
Parsing with Polymorphic Categorial Grammars

Matteo Capelletti1 and Fabio Tamburini2

1 Lix, École Polytechnique - France
matteo.capelletti@elisanet.fi

2 DSLO, University of Bologna - Italy
fabio.tamburini@unibo.it

Abstract. In this paper we investigate the use of polymorphic categorial
grammars as a model for parsing natural language. We will show that,
despite the undecidability of the general model, a subclass of polymorphic
categorial grammars, which we call linear, is mildly context-sensitive and
we propose a polynomial parsing algorithm for these grammars.

1 Introduction

The simplest model of a categorial grammar is the so called Ajdukiewicz–Bar-
Hillel calculus of [2] and [4]. Syntactic categories are formed from a given set of
atoms as functions a/b and b\a, with b and a categories. The intuitive meaning
of a syntactic category of the form a/b (resp. b\a) is that it looks for an argument
of category b to its right (resp. left) to give a category of type a. The resulting
grammar system is known to be context-free.

Contemporary categorial grammars in the style of Ajdukiewicz–Bar-Hillel
grammars are called combinatory categorial grammars, see [25]. Such systems
adopt other forms of composition rules which enable them to generate non–
context-free languages, see [29; 28]. The other main tradition of categorial gram-
mar, the type-logical grammars of [20; 18], stemming from the work of [15],
adopt special kinds of structural rules, that enable the system to generate non–
context-free languages.

Both approaches increase the generative power of the basic system by adding
special kinds of rules. In this paper, we adopt a different strategy which consists
in keeping the elementary rule component of Ajdukiewicz–Bar-Hillel grammar
and in introducing polymorphic categories, that is syntactic categories that con-
tain variables ranging over categories. The inference process will be driven by
unification, rather than by simple identity of formulas. We will see two kinds
of polymorphic categorial grammars, one that is Turing complete and another,
resulting from a restriction on the first, which is mildly context-sensitive. This
second system, which is obviously the most interesting one for linguistics, has
some important advantages with respect to the aforementioned ones. In respect
to TLG, the polymorphic system we define is polynomial, as we will prove by
providing a parsing algorithm. In respect to CCG (and most known TLG), our
system is not affected by the so called spurious ambiguity problem, that is the
problem of generating multiple, semantically equivalent, derivations.

© A. Gelbukh (Ed.)
Advances in Computational Linguistics.
Research in Computing Science 41, 2009, pp. 87-98

Received 07/11/08
Accepted 15/12/08

Final version 26/01/09

A system somewhat similar to our polymorphic categorial grammar was stud-
ied in the late 80s as a kind of feature theoretic categorial syntax by [26] and
[30], although, to our knowledge, after these works it has been almost completely
neglected. While our system, in its most general form, allows the encoding of fea-
ture structures into categorial grammar, our primary concern will be to discuss
its generative power and its computational properties. We will present general
polymorphic categorial grammars, and show that they are undecidable. Then we
will define a restricted class of such grammars which is mildly context-sensitive.
We will show this by giving examples of the languages that can and cannot be
generated, and by providing a polynomial parser for such grammars.

In relation to other mildly context-sensitive grammar formalism, the cate-
gorial grammar framework is well known for its close correspondence between
syntactic derivation and the construction of semantic representation, see [27].
For this reason the extensions of the basic calculi with more powerful devices
allows for the construction of sophisticated parsing systems dealing in parallel
with both the syntax and the semantics of languages.

In this paper we will assume that categories are not only of the form a/b or
b\a, but also a ⊗ b, this is not standard in the categorial literature, but such
product categories are useful as we will see in the examples that follow. From
now on, we use capital letters A, B and C and their variants as metavariables
over formulas. As we said before, an expression of category A/B looks for an
expression of category B to its right to give a compound expression of category
A and dually for B\A. Instead, an expression of category A⊗B is an expression
whose syntactic information is given by a component of category A and another
of category B. We assume that the slashes bind more tightly than the product.
We define a sequent as a pair where the first element, the antecedent, is a list
of category, while the second, the succedent, contains a single category, and we
write it as Γ → A.

The deductive system given in Figure 1, which we call AB⊗, is a simple
modification of the calculus of [14] to which it can easily be proved equivalent.

