reader [1] 61.6 63.0 70.5 69.0
Impatient Reader [1] 61.8 63.8 69.0 68.0
MemNN [9] 63.4 66.8 N/A N/A
Entity-Centric Classifier [10] 67.1 67.9 69.1 68.3
Attention Sum Reader [11] 68.6 69.5 75.0 73.9
Stanford Attentive Reader [10] 72.5 72.7 76.9 76.0
DER Network [22] 71.3 72.9 N/A N/A
EpiReader [7] 73.4 74.0 N/A N/A
AOA Reader [12] 73.1 74.4 N/A N/A
ReasoNet [14] 72.9 74.7 77.6 76.6
BiDAF [15] 76.3 76.9 80.3 79.6
GA [13] 77.9 77.9 81.5 80.9

Multi-pass Reader (our model) 67.5 70.0 73.9 73.5
Single-pass Reader (our model) 73.3 74.3 77.7 76.7

Stanford Attentive Reader (on relabeled data) [10] 73.8 73.6 77.6 76.6
Single-pass Reader (on relabeled data) (our model) 75.5 76.6 79.4 78.6

AOAReader: This model [12] uses the structure of attention-over-attention for
answer prediction.

ReasoNet: This model [14] considers multi-step reasoning by making use of
reinforcement learning.

BiDAF: This model [15] uses bidirectional attention flow to build the interaction
between the document and the question.

GA: This model [13] proposes the gated attention mechanism for solving the
RC problem.

For all the experiments, we use accuracy as the evaluation metric, which
is defined as the percentage of questions that are correctly answered. For our
experiments, we use token embeddings trained on the CNN/Daily Mail corpus
itself. We first use word2vec [23] embeddings to initialize the embeddings of
known tokens. We then use CBOW to train 300-dimensional word embeddings
on the CNN/Daily Mail data set and we do not update the embeddings when
training our model. We use the ADAGRAD [24] method for optimization. The
learning rate is set to be 0.01. The batch size is set to be 256. The dimension
of all the hidden states is 150. The dropout ratio on the embedding layer is 0.3.
The vocabulary size we used is 89291 for CNN and 153712 for Daily Mail. The
number of classes for the softmax layer is 405 for CNN and 415 for Daily Mail.
After relabeling by [10], the number of classes is set to be 145 for CNN and 156
for Daily Mail. For our Hierarchical Reader, processing one long document may

10 Shuohang Wang and Jing Jiang

Fig. 3. The input gates of the answer-LSTM in the multi-pass reader for a document-
question pair. @placeholer with its document attention representation has higher input
gate values.

take more than 4G of memory. Due to the limitation of GPU memory, we adopt
multi-threads/multi-machines training on CPUs.

4.2 Main Results

Table 3 shows the performance of our two models and the various baselines on
both the development set and the test set. We can observe the following: (1) Our
Single-pass Reader outperforms the Multi-pass Reader. This shows that indeed
the Single-pass Reader has a network design that is more suitable for the task.
(2) After relabeling, our Single-pass Reader achieves a better performance. This
shows that with fewer classes in the softmax layer, the method is more robust.
(3) Our Single-pass Reader is competitive to the best model on the CNN/Daily
Mail dataset.

4.3 Further Analyses

In this section, we conduct a few analyses on our two models in order to verify
some hypotheses we have on how the two models work.

Some of our analyses are based on observing the values of the input gates and
the forget gates because they indicate which tokens or sentences have contributed
more to the final answers. In all the analyses below, we will show only the input
gates. This is because we find that the input gates and the forget gates tend to be
negatively correlated. In particular, using a random sample of these gate values,
we find that the Pearson’s correlation coefficients between the input gates and
the forget gates are -0.319, -0.558 and -0.470 for the LSTMs in the multi-pass
reader, the top-layer LSTMs and the bottom-layer a-LSTMs in the single-pass
reader, respectively.

title 11

Fig. 4. The input gates of the top-layer LSTM in the single-pass reader for a document-
question pair. Two sentences with high input gate values are also shown together with
the question.