Identity Axioms: A → A

Product Axioms: A, B → A ⊗ B

Shifting Rules:
Γ → C/A

Γ, A → C
(S1)

Γ → A\C
A, Γ → C

(S2)

Cut Rules:
Γ, A → C Δ → A

Γ, Δ → C
(C1)

Γ → A A, Δ → C

Γ, Δ → C
(C2)

Fig. 1. Ajdukiewicz–Bar-Hillel calculus with product, AB⊗.

2 Polymorphic Ajdukiewicz–Bar-Hillel Grammar

88 Capelletti M. and Tamburini F.

There are two ways in literature for extending the basic models of catego-
rial grammars to generate non context-free languages. The first is the use of
structural rules or other types of composition schemes. These approaches are
characteristic of type-logical grammars, see [20; 18; 19], and combinatory cate-
gorial grammars (CCG), see [25; 3], and have been widely explored in the past.
The second is based on the introduction of polymorphism. In this paper, we study
this second approach.

The formalism of polymorphic categorial grammar that we are going to
present is inspired by the polymorphic theory of types, see [17; 9]. Types may
contain type variables together with constants, and these variables may be (im-
plicitly or explicitly) quantified over. The idea of polymorphism is very simple
and natural. Rather than defining a class of id functions idInt :: Int → Int,
idChar :: Char → Char and so forth, the function id is defined for any type α,
as id :: ∀α.α → α or id :: α → α where α is implicitly universally quantified.

The same idea is very natural also in linguistics, where, for example, co-
ordination particles such as ‘and’ and ‘or’ are typically polymorphic, as they
coordinate expressions of almost any syntactic category. Thus one can find in
the categorial grammar literature several examples of polymorphic assignments
for these expressions [15; 24; 8; 7].

Another example of Ajdukiewicz–Bar-Hillel style categorial grammars adopt-
ing a form of polymorphism are the unification categorial grammars of [26; 30;
10], where polymorphism is used at the level of feature structures.

In this section, we are going to explore Ajdukiewicz–Bar-Hillel categorial
grammars with product (AB⊗, for short) extended with different forms of poly-
morphism. In the first place, we extend the notion of category as to include
variables and define a sort of categorial grammar with ML style polymorphism,
see [17; 12]. Variables are assumed to be implicitly universally quantified, with
quantifiers in prenex position.

Consider the formula (α\α)/α which can be assigned to the word ‘and’ in a
lexicon. Applied to ‘John’ :: n, it will give the expression ‘and John’ :: n\n, while
applied to ‘walks’ :: n\s, it will give the expression ‘and walks’ :: (n\s)\(n\s),
and so forth. Thus the right argument α in (α\α)/α gets instantiated in the ap-
plication process and the result of such instantiation, a substitution, is applied to
the value α\α. Hence the process of type inference for this kind of polymorphic
categorial grammars requires nothing more than type unification and substitu-
tion. We call the resulting system Unification Ajdukiewicz–Bar-Hillel grammars
with product, UAB⊗ for short.

Syntactic categories of UAB⊗ are defined as follows.

Atoms: A ::= a, b, c, n, s, i . . .
Variables: V ::= α, β, γ . . .
Categories: F ::= A | V | F ⊗ F | F\F | F/F

2.1 Unification Ajdukiewicz–Bar-Hillel Grammars

Parsing with Polymorphic Categorial Grammars 89

Unification of categories is defined in (1). We use � as a variable over {/, \,⊗}
connectives. The substitution of a formula A for a variable α in a formula B,
denoted B[α := A], is defined as follows:

α[α := C] = C α[β := C] = α if α �= β
A[α := C] = A for A ∈ A (A�B)[α := C] = (A[α := C]�B[α := C]).

We write f · g the composition of f and g, defined as λx.f (g x). Let V (B) be
the set of variables occurring in B, we define the unification of A and B, denoted
A ≈ B, by the following recursion, which is taken with minor modifications from
[5].

α ≈ B = [α := B] if α �∈ V (B)
= Id if α ≡ B
= fail otherwise

A�B ≈ A′�B′ = (σA ≈ σA′) · σ where σ = B ≈ B′

A ≈ α = α ≈ A

(1)

The unification Ajdukiewicz–Bar-Hillel calculus, UAB⊗ is defined in Figure 2.3

Identity Axioms: A → A

Product Axioms: A, B → A ⊗ B

Shifting Rules:
Γ → C/A

Γ, A → C
(S1)

Γ → A\C
A, Γ → C

(S2)

Cut Rules:
Γ, A → C Δ → B

Γ, Δ → C(A ≈ B)
(C′

1)
Γ → B A, Δ → C

Γ, Δ → C(A ≈ B)
(C′

2)

Fig. 2. Unification Ajdukiewicz–Bar-Hillel calculus, UAB⊗

We give here some examples of non context-free languages generated by
UAB⊗ grammars.

Example 1 We define the UAB⊗ grammar for the language anbncn,
n � 1, a well-known non-context-free language. Let grammar G1 consist
of the following assignments:

a :: s/(b ⊗ c) b :: b
a :: (s/α)\(s/(b ⊗ (α ⊗ c))) c :: c

We derive the string ‘aabbcc’. We write A for the formula (s/α)\(s/(b⊗
(α⊗ c))). For readability, boxes are drawn around the words that anchor
the axioms to the lexicon.

3 Obviously, the rules involving unification are only defined if unification is defined.

90 Capelletti M. and Tamburini F.

a
s/(b ⊗ c) → s/(b ⊗ c)

a
A → A

s/α, A → s/(b ⊗ (α ⊗ c))

s/(b ⊗ c), A → s/(b ⊗ ((b ⊗ c) ⊗ c))

b
b → b

b
b → b

c
c → c

b, c → b ⊗ c
c

c → c

b, c, c → (b ⊗ c) ⊗ c

b, b, c, c → b ⊗ ((b ⊗ c) ⊗ c)

s/(b ⊗ c), A, b, b, c, c → s

To show that G1 indeed generates the language anbncn, n � 1, we proceed
by induction on n. If n = 1, then ‘abc’ is generated by axioms a/(b⊗c) →
a/(b⊗ c), b → b and c → c. Assume that G1 generates anbncn. Then G1

assigns an the category s/A for some A and bncn the category A. We
have a :: (s/α)\(s/(b ⊗ (α ⊗ c))). Hence, G1 assigns an+1 the category
s/(b⊗ (A⊗ c)) and bn+1cn+1 the category b⊗ (A⊗ c). We conclude that
G1 generates an+1bn+1cn+1.

Example 2 We define a UAB⊗ grammar for ‘ww’, w ∈ {a, b}+.
Let grammar G2 consist of the following assignments:

a :: a b :: b
a :: s/a b :: s/b
a :: (s/α)\(s/(α ⊗ a)) b :: (s/α)\(s/(α ⊗ b))

It is easy to see that grammar G2 generates exactly the language ‘ww’
with w ∈ {a, b}+. As in the case of G1, type variables are used as ac-
cumulators for long-distance dependencies. Here we give an example de-
duction for the string ‘aabaab‘, using A as for (s/α)\(s/(α ⊗ a)) and B
for (s/α)\(s/(α ⊗ b)).

a
s/a

a
A → A

s/α, A → s/(α ⊗ a)

s/a, A → s/(a ⊗ a)

b
B → B

s/α, B → s/(α ⊗ b)

s/a, A, B → s/((a ⊗ a) ⊗ b)

a
a → a

a
a → a

a, a → a ⊗ a

b
b → b

a, a, b → (a ⊗ a) ⊗ b

s/a, A, B, a, a, b → s

A typical example of non context-freeness of natural language are the so called
cross serial dependencies, which can be found, for instance, in Dutch subordinate
clauses.

Example 3 We define a UAB⊗ grammar for Dutch cross-serial depen-
dencies. An example is the following subordinate clause, from [25]:

Ik
I

Cecilia
Cecilia

Henk
Henk

de
the

nijlpaarden
hippopotamuses

zag
saw

helpen
help

voeren.
feed.

I saw Cecilia help Henk feed the hippopotamuses.

These constructs exhibit dependencies of the form ‘ww’, where the ith
words in the two halves are matched.

Parsing with Polymorphic Categorial Grammars 91

w0 w1 . . . wn w0 w1 . . . wn

A sample lexicon generating the sentence in this example is the following:

Ik, Cecilia, Henk, de nijlpaarden :: n
zag :: ((n ⊗ (n ⊗ α))\c)/(α\i)
helpen :: ((n ⊗ α)\i)/(α\i)
voeren :: n\i

With such a lexicon we obtain the following deduction for the subordinate
clause (we write Z for the type of ‘zag’, H for that of ‘helpen’ and N for
the string ‘Ik Cecilia Henk de nijlpaarden’).