The Multi-pass Reader For the multi-pass reader, we would like to verify the
following two hypotheses: (1) The final answer comes mostly from the tokens
in the document that match the placeholder token X in the question. (2) The
correct answer token in the document tends to have a higher attention weight
when matched to token X.

For the first hypothesis, we show the values of the input gates of the answer-
LSTM at every position of the question for one document-question pair in Fig-
ure 3. We can see that indeed the placeholder token (shown as @placeholder in
the figure) has much higher input gate values compared with other tokens. We
further compute the average input gate values for the placeholder token in all
the questions and compare it with the average input gate values of other tokens.
We find that the former has an average value of 0.654 with a standard deviation
of 0.032 while the latter has an average value of 0.192 with a standard deviation
of 0.103. This confirms that indeed the final answer found by the answer-LSTM
comes mostly from the tokens matched to the placeholder.

To verify the second hypothesis, for each document-question pair, we rank
the tokens in the document by their attention weights when matched to X in the
question. We then check whether the correct answer token is within the top-5
of this ranked list. We find that out of the 3924 document-question pairs, 2037
pairs have the correct answer within the top-5 matching tokens to X. This is

12 Shuohang Wang and Jing Jiang

Fig. 5. The input gate values of the bottom-layer a-LSTM for a sentence. Here the
correct answer token is @entity13.

much higher than random, and it shows that indeed the answer-LSTM picks up
the correct answer by matching it to X through the attention mechanism.

Single-pass Reader

For the single-pass reader, we would like to verify the following hypotheses: (1)
The top-layer LSTM is able to pick up sentences that semantically match the
question better using its input gates. (2) The bottom-layer a-LSTMs are able to
pick up the correct answer tokens using their input gates.

To verify the first hypothesis, we show the input gate values of the top-
layer LSTM for one document-question pair in the top plot of Figure 4. We
can see that a few sentences have received relatively high input gate values,
including Sentence 2 and Sentence 3. A closer look at these two sentences and
comparing them with the question show that indeed these sentences have better
overlap with the question. To check whether this is generally the case, for each
document-question pair, we rank the sentences from the document based on their
cosine similarities with the question and pick the top one. We check whether
this sentence also receives the highest average input gate value among all the
sentences. We find that out of the 3924 document-question pairs, 2037 (51.9%)
have the same top-ranked sentence by cosine similarity and by average input
gate value. Although the percentage is not very high, it is much higher than
random, and note that the cosine similarity is only a crude measure of the
semantic similarity between a sentence and a question. Interestingly, we find
that out of the 3924 document-question pairs, 3222 of them (82.1%) have the
correct answer token inside the sentence that has the highest average input gate
value. In contrast, a randomly selected sentence has a 21.9% chance on average
to contain correct answer token. This shows that the top-layer LSTM is often
able to pick up the sentence that contains the correct answer.

To verify the second hypothesis above, we compute the average input gate
values of the correct answer token in the bottom-layer a-LSTMs of the Single-
pass Reader. We compare this with the average gate values of the other tokens.

title 13

We find that the average input gate value for the correct answer token is 0.632
with a standard deviation of 0.041, while the average value for other tokens is
0.154 with a standard deviation of 0.093. We can see that indeed the correct
answer token tends to receive higher input gate values. We also show the input
gate values for one sentence in Figure 5.

5 Conclusions

We presented two LSTM-based neural network models for machine comprehen-
sion. By treating the task as a textual entailment problem, the first model,
which we call the multi-pass reader, tries to match the question with the docu-
ment using an LSTM with attention mechanisms. Based on some observations
with the task, we further proposed a novel two-layer LSTM model, which we
call the single-pass reader, where at the bottom layer we match each sentence
in the document with the question and at the top layer we use an LSTM to
combine the results. Experiments on a large CNN data set showed that both our
models are competitive compared with a number of recent methods for machine
comprehension, and our single-pass reader outperforms the multi-pass reader.
By carefully examining the input gates and attention weights learned in our
models, we also verified a few hypotheses about how the two models work.