N
n ⊗ (n ⊗ (n ⊗ n))

zag
Z → Z

Z, α\i → (n ⊗ (n ⊗ α))\c

helpen
H → H

H, α\i → (n ⊗ α)\i
voeren

n\i → n\i
H, n\i → (n ⊗ n)\i

Z, (H, n\i) → (n ⊗ (n ⊗ (n ⊗ n)))\c
n ⊗ (n ⊗ (n ⊗ n)), (Z, (H, n\i)) → c

These examples show that the languages generated by UAB⊗ grammars prop-
erly include the context-free languages (since AB⊗ grammars are instances of
UAB⊗ grammars).

With regard to the generative power of UAB⊗ grammars, it can be proven
that if we allow null assignments, that is assignments of the form ε :: A, where
ε is the empty string, the UAB⊗ formalism becomes undecidable. We can show
this by translating in our categorial setting the argument of [13] to prove the
Turing completeness of unification based attribute-value grammars. It is possible
to encode a Turing machine M in a UAB⊗ grammar G(M) such that G(M)
generates the string ‘halt’ if and only if M halts with a blank input tape; this
is enough to conclude the undecidability of UAB⊗ grammars. Polymorphic null
assignments, in fact, correspond quite neatly to lexical rules, as proposed in [6],
leading to an undecidable formalism.

A constrain that we can impose on UAB⊗ grammars to avoid undecidability is
linearity. Roughly, we impose the restriction that any lexical type may contain
at most one variable, occurring once in an argument position and once in value
position. Thus, α/α, (s/α)\(s/(α ⊗ a)) are licit types, while (α\α)/α, (s/(α ⊗
β))\(s/((α⊗β)⊗a)) and (s/(α⊗α))\(s/((α⊗α)⊗a)) are not. More precisely we
define linear categories as the types F2 generated by the following context-free
grammar.

2.2 Constraining UAB⊗ Grammars

92 Capelletti M. and Tamburini F.

� ::= ⊗ | / | \ �′ ::= / | \
F0 ::= A | F0�F0 F1 ::= F1�F0 | F0�F1 | α
F2 ::= F1�

′F1 | F0 | F2�
′F0 | F0�

′F2

(2)

This definition of categories may deserve some comments. The interesting cases
are the F2 formulas of the form A/B or B\A, with A and B in F1 (the other cases
are meant essentially to put these in context). Consider the case of A/B, then α
occurs exactly once in A and in B, since a F1 category contains the variable α
by construction. By analogy with lambda terms, we can think of the occurrence
of α in B as a binder (possibly a pattern-binder), and of the occurrence in A as
the bound variable.

An UAB⊗ grammar is linear if all its lexical assignments are linear. Fur-
thermore, in linear UAB⊗ grammar, we work by simple variable instantiation,
rather than by a full-fledged unification algorithm. More precisely let us denote
AB a formula A with a distinguished occurrence of a subformula B. AC is the
formula obtained from AB by replacing the occurrence of the subformula B with
the formula C. The linear UAB⊗ calculus results from the UAB⊗ calculus in
Figure 2 by replacing the Cut rules with the following instantiation rules.

Δ → AB Γ,Aα → C

Γ,Δ → C[α := B]
Γ → AB Aα, Δ → C

Γ,Δ → C[α := B]
(3)

Observe that given a linear UAB⊗ grammar adopting the rules in 3, only
linear types can occur in any of its deductions.

Observe also that the UAB⊗ grammars for anbncn and ww languages as well
as that for the Dutch cross serial patterns, are all linear. On the other hand, no
linear UAB⊗ grammar can be given for the so called MIX or Bach language that
is the language of the strings containing an equal number of a’s, b’s and c’s4.

As we have the proper inclusion of context-free languages and the realization
of limited cross-serial dependencies, in order to have a mildly context-sensitive
grammar formalism we shall prove that linear UAB⊗ grammars can be parsed in
polynomial time. We do this in the next section by providing a parsing algorithm
for linear UAB⊗ grammars.