Based on our analyses, we see a number of ways to further improve our
work. First, our single-pass reader model can pick the sentence that contains the
correct answer over 82% of the time, but its final accuracy is still below 76%.
We therefore need to further strengthen the mechanism of identifying the answer
token from a good matching sentence. Second, currently we split the document
into non-overlapping sentences in the single-pass reader. However, sometimes the
question may be derived from a few consecutive sentences. We therefore plan to
look into more flexible ways of dividing the document into segments such that we
can better match the question with any arbitrary subsequence of the document.

References

1. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman,
M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in
Neural Information Processing Systems. (2015) 1684–1692

2. Narasimhan, K., Barzilay, R.: Machine comprehension with discourse relations.
In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing. (2015) 1253–1262

3. Sachan, M., Dubey, K., Xing, E., Richardson, M.: Learning answer-entailing struc-
tures for machine comprehension. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing. (2015) 239–249

4. Wang, H., Bansal, M., Gimpel, K., McAllester, D.: Machine comprehension with
syntax, frames, and semantics. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing. (2015) 700–706

14 Shuohang Wang and Jing Jiang

5. Smith, E., Greco, N., Bosnjak, M., Vlachos, A.: A strong lexical matching method
for the machine comprehension test. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. (2015) 1693–1698

6. Yin, W., Ebert, S., Schütze, H.: Attention-based convolutional neural network for
machine comprehension. arXiv preprint arXiv:1602.04341 (2016)

7. Trischler, A., Ye, Z., Yuan, X., Suleman, K.: Natural language comprehension with
the epireader. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing. (2016)

8. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for
machine comprehension of text. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing. (2016)

9. Hill, F., Bordes, A., Chopra, S., Weston, J.: The Goldilocks principle: Reading
children’s books with explicit memory representations. In: Proceedings of the
International Conference on Learning Representations. (2016)

10. Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the CNN/Daily
Mail reading comprehension task. In: Proceedings of the Conference on Association
for Computational Linguistics. (2016)

11. Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the
attention sum reader network. In: Proceedings of the Conference on Association
for Computational Linguistics. (2016)

12. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention
neural networks for reading comprehension. In: Proceedings of the Conference on
Association for Computational Linguistics. (2017)

13. Dhingra, B., Liu, H., Yang, Z., Cohen, W.W., Salakhutdinov, R.: Gated-attention
readers for text comprehension. In: Proceedings of the Conference on Association
for Computational Linguistics. (2017)

14. Shen, Y., Huang, P.S., Gao, J., Chen, W.: Reasonet: Learning to stop reading in
machine comprehension. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM (2017) 1047–1055

15. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow
for machine comprehension. In: Proceedings of the International Conference on
Learning Representations. (2017)

16. Richardson, M., Burges, C.J., Renshaw, E.: MCTest: A challenge dataset for the
open-domain machine comprehension of text. In: Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing. (2013) 193–203

17. Lai, G., Xie, Q., Liu, H., Yang, Y., Hovy, E.: RACE: Large-scale reading compre-
hension dataset from examinations. Proceedings of the Conference on Empirical
Methods in Natural Language Processing (2017)

18. Kočiský, T., Schwarz, J., Blunsom, P., Dyer, C., Hermann, K.M., Melis, G., Grefen-
stette, E.: The NarrativeQA reading comprehension challenge. Transactions of the
Association for Computational Linguistics (2018)

19. Wang, S., Jiang, J.: Learning natural language inference with LSTM. In: Pro-
ceedings of the Conference on the North American Chapter of the Association for
Computational Linguistics. (2016)

20. Bahdanau, D., Cho, H., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the International Conference on Learning
Representations. (2015)

21. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. Proceedings of the Conference on Empirical Methods in
Natural Language Processing (2015)

title 15

22. Kobayashi, S., Tian, R., Okazaki, N., Inui, K.: Dynamic entity representation
with max-pooling improves machine reading. Proceedings of the North American
Chapter of the Association for Computational Linguistics (2016)

23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. (2013) 3111–3119

24. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research 12 (2011)
2121–2159