In this section we define a polynomial parsing algorithm for linear UAB⊗ gram-
mars. It is based on a standard agenda-driven chart-parsing method and makes
use of an external table, which we call instantiation table, for storing the ‘par-
tial’ instantiations of variables Let n be the length of the input string and Lex

4 To see this, we observe that the context-free language of the strings containing an
equal number of a’s and b’s is not linear, in the sense of [11], see [16]. Hence for
the MIX language, a UAB⊗ grammar needs to bind two distinct variables for each
symbol, what violates linearity.

3 Polynomial Parsing with Linear UAB⊗ Grammars

Parsing with Polymorphic Categorial Grammars 93

the input lexicon. Cells of the instantiation table are denoted I(i,k,j), where
0 � i < j � n and 0 � k � |Lex|. We extend the construction of formulas
with two kinds of variables, αk and α(i,k,j) where i, k and j are as before. The
difference between the two kinds of variables is that αk is an uninstantiated
variable while α(i,k,j) is a variable αk which has been instantiated when an item
spanning between i and j was generated. The algorithm assumes that different
lexical entries contain different variables, that is for no k the variable αk occurs
in two distinct lexical assignments5.

The parser operates on two kinds of items which we represent as

(i, Δ � Γ → A, j) and (i, Γ � Δ → A, j)

where i and j are integers and Δ � Γ → A and Γ � Δ → A are sequents in which
exactly one occurrence of an auxiliary symbols (either � or �) appear. These
symbols play a role similar to the dot in Earley parsing systems.

An item of the form (i, Δ � Γ → A, j) asserts that ΔΓ → A is derivable
in linear UAB⊗ and that wi+1 . . . wj ⇒∗ Δ. Furthermore, the items have a
predictive component.

– In case A ≡ A′ ⊗ A′′ and ΔΓ ≡ A′ A′′, it asserts that for some context Λ,
wl+1 . . . wi A Λ ⇒∗ C with 0 � l < i. This means that the item has been
predicted from another item (l, Ξ � A Λ → C, i).

– In case A ≡ α(i,k,j) and ΔΓ ≡ B for some formula B ∈ I(i,k,j), it asserts that
for some context Λ, wl+1 . . . wi Aα(i,k,j) Λ ⇒∗ C with 0 � l < i. This means
that the item has been dereferenced from another item (l, Ξ � Aα(i,k,j) Λ →
C, i).

The dual conditions hold for (i, Γ � Δ → A, j). For simplicity, we write items of
the form (i, �Δ → A, j) and (i, Δ � → A, j) as (i, Δ → A, j).

The proposed parsing algorithm for linear UAB⊗ grammars is showed in
Figure 3.

The correctness of the algorithm can be proven by adapting the methods of
[1; 23] for the CYK and Earley parsers and by observing that the triple (i, k, j)
resulting from the instantiation of a variable is determined by the unique name
k of the variable αk and by the span (i, j) over which the instantiation has
been determined. Observe that the Completion rules apply to a non-instantiated
variable and therefore that instantiated variables behave like constants in the
parsing process, whose value is determined by the Dereference rules.

To show that the resulting algorithm is polynomial, we follow the usual argu-
ment for agenda-driven chart-based parser evaluation, see for instance [22; 21].
The number of sequents that can occur in a cell of the chart for a given gram-
mar with lexicon Lex is O(n2|Lex||Σ|) where Σ is the set of subformulas of the
lexicon6 and |Lex| is the number of word-category pairs contained in the lexi-
5 Clearly all these modifications do not affect linearity, and are motivated by correct-

ness and efficiency reasons.
6 That is for each lexical entry w :: A, Σ contains all the subformulas of A. For example

the formula (a\b)/c generates the subformulas {(a\b)/c, a\b, a, b, c}

94 Capelletti M. and Tamburini F.

Input: a string w = w1 . . . wn and an UAB⊗ grammar G.
Output: Accept/reject.
Data Structures: an n + 1×n + 1 matrix T , the chart, whose cells are sets of sequents,
a set of items N , the agenda, containing all the items to be processed and the
instantiation table I as defined before.

Initialization:
Let N = ∅ and T(i,j) = ∅ ∀i, j.
For i = 1 to n do

N = N ∪ { (i − 1, A → A, i) | wi :: A ∈ Lex}
Main cycle:
While N �= ∅ do
remove one item ν = (i, Γ → A, j) from N .
If Γ → A /∈ T(i,j), then
add Γ → A to chart T(i,j)

Shifting:
If ν = (i, Γ → C/A, j), then add (i, Γ � A → C, j) to N .
If ν = (i, Γ → A\C, j), then add (i, A � Γ → C, j) to N .
Prediction:
If ν = (i, Γ � A ⊗ BΔ → C, j), then add (j, �A, B → A ⊗ B, j) to N .
If ν = (i, ΓA ⊗ B � Δ → C, j), then add (i, A, B� → A ⊗ B, i) to N .
ε-Scanning:
If ν = (i, Γ � AΔ → C, j) and ε ⇒+ A, then add (i, ΓA � Δ → C, j) to N .
If ν = (i, ΓA � Δ → C, j) and ε ⇒+ A, then add (i, Γ � AΔ → C, j) to N .
Completion:
If ν = (i, Γ � AΔ → C, j), then for all Λ → A ∈ T(j,k), add (i, ΓA � Δ → C, k) to N .
If ν = (i, ΓA � Δ → C, j), then for all Λ → A ∈ T(k,i), add (k, Γ � AΔ → C, j) to N .

If ν = (i, Λ → A, j), then
j

for all Γ � AΔ → C ∈ T(k,i), add (k, ΓA � Δ → C, j) to N ,
for all ΓA � Δ → C ∈ T(j,k), add (i, Γ � AΔ → C, k) to N .

If ν = (i, Γ � Aαl Δ → C, j), then
for all Λ → AB ∈ T(j,k)

add (i, Γ Aαl � Δ → C[αl := α(i,l,k)], k) to N and update I(i,l,k) = I(i,l,k) ∪ {B}.
If ν = (i, ΓAαl � Δ → C, j), then

for all Λ → AB ∈ T(k,i)

add (k, Γ � AαlΔ → C[αl := α(k,l,j)], j) to N and update I(k,l,j) = I(k,l,j) ∪ {B}.
If ν = (i, Λ → AB , j), then

for all Γ � AαlΔ → C ∈ T(k,i)

add (k, ΓAαl � Δ → C[αl := α(k,l,j)], j) to N and update I(k,l,j) = I(k,l,j) ∪ {B}.
for all ΓAαl � Δ → C ∈ T(j,k)

add (i, Γ � AαlΔ → C[αl := α(i,l,k)], k) to N and update I(i,l,k) = I(i,l,k) ∪ {B}.
Dereference:
If ν = (i, Γ � α(k,l,m) Δ → C, j) and A ∈ I(k,l,m) then add (j, �A → α(k,l,m), j) to N .
If ν = (i, Γα(k,l,m) � Δ → C, j) and A ∈ I(k,l,m) then add (j, A � → α(k,l,m), j) to N .

Termination: If, when N = ∅, Γ→s ∈ T(0,n), for some Γ , then accept, else reject.

Fig. 3. Recognition algorithm for linear UAB⊗grammars.

Parsing with Polymorphic Categorial Grammars 95

con. Then, the time is dominated by the Completion rules, that gives a global
asymptotic complexity of O(n5|Lex||Σ|).

4 Conclusion

In this paper we have investigated some linguistic and computational properties
of unification based categorial grammars. We have seen that, like other uni-
fication based grammar formalisms, unrestricted UAB⊗ grammars are Turing
complete. However, we have also seen that the constraint of linearity defines a
linguistically interesting class of categorial grammars. Most notably, it locates
the system among the mildly context-sensitive formalisms. Another pleasant as-
pect of the resulting system, at least with respect to any other CG-based mildly
context-sensitive categorial formalism (be it CCG or type-logical grammar) is
the absence of spurious ambiguity.

The work in [8] presents a decision procedure for a kind of polymorphic cate-
gorial grammar allowing at most two instances of the same variable in argument
position and one in value (e.g. (X\X)/X). However, with such kind of polymor-
phism we can generate languages that are beyond the mildly context-sensitives
(for instance, we can easily generate indexed languages such as {www|w ∈
{a, b}+}). This extension, and its implications on recognition complexity, are
currently being investigated.

Despite the fact that in this paper we have been concerned only with a recog-
nition algorithms, a proper parsing algorithm that provides all the parses of the
input, handling also semantic information, can be easily provided. In that case,
the correspondence between syntax and semantics typical of categorial gram-
mars and the absence of spurious ambiguity of our systems become important
ingredients of the resulting natural language parser.

We wish to conclude this section by observing that the linearity constraint
can also be relaxed. For instance, while preserving the condition that only one
variable occurs in a formula, we can allow more than two occurrences of this
variable. Then bounded languages such as wi or ai

1ai
2 . . . ai

n, which are general-
izations of ‘ww’ and aibici, can easily be generated and recognized in polynomial
time.

96 Capelletti M. and Tamburini F.

A. Aho and J. Ullman. The Theory of Parsing, Translation and Compiling,
volume 1: Parsing. Prentice-Hall, INC., 1972.
K. Ajdukiewicz. Die syntaktische Konnexität. Studia Philosophica, 1:1–27,
1935.
J. Baldridge. Lexically Specified Derivational Control in Combinatory Cat-
egorial Grammar. PhD thesis, University of Edinburgh, 2002.
Y. Bar-Hillel. A quasi-arithmetical notation for syntactic description. Lan-
guage, 29:47–58, 1953.
H. Barendregt. Lambda calculus with types. In S. Abramsky, Dov M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, pages 117–309. Oxford University Press, 1992.
B. Carpenter. The generative power of categorial grammars and head-driven
phrase structure grammars with lexical rules. Computational Linguistics,
17(3):301–313, 1991.
S. Clark and J. R. Curran. Wide-coverage efficient statistical parsing with
ccg and log-linear models. Computational Linguistic, 33(4):493–552, 2007.
M. Emms. Parsing with polymorphism. In EACL, pages 120–129, 1993.
J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge
University Press, 1989.
D. Heylen. Types and Sorts. Resource logic for feature checking. PhD thesis,
UiL-OTS, Utrecht, 1999.
J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.
G. Huet. A uniform approach to type theory. In Logical foundations of func-
tional programming, pages 337–397. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1990.
M. Johnson. Attribute-Value Logic and the Theory of Grammar, volume 16
of CSLI Lecture Notes. CSLI, Stanford, California, 1988.
M. Kandulski. The equivalence of nonassociative Lambek categorial gram-
mars and context-free grammars. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 34:41–52, 1988.
J. Lambek. The mathematic of sentence structure. American Mathematical
Monthly, 65(3):154–170, 1958.
P. Linz. An introduction to formal languages and automata. D. C. Heath
and Company, Lexington, MA, USA, 1990.
R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.
M. Moortgat. Categorial type logics. In J. van Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, pages 93–177. Elsevier, Amster-
dam, 1997.
R. Moot. Proof Nets for Linguistic Analysis. PhD thesis, UiL-OTS, Utrecht,
2002.

References

1.

2.

3.

4.

5.

6.

7.

8.
 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Parsing with Polymorphic Categorial Grammars 97

G. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer,
Dordrecht, 1994.
M.-J. Nederhof and G. Satta. Tabular parsing. In C. Martin-Vide, V. Mi-
trana, and G. Paun, editors, Formal Languages and Applications, Studies
in Fuzziness and Soft Computing 148, pages 529–549. Springer, 2004.
G. Satta and O. Stock. Bidirectional context-free grammar parsing for
natural language processing. AIJ: Artificial Intelligence, 69, 1994.
K. Sikkel. Parsing schemata and correctness of parsing algorithms. Theo-
retical Computer Science, 199, 1998.
M. Steedman. Dependency and coordination in the grammar of dutch and
english. Language, 61(3):523–568, 1985.
M. Steedman. The Syntactic Process. The MIT Press, 2000.
Hans Uszkoreit. Categorial unification grammars. In COLING, pages 187–
194, 1986.
J. van Benthem. Essays in Logical Semantics. Reidel, Dordrecht, 1986.
K. Vijay-Shanker and D. J. Weir. The equivalence of four extensions of
context-free grammars. Mathematical Systems Theory, 27, 1994.
D. J. Weir and A. K. Joshi. Combinatory categorial grammars: Generative
power and relationship to linear context-free rewriting systems. In Meeting
of the Association for Computational Linguistics, pages 278–285, 1988.
H. Zeevat. Combining categorial grammar and unification. In U. Reyle
and C. Rohrer, editors, Natural Language Parsing and Linguistic Theories,
pages 202–229. D. Reidel, Dordrecht, 1988.

20.

21.

22.

23.

24.

25.

26.

27.
 28.

29.

30.

98 Capelletti M. and Tamburini F.

